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The pioneering work of Robbins and Monro in
stochastic approximation initiated a rich and important
field of recursive procedures in estimation and control
for stochastic models. Herein the control aspects of
Robbins-Monro schemes are discussed. In this
connection, we also review some recent results on (i)
adaptive stochastic approximation, (ii) its extensions
to general multivariate stochastic regression models,
and (iii) the application of these extensions to the
classical problem of adaptive control of linear dynamic
systems and time series models.

1. Stochastic approximation.

In 1951, Robbins and Monro introduced the subject of stochastic

approximation in their seminal paper on the problem of finding the root of a

regression function by successive approximations. Consider the regression model

(1.1) y± = M(Xi)

where y^ denotes the response at the design level x^, M is an unknown regression

function, and t. represents unobservable noise (error). In the deterministic

case (where €. = 0 for all i), Newton's method for finding the root λ of a

smooth function M is a sequential scheme defined by the recursion

* Research supported by the Army Research Office and the National Science

Foundation.

AMS 1980 Subject classifications. Primary 62L20, 62J05, 93E20; Secondary

60G42, 93E10.

Key words and phrases. Adaptive stochastic approximation, stochastic

regression models, control, self-tuning regulators, linear dynamic systems.

266



ADAPTIVE STATISTICAL PROCEDURES 267

(1.2) x n + 1 - xn -y n/M'(x n).

When errors 6. are present, using Newton's method (1.2) entails that

(1 3) xn+1 - xn - M C X V M ' U , , ) -€ /Mf(x ).
nt" l n n n w n

Hence, if xn should converge to λ (so that M(xn
) + 0 and M

f
(x

n
) + M'(λ)), then

(1.3) implies that € -»• 0, which is not possible for typical models of random

noise (e.g., i.i.d. € with positive variance).

To dampen the effect of the errors €. , Robbins and Monro (1951)

replaced 1/M'(xn) in (1.2) by constants that converge to 0. Specifically,

assuming that

(1.4) M(λ) « 0, inf M(x) > 0 and sup M(x) < 0

ε<x-λ<l/ε ε<λ-x<l/ε

for all 0 < ε < 1, the Robbins-Monro scheme is defined by the recursion

(1.5) x
n + 1

 = W n (
χ
i
 =
 initial guess of λ),

00 00

2
where a are positive constants such that Σ a < °° and Σ a = °°.

1
 n
 1

 n

Many stochastic models of random noise € (e.g., l^-bounded martingale

difference sequences) have the property that

2
(1.6) Σ α € converges a.s. and in Lo for all constants α such that Σ α <

n n i. n . n

For such models of random errors, Blum (1954) showed that the Robbins-Monro

scheme (1.5) converges to λ a.s , under the assumptions (1.4) and

(1.7) |M(x)| < c|x| + d for some c,d and all x.

Earlier, Robbins and Monro (1951) showed that the scheme converges to λ in L
?
.
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Suppose that the random variables € are i.i.d. with mean 0 and

2
variance σ . Chung (1954) and Sacks (1958) established the asymptotic normality

of the scheme (1.5) for various choices of a
n
 and showed that the smallest

variance of the asymptotic normal distribution is attained by the

choice a ~ (nM
f
(λ)) , assuming also that M

f
(λ) exists and is positive. For

n

this asymptotically optimal choice a ~ (nM
f
(λ)) , the Robbins-Monro scheme

n
-1 2

(1.5) is asymptotically normal with mean 0 and variance n (σ/M'(λ))

In particular, consider the linear model

(1.8) y
±
 = 3(x

±
 - λ) +€± (i=l,2,...),

2
where 8 > 0 is known and the €. are i.i.d. with mean 0 and variance σ . The

least squares estimate of λ based on x^,y^, .. >
χ

n
>y

n
 is

(1.9) λ* - i - y 7β (- λ - € / β ) .

Here and in the sequel, we use the notation z to denote the arithmetic mean

- i
n

n Σ z. Thus, irrespective of how the levels x. are chosen,

λ (= λ - £ /β) is asymptotically normal with mean λ and variance n (σ/8) , and

λ^ -• λ a.s. Moreover, letting the least squares estimate λ (= x - y /6) at

stage n be the design level x
 +
, at the next stage is equivalent to the Robbins-

Monro scheme (1.5) with a
n
 = (n8 ) "

1
, in view of

THEOREM 1 (Lai and Robbins, 1979). For every real number c and positive integer

n, we have the equivalence

Hence, in the linear model (1.8) with i.i.d. errors €., the

asymptotically optimal Robbins-Monro scheme with aR » (nB)~*
 nas tne

statistical properties as the sequence of least squares estimates λ For

nonlinear regression functions M such that M
!
(λ) = 3 exists and is positive,

since M(x) ~ 8(x-λ) as x -»• λ, we still have the same asymptotic distribution
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given by

(1.10)
 n l / 2 ( x

n
"

 λ )
 *

provided that x
n
 •* λ a.s. The latter a.s convergence was established by Blum

(1954) for general Robbins-Monro schemes.

In practice, 3 = M
f
(λ) is usually unknown. To obtain strongly

consistent estimates of 3, Venter (1967) proposed the following modification of

the Robbins-Monro scheme (1.5) with a = (n3) . At the m
t n
 stage (m=l,2,...),

two observations y and y are taken at levels x = λ - c and x = λ + c ,
mm m m m m m m

where jc ) is a sequence of positive constants such that

—γ 1 1
(1.11) c ~ c m for some constants c > 0 and -γ < γ < — ,

m H z

and λ is the m approximation to λ defined recursively by

(1.12) λ
± + 1

 = λ
±
 - y

i
/(ib

i
) (λ

χ
 = initial guess of λ).

The quantity y
i
 in (1.12) estimates the (unobserved) response at the

1 '
level λ and is defined by y. = y(y. + y.) Assuming that positive constants b

and B are known such that b < 3 < B, Venter defines the slope estimate b. in

(1.12) by

..-1 "b. = b V {B Λ i Σ (y. - y )/(2c
j-1

 J J J

where the symbols V and Λ denote maximum and minimum respectively. Note that by

(1.1)

y
i
 = M ( λ

i ~
 c
i

) +
 \'

 y
i
 = M ( λ

i
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Suppose that the errors € , €2> > €. , ̂ 2,... are i.i.d. with mean 0 and

variance σ . Then Var{γ(€. + £.)} - -j σ , and under certain assumptions on M,

Venter showed that (1.10) with n = 2m and x
Λ
 = λ still holds for this
ii m

modification of the Robbins-Monro scheme; moreover, b. •* 3 a.s.

2. The control aspects of stochastic approximation.

The preceding section shows that the successive approximations in the

Robbins-Monro scheme (1.5) provide strongly consistent estimates of the

root λ of an unknown regression function M Moreover, by choosing a
n
 in (1.5)

to be a = (n3)~ , or to be a = (nb )
- 1
 as in Venter's modification (1.12),

n n n

these recursive estimates are asymptotically equivalent (in the sense of (1.10))

to the least squares estimates under the linear model (1.8) with 3 known and

with i.i d. random errors. These results can be considered as the estimation

aspects of stochastic approximation, and pave the way for a rich variety of

subsequent developments in recursive estimation and identification algorithms

(cf. Sakrison, 1965; Albert and Gardner, 1967; Nevel
f
son and Hasminski, 1972;

Fabian, 1978; Ljung, 1977; Solo, 1981).

Let F^ denote the σ-field generated by x^,y^,.. ,x^,y^ . While the n

approximation x
n
 in the Robbins-Monro scheme (1.5) provides an F

n
__^-measurable

estimate of the unknown λ, it is also the design level at which the response y
n

is to be observed. We now discuss the usefulness of the stochastic

approximation design in adaptive control problems Suppose that in the

regression model (1.1) the objective is to regulate the outputs y^ so that they

are as close as possible to some target value, which we assume to be 0 without

n
 2

loss of generality. Thus, the control problem is to minimize Σ y in some

1
 i

sense, at least in the long run as n •* «>. The linear case (M(x) = α+3x) of this

problem has been discussed in the econometrics literature; this is the so-called

"multiperiod control problem under uncertainty" (cf. Zellner, 1971; Prescott,

1972; Anderson and Taylor, 1976).

Consider the linear regression model y
i
 = α + 3x. + £. with i.i.d.

2
random errors £ having mean 0 and variance o

 #
 A common approach to formulate
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the multiperiod control problem of choosing successive levels x,, ..,x
N
 is to

minimize

00 °° N N
( 2 . 1 ) / / E[ Σ y 2 | α , 3 ] d π ( α , 3 ) = Nσ 2 + £ [j.[$2 Σ ( x - λ ) 2 | α , 3 ] d π ( α ) ,

oo oo i = l
 X
 i l-oo -oo

where λ = -α/3. However, because of the analytical and computational

difficulties in studying the dynamic programming equations, not much is known

about the Bayes rules and it is difficult to implement them in practice.

Instead of this Bayesian approach, Anderson and Taylor (1976) noted that since

the optimal level is λ when α and 3 are known and since the least squares

estimate of (3,α) based on x^ ,yp .. >
x

n
>

v

n
 is

(2 2)
 K ί j/v^i^ j^i-V

2
' %

it seems reasonable to replace α and 3 in the optimal level λ = -α/3

by α and 3 . Thus, assuming prior knowledge of bounds K^ and K
2
 such that

K < λ < K_, Anderson and Taylor proposed the rule

(2.3) x
n + 1

 =K
2
Λ(-;

n
/έ

n
 V K j ) , n > 2,

where Λ and V denote minimum and maximum respectively, and the initial values

XjjX? are distinct but otherwise arbitrary numbers between K, and K^ When

the € are normal, this rule is tantamount to choosing the maximum likelihood
n

estimate of λ at stage n to be the design level at stage n+1. On the basis of

some Monte Carlo simulations, Anderson and Taylor (1976) conjectured that

{x } defined by (2.3) converges to λ a .s. However, Lai and Robbins (1982a)

disproved this conjecture by exhibiting an event Ω with positive probability on

which x
n
 does not converge to λ. In fact, on Ω , there is so little information

in the design to estimate 3 that 3 is of the wrong sign for all n.

While setting the current level as close to λ as the data suggest

(like the Anderson-Taylor rule) seems to be consistent with the control
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objective, there is also the conflicting need to set the design levels in a wide

enough scatter so as to provide a reliable estimate of λ This dilemna between

information and control, however, disappears if we assume that M 0 is in fact

known. In this case, by (1.9), the least squares estimate λ = x - y /β has

the same distribution no matter how the levels x^ are chosen. In view of the

control objective of setting the design levels as close to λ as possible, it is

therefore natural to set

(2 4)

For this choice, x
n
 has the asymptotic (normal) distribution given by (1.10)

Moreover, by (1.9),

(2.5) E[3
2
 Σ (x.-λ)

2
] = β

2
E{ Σ £.

2
/β

2
} ~ σ

2
 log n.

i=2
 X

 i=l
 x

n
 2

Since choosing the levels x. to minimize E( Σ y.) is equivalent to

2
 n

 X
 1

minimizing E[β Σ (x -λ) ] by (2.1), we call

i l
 i

(2.6) C = β
2
 Σ (x - λ )

2

i l
 ±

the "cost" of the control sequence {x.}. Thus, (2.5) shows that E(C
n
) is of

2
the order σ log n for the control rule (2.4). Moreover, for this control rule,

(2.7) C
n
 ~ σ

2
 log n a.s.,

as was shown by Lai and Robbins (1979).

When the errors 6. are normal, the least squares estimate

λ = x - y /β is the same as the maximum likelihood estimate. Putting a prior
n n n

normal distribution π on λ, it can be shown that the control rule

(2
 8
>
 x

n + 1
 = E

π
(λ|x

1
,y

1
,...,χ

n
,y

n
) = Bayes estimate
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oo
 N

 9

indeed minimizes the Bayes risk /^Eί Σ y |λ)dπ(λ) for every N > 1. Since the
* ~°°

 n = 1

maximum likelihood estimate λ and the Bayes estimate E (λ x ,y , ...,x ,y ) are
n IT 1 1 n n

asymptotically equivalent, the Bayes rule (2 8) has the same asymptotic

properties as (2.4). In particular, (2.7) also holds for the cost of the Bayes

rule (2.8) (cf. Lai and Robbins, 1982b).

By Theorem 1, the control rule (2.4) is equivalent to the stochastic

approximation scheme

(2.9) x
n + 1

= x
n
- y

n
/ ( n β ) .

Now consider the general regression model (1.1), where M satisfies (1.4), (1.7)

and the condition M
f
(λ) = 3 > 0. Suppose that 3 is unknown, and that we

replace 3 in (2.7) by an F
n
_^-measurable estimate b

n
 such that b -> β a s ,

leading to the adaptive stochastic approximation scheme

(2.10) x
n + 1

 = x
n
- y

n
/ ( n b

n
) .

Defining the cost C
n
 of the design by (2.6), Lai and Robbins (1979) showed that

the cost C of the adaptive stochastic approximation scheme (2.10) is still of

2
the order σ log n, as in (2.7). Moreover, x

n
 defined by (2.10) converges

to λ a.s. and has the same asymptotically normal distribution as that given in

(1.10).

The construction of strongly consistent estimates b
n
 in the scheme

(2.10) is given by Lai and Robbins (1981). When upper and lower bounds B and b

> 0 for 3 = M
f
(λ) are known, one can use the truncated version b V (3 Λ B) of

n

the least squares estimate 3 defined in (2.2). Without assuming prior

knowledge of these upper and lower bounds, it is also possible to modify the

argument to construct a more elaborate slope estimate that is strongly

consistent

Although the asymptotic normality property (1.10) also holds for

Venter's (1967) modification of the Robbins-Monro scheme, the cost of Venter's



274 LAI

design

9
 m

 f
 m „

C = 3 { Σ (x - \y + Σ (x - λ) } (n = 2m)
n
 χ

 i
 χ

 l

Ύ 2 —1 1—2Ύ
is of the order 4

T
c (l-2γ) n , where c and γ are given by (1.11) (cf. Lai

and Robbins, 1979), instead of the logarithmic order (2.7) for the adaptive

stochastic approximation scheme (2.10).

3. Multivariate extensions and the adaptive control of linear dynamic systems .

A classical problem in the literature on stochastic adaptive control

is the optimal regulation of the linear system

(3.1) y = α,y . + . . . + α y + 3.x . + . . . + 8 x + € ,Jn l'n-l P n-p 1 n-1 q n-q n'

where the yfs represent outputs and the x's represent inputs at various times

and the €fs represent random disturbances. In the time series literature, (3.1)

represents the autoregressive model with exogenous variables x. . In the

engineering literature, an important problem is how to choose the inputs

n 2
adaptively to regulate the outputs, say, such that Σ y is minimized in some

1
 X

sense in ignorance of the system parameters α ,...,α ,3 ,...,3 , at least

asymptotically as n •* °°. Although one may in principle use a Bayesian

approach, putting a prior distribution on the unknown parameters and applying

dynamic programming when the disturbances £ are i.i.d. with a known common

n

distribution and when there is a finite horizon, the dynamic programming problem

is prohibitively difficult, both computationally and analytically.

A much more practical approach to this adaptive control problem is

that of the self-tuning regulator, proposed by Astrom and Wittenmark (1973)

following an earlier idea due to Kalman (1958). The "self-tuning" idea is to

start by considering the case where the system parameters are known, for which

the optimal controller is given by
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(3.2) x
n
 = -(

β l
y

n +
 ...

 +
 α

p
y

n
_

p + 1 +
 β ^

 +
 ...

 +
 6

q
x

n q + 1
 )/6

1
,

assuming that 3, * 0, or equivalently by the equation

(3.3) θ φ
n
 = 0,

where θ = (α^ .. . , ^ , 6 ^ ...,β
q
) and Φ

n
 = (y

n
,.. .,y

n
_

p + 1
 ,x

n>
... >*

n
_

q + 1
)

t

Regarding (3.1) as the regression model y . - θ φ + £ , let

(3.4) θ
n
= ( Σφ.φ!)-

1
 Σ

be the least squares of Θ based on φ,,y
2
» >Φ ,y ,, Without assuming prior

knowledge of the system parameters, the self-tuning regulator substitutes Θ in

(3.3) by its least squares estimate and defines x
n
 implicitly by the equation

(3.5) θ
n
_

l Φ n
 = 0.

When the random disturbances are i.i d. normal with mean 0, Θ is the

maximum likelihood estimate of Θ, and therefore the self-tuning regulator (3.5)

is simply the maximum likelihood estimate of the (unobservable) optimal

regulator (3.2) at every stage. While (3.5) may well represent one's best guess

of (3.2), how good the guess is depends on how much information there is to

estimate Θ. A measure of the amount of information available to estimate Θ on
n
 t

the basis of Φ
i9
y., ,φ ,y , is the information matrix Σ φ.φ. As shown by

Lai and Wei (1982), the least squares estimate Θ converges to Θ a.s. if

W \ *±*ί> * "
 a n d

(3 6)

where λ and λ denote the maximum and minimum eigenvalues of a symmetric
max min

matrix.
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This self-tuning idea is therefore analogous to the Anderson-Taylor

rule (2.3) for the multiperiod control problem related to the simple linear

model y. - a + 3x. + ^ discussed in Section 2. A basic issue concerning the

self-tuning approach of substituting the parameters by their sequential

estimates is whether there is enough information for adequately estimating these

parameters .

We now consider this issue and the dilemna between the need for

information and the objective of efficient control in the more general context

of a stochastic regression model

(3.7) Y
π
 = AZ

n

where

(i) Y
n
 is a kxl vector of outputs at stage n;

(ii) A is a kxh matrix and B is a kxk nonsingular matrix of parameters;

(iii) e
n
 is a kxl vector of random disturbances such that (e ) is a

martingale difference sequence with respect to an increasing sequence

of σ-fields {F } and sup E(||e ||
Ύ
|F ) <°° a.s for some γ > 2;

n

(iv) X
n
 is a kxl vector of regulators depending on the current and past

observations Z
χ
 ,X

χ
 ,Y

χ
, ... , Z

n - 1
 . ^ . p Y ^ j ,Z

n
;

(v) Z
n
 is an F

n
_^-measurable hxl vector of regressors

The control problem is to choose the regulators X,,X«,... sequentially

n
 2

so that Σ I|Y I I is minimized in some sense, at least asymptotically as
1
 1

n + °°. A special case of the stochastic regression model (3.7) is the simple

linear model y^ = α + 3x + € in a multiperiod control problem discussed in

Section 2, where Zn = 1. The linear system (3.1) is also a special case of

(3.7), where we set Yn = y n + 1, en = C ^ , Xn = xn, and

Zn = (yn»* **»yn-p+l»xn-l»"* »xn-q+l)', so h = p+q-1 in this case.

Suppose that the parameter matrices A and B in (3.7) are known. Then

the optimal regulators are given by X± = - B ^ A Z ^ and the optimal outputs are

Y£ = €^. This leads us to define, in analogy with (2.6), the cost at stage n
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of a sequence of regulators {x.} to be

(3.8) C = Σ ||AZ + BX ||
2
 = Σ ||γ - e ||

2
.

i=l i=l

A control rule is called "globally convergent" if

(3.9) C
n
/n -• 0

For the linear system (3.7), Goodwin, Ramadge and Caines (1981) made use of

stochastic approximation techniques to estimate the system parameters and showed

that the resultant rule is globally convergent. For the multiperiod control

problem related to the simple linear model y = α + 3x + € , the "self-tuning"

n n n

rule (2.3) proposed by Anderson and Taylor is not globally convergent, as has

been shown by Lai and Robbins (1982a). On the other hand, the adaptive

stochastic approximation scheme (2.10) with bn •* 3 a.s. is not only globally

convergent but also has the much stronger property (2.7) of only logarithmic

order for Cn. Moreover, this order of magnitude for CR is shown in Section 2 to

be asymptotically minimal by studying the auxiliary problem in which 3 is known.

To extend these ideas to the stochastic regression model (3.7), we

therefore start by assuming that B is known. Moreover, in analogy with (1.8),

we rewrite (3.7) as

(3.10) Yn = B(Xn-DZn) + en,

where D = -B A. Noting that (3.10) corresponds to the regression model

Xn-B"
1Yn = DZ -B~*e , the least squares estimate of D at stage n is given by

D* - { Σ (X -B^Jz'} ( Σ Z z') \
n
 i-1

 1 X
 * i-1

 1 X

where inverse denotes the Moore-Penrose generalized inverse. First suppose that
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-1
(3.12) Z = 0(1) and lim inf n λ . ( Σ Z.Z.) > 0 a.s.,

n+0 m m i i

and that

(3.13) the distribution of {z } does not depend on the choice of

This is the case when the Z are nonrandom, such as in multiperiod control

problem of Section 2. Assume also that the e
n
 are i.i.d. with mean 0 and

* _1
 n

 i
 n

 i

covariance matrix V. Then by (3.10) and (3.11), D = D-B ( Σ e Z.)( Σ Z.Z.),

Λ

 n
 i=l i=l

 1 X

and therefore the distribution of D does not depend on the choice of {x.} by

(3.13). In particular, in view of the control objective of setting X
n
 as close

to DZ as possible, it is natural to use the control rule

(3.14) X = D . Z ,
n n-1 n*

which is the analogue of x = λ .in (2.4). Lai (1985) has shown that for the
n n-1

rule (3.14)

(3.15) C ~ (tr V) h log n a.s.,

which provides an extension of (2.7).

The asymptotic behavior (3.15) of the cost assuming knowledge of B

provides a bench mark that we try to achieve even when B is unknown. Without

assuming knowledge of B, we make use of an approach similar to that of adaptive

stochastic approximation described in Section 2. First, in analogy with Theorem

* - _
1 that expresses the sequence λ (= x - y /β) in stochastic approximation form,

we apply the Kalman-Plackett recursive representation of the least squares

e s t i m a t e Q*
n #

( 3 . 1 6 ) D* = D* , + (X - B~1Y - D* .Z ) z ' p ,
n n-1 n n n - l n n n
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(3.17) P = P -P .Z Z P ./(1+Z P .Z ),

n n-1 n-1 n n n-Γ n n-1 n '

(cf Lai, 1985). Next we construct nonsingular kxk matrices B
n
 such that B is

F i-measurable and B
Λ
 + B a.s. The construction of such B is discussed

n—l n n

below. Replacing B by B
n
 in (3.16) leads to the recursive estimates

(3.18) D = D , + (X -B
 l
Y -D .Z )Z*P ,

n n-1 n n n n - l n n n

with P
n
 defined recursively by (3.17),

To construct F
n
_^-measurable estimates B

n
 such that B

n
 + B a.s , we

introduce white-noise probing inputs at certain prespecified times n^,n2,.. to

ensure that there is enough information to estimate B. Specifically, at stage

n ε I = {n
1
,n

2
,...}, the input X

n
 is a random vector independent of

Zγ,X,,Y|,.. »Z i»^n-l»^n-l>^n
 S u c

^ that the components of X
n
 are uniformly

bounded and independently distributed with mean 0 and common positive

variance. The inputs at the other stages are given by the self-tuning rule

(3.19) X
n
- D

n
_

1
Z

n
, ntf I.

The use of white-noise perturbations to improve the information content of the

design is a well known idea in adaptive control of linear systems It is

similar in spirit to Venter's modification of the Robbins-Monro scheme discussed

in Section 1. Dropping the i.i.d. assumption on e
fl
 and the assumption (3.13) on

Z
n
, we are still able to do asymptotically as well as (3.15) by having the

number of probing inputs up to stage v diverge to °° but within the order of

o(log v) (see (3.20) below), and by using strongly consistent estimates B of B

given in Lai (1985, Section 4 ) .

THEOREM 2 (Lai, 1985). Suppose that in the stochastic regression model (3.7),

{Z } satisfies (3.12). For the sequence of inputs {x } described above, with B
n n n
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suitably chosen and with

(3.20) i/log n
±
 -• 0,

we have

(3.21) C
n
 < {lim sup E( | |e | |

 2
|F )+o(l)}h log n a.s.

Although the linear system (3.1) is a special case of the regression

model (3.7), condition (3.12) need not hold and Theorem 2 is not applicable.

However, besides the regression structure, we can also make use of the system

dynamics defined by (3.1) to construct adaptive regulators that satisfy (3.21)

with h « P+q-1, which is the dimensionality of Z
R
 in this case. The details are

given in Lai and Wei (1986).
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