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Let G be a compact convex subset of R , {ξ.} a
bounded random sequence, and Π (x) the projection of x
onto G. We obtain asymptotic properties of the
projected stochastic approximation algorithm X _ =

V
X
n
 + εb

<
X
n Sn»

 (OΓ X
n

+
1 = V

X
n
 +
 •»**» •«»»••» * °>

via the theory of large deviations The action
functionals and their properties are obtained, as is the
mean exit time from a neighborhood of a stable point of
the 'mean

1
 algorithm. The usual methods for obtaining

the 'asymptotic normality
1
 of suitably centered and

normed sequences in stochastic approximation do not work
here - and, in fact, this (asymptotic normality)
property would not usually hold. The large deviations
approach provides a useful alternative. Even for the
unconstrained case,for many applications the large
deviations estimates seem to be more useful than those
based on the 'local linearization

1
 which leads to the

asymptotic normality.

1. Introduction.

Let G = {x:q.(x) < 0,i < k} be a compact convex subset of R
r
 which is

the closure of its interior, where the q^( .) are continuously differentiable.
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254 KUSHNER AND DUPUIS

Let {ξ } be a bounded random sequence and b(.,ξ) uniformly (in ξ) Lipschitz

continuous. Define Π (x) to be a point in G nearest to x. The projected

stochastic approximation (SA) algorithm (1.1) arises frequently in control and

communications theory, and elsewhere.

(1.1) Cl = V
X
n

There is literature (Ermoliov, 1976; Kushner and Clark, 1978; Kushner and

Shwartz, 1984; and Pflug, 1986) on the asymptotic locations of {X
8
} (as

ε + 0, εn •»• °°) For a vector v, define the projected v at_ x € G JDV_

Π_(x,v) = lim[Π_,(x+Δv) - x]/Δ. Then, under appropriate conditions, the limit
G
 ΔΨO

 G

points of (1.1) are those of the 'projected
1
 ODE

(1.2) x = Π
G
(x,b(x)),

1
where b(x) = lim — Σ Eb(x,ξ ). We work with the case of constant ε; similar

N
 N

 0
results are obtainable for the SA process when a

n
 replaces ε, 0 < a ->• 0, and

Σ a = °°. See Section 4.
n

Rate of convergence results for (1.1) are unavailable. In the

unconstrained case, one usually works as follows: Let X •»• 0 in distribution

as ε -> 0, εn •> °° and set ϋ = (X - Θ)//ε~. Let U ( .) be the piecewise constant

n n

continuous parameter interpolation with interval ε satisfying U (nε) = U .

Then, using a linearization about Θ, one tries to prove that U (t +.) converges

weakly to a Gauss-Markov process as ε + 0 (and t •> °° fast enough) . This

procedure cannot be used for (1.1) when Θ € 3G, the boundary of G. Also, being

a local result, it does not fully exploit the dynamics of (1.1) and one could

not obtain from it (in any case) estimates of the statistics of the escape times

from a neighborhood of Θ or similar quantities of interest in the

applications. Here we use the theory of large deviations to obtain such

statistics.
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In Section 2 assumptions are stated. Section 3 contains a statement

of the main results. A brief outline of the development is given in Section 4,

and one part of the proof is in Section 5. Owing to lack of space, many details

are omitted, and the reader is referred to Dupuis and Kushner (1985). An

outline of the result for a projected version of the classical Robbins-Monro

algorithm is in Section 4.

2. Assumptions.

Suppose that the limit b( .) defined above exists uniformly in x ζ G.

For notational convenience, let the T/Δ and Δ/ε below take integer values.

Suppose that there is a real valued function H(., ), continuously differentiable

in its first argument (it is obviously continuous) such that for each Δ > 0,

T/Δ-l T/Δ-l
 f
 iN+N-1

(2.1) Σ ΔH(α ,x ) - lim - log E exp Σ α Σ b(x.,ξ.).

0 N
 W

 i=0 j-lN
 J

The limit exists as required if {ξ.} is a finite state ergodic Markov chain

(Freidlin, 1978), or if ξ̂  = Σ g.._
k
Ψ
k
, where g. - 0 for j < 0, Σ|g |j < °°, and

{ψ,} are i i.d. and bounded (Dupuis and Kushner, 1985a). Define the (lower

semi-continuous (l.s.c.)) dual L and action functional S:

T

L(3,x) - sup[6
f
α-H(α,x)]; S(T,φ) = / L(<p (s) ,φ(s))ds for φ( .) absolutely

α 0

continuous in C [0,T], the set of G-valued continuous functions on [0,T] with

initial value x, and set S(T,φ) = « for other φ(.) € C [0,T]. Define the

bounded convex sets U(x) = {3:L((3,x) < °°}, and suppose that U( .) is continuous

in the Hausdorff topology

For the sake of simplicity in the discussion here, we make the non-
1 N

degeneracy assumption: lim — cov Σ [b(x,ξ.) - b(x)] is uniformly positive
N 1

 J

definite in G (a more general case is in Dupuis and Kushner (1985)). We state

some facts. For each 6 > 0, L(., ) is uniformly continuous on

{β,x:B € U(x),d(3,9U(x)) > δ,x € G} Ξ U δ
(x), where d(.,.) always denotes

distance in the sup norm sense. H(.,x) is strictly convex in a neighborhood of

α » 0, uniformly in x. L(3,x) » 0 iff β = b(x). There is a neighborhood N of

{0} such that N + "b(x) ̂  U(x) for all x € G, and such that L(b(x) + .,x) is
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strictly convex in N, uniformly for x 6 G. L(b(x) + u,x) = o(u) uniformly for

Define B(x,3) = {v:Π
o
(x,v) = Π.(x,β)}, the set of 'velocities

1
 with

the same projection at x as 3 has. Since B(., ) is u.s.c. (in the Hausdorff

topology) and L(., ) is l s.c , the function defined by

(2.2) L (3,x) - inf L(v,x)

v€B(x,3)

is l.s.c. For φ( .) absolutely continuous in C
χ
[0,T] define

(2.3) S
p
(T,φ) = / L_(φ(s),φ(s))ds,

G
 0

 G

and set S_(T,φ) = «> otherwise.

3. Main results .

Define x ( .) to be the piecewise linear interpolation of {X } with

interpolation interval ε > 0. Let E (P ) denote expectation (probability)

conditioned on X - x.

THEOREM 1. Under the assumptions of Section 2, S
G
(T,.) is an action functional

for x (.), i.e., it is l.s c , the level sets

Φ (s) = {φ € C [0,T] : S.(T,φ) < s} are compact, and for A c C [0,T], with
x x \J

 χ

interior A and closure A,

-inf
n
S_(T,φ) < lim ε log P {χ

£
( .) € A}

φ€A U ° ε
 X

< lim ε log P {χ
G
( .) € A}

ε

< - inf S.(T,φ).

Φ€A G

Remarks . In a rough sense, Theorem 1 says that for small δ and ε
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P
χ
{d(χ

ε
(.),Φ(.))

is approximately given by

exp - ε S
G
(T,φ),

and that for a set of paths A, the overwhelming contribution to the probability

of x (.) being in A comes from small neighborhoods of the paths minimizing

S
G
(T, .) over A. It should also be noted that owing to the Lipschitz conditions

it can be shown that the limit (3.1) holds uniformly for x ( G.

Let Θ be an asymptotically stable point of (1.2) Consider a

neighborhood D of θ with smooth boundary and whose closure is in the domain of

attraction of D (all sets and neighborhoods are relative to G) Under the two

following additional conditions, an estimate of the escape time from D can be

obtained. We redefine b( .) and H(., ): Let M denote a stopping time for {X },

let B
M
 denote the associated stopped σ-algebra, and suppose that the limits in

(3.2), (3.3) below exist uniformly in M and x and that H(.,x) is continuously

differentiable. This will be the case for the two classes of processes listed

below (2.1).

__ n+M-1

(3.2) b(x) = lim ^-E Σ b(x,ξ )

n
 n B

M M
 J

n+M-1
(3.3) H(α,x) - lim - log E_ exp α

1
 Σ b(x,ξ.)

n
 Π B

M N
 J

Define

(3.4) S
D
(Θ) = inf{S

G
(T,φ): φ( .) £ C

Q
[0,T], φ(T) 6 3D, T < «,} .

Let D. denote a δ-neighborhood of D with DQ = D. Then clearly, S (Θ) decreases

6

as δ 4- 0. We assume that S (Θ) Ψ S (Θ) as δ I 0. If this condition doesn't

δ

hold for D it will always hold for some small perturbation of D. If D C G ,
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then the condition is implied by the non-degeneracy assumption.

THEOREM 2. Under the assumptions of Theorem 1 and the two assumptions above,

lim ε log

ε

S
D
(Θ),

where inf(t:χ
ε
(t) t D} .

In 'typical
1
 cases, the exit of x (.) from D is along the

boundary 3G Refer to Figure 1 for one such case. For small ε, the process is

initially driven by the 'projected
1
 dynamics into a small neighborhood

of 0, with overwhelming probability. From there, a rare burst of the 'correct
1

noises may drive the process from D, and in this case it is most likely that the

process will follow close to a path for which the infimum in (3.4) is achieved,

or at least nearly achieved. Owing to the (possible) discontinuity of L_(β,x)

on 8G, in a situation such as that depicted in Figure 1, the optimal (or most

likely) exit paths will lie on 9G. The infima in (2.2) together with that in

(3.4) essentially gives us the 'cheapest' way out of D.

Figure 1. Example of Escape and Flow Lines.

P(Escape is along boundary) — ~ >• 1.
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Extensions. As for the cases in Freidlin (1978) and Freidlin and

Ventsell (1984), one can get information on the most likely locations of the

exit of x ( .) from D. Let there be a finite number of points yj,...,y £ 3D

such that

inf inf S (T,φ) = inf inf S (T,φ),

T>0 φ€A± ** T>0 φ€A **

where A± -ίφ(.) € C0[O,T] : φ(T) = y ±
}, and A = {φ( .) € C0[O,T] : φ(T) € 3D}.

Then for x € D,

F F q

lim P {d(x ε
(O, uy ) < 6} = 1,

ε-K)
 X D

 1
 1

for any δ > O

If (1.2) has many invariant sets in G, one can develop an analog of

the results in Freidlin and Ventsell (1984) concerning the mean time to move

from a neighborhood of one such set, or group of sets, to another.

The Robbins-Monro Process. There are also similar results for the

stochastic approximation case where 0 < a •* 0 replaces ε and Σ a = °° (Dupuis

n
and Kushner, 1985). See Dupuis and Kushner (1985a) and Korostelev (1984) for a

general discussion of such stochastic approximations via large deviations

methods The results for the unconstrained Robbins-Monro case in Dupuis and

Kushner (1985a) can readily be extended to the constrained case via the methods

discussed here. Define

+ a
j

b ( X
j '

ξ
j

) )

where we assume the same conditions on {ξ.} and b(.,.) as in Section 2. Define

n-1
 J

t - Σ a , , m(t) - max{n:t < t}, and the shifted process
n
 Q

 i n



260 KUSHNER AND DUPUIS

X
j + 1

 =
 V

X
j

 + a
j

b ( X
j

>

χ
n

( t )
 , ̂ l

( t t
i

+ t
n

)
^

( t t
^ l

t
n

)

 o n [ t
 _

t t
 _

t )

x u ;
 VΓ^J

 j J+1

τ* = inf{t:χ
n
(t) i D} .

Hence x
n
(.) is the linear interpolation of the sequence X. with the decreasing

interpolation intervals a. As n •• °°, x ( .) represents the tail of the original

sequence X., but started at x on the n-th step.

For a
n
 = 1/n, use the action functional

S
G
(T,φ) = J^L^φ^ds,

T
 T

and for a^ =* 1/n , T < 1, use S (T,φ) - / L (φ ,φ )ds. Then for A
 e

C
χ
[ 0 , T ] ,

-inf S_(T,φ) < lim a log P {χ
n
(.)€ A}

Λ b n x
n

< ϊϊm a log P {χ
n
(.) € A} < -inf S_(T,φ).

n x -r \3
n φ£A

Define θ as above, and for x 6 D let A = ίφ(-):φ(O) = x,φ(t) £ D, some t < T}.

Then, under the 'continuity
1
 condition on 3D just above Theorem 2,

lim a
n
 log P

0
{τ£ < T} = -inf S (T,φ),

n Φ€A

where τ is the escape time of x
n
( .) from D.

The values of the limits above provide useful information on the

dependence of the performance of the algorithm on b( , ), on the sequence

{a }, and on the statistics of {ξ }, and some of this information is obtainable
n n

without even solving the variational problem. It is also possible to use these

estimates to prove w.p.l. convergence results.

The e
s
 appears due to the time varying scaling. We have

lim a , ,
 λ
/a = h.(t), where h.(t) = e~

l
 for a = 1/n and h.(t) = 1

Ίn(t +t; n i l n 1
n n
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otherwise. In order to obtain the correct H-functional, a natural replacement

for the right-hand side of (2.1) is

T/Δ-l
 t
m(t +iΔ+Δ)-l

lim a log E exp Σ α
 n

 Σ a b(x ,ξ )/a ,
n
 Π

 i-0 Vm(t
n
+iΔ) 3 ± 3 *

which equals

T _

/ h/(t)H(h (t)α(t),x(t))dt,

0
 L

where α( •) and x(.) are the piecewise constant interpolations (interval Δ) of

{α } and {x }, respectively. Then our dual is L(β,x,t) = h~ (t)L(β,x).

4. Outline of the Method of Proof for Theorem 1.

It is difficult to work with x (•) directly, owing to the projection,

so we work with a sequence of approximations. We start with a process (4.1)

below, for which the large deviations result is well known. For this case,

there is neither projection nor 'feedback
1
 . We then define a sequence of more

complicated processes, which get closer to (1.1), and for each the large

deviations result can be obtained from the one preceeding it. Let ψ(.) and

φ( .) denote arbitrary functions in C
χ
[0,T] . Define I = {j :NΔ<jε<NΔ+Δ} and

ψ^ = ψ(nΔ) for j 6 I
n
 Define T

ε > ψ > Δ
 by

(4.1)

define

(4.2) S
ψ
'
Δ
(T,φ) Λ W ^ y - *

1
^ , •(IΔ)),

and let τ
ε >
^ ' (.) be the piecewise constant interpolation of { τ

ε > ψ >
 ,nΔ < T} .

It follows from Freidlin's method (Freidlin, 1978) that under (2.1) that (4.2)
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is an action functional for the random vector {T
ε>
^* (iΔ), 0 < i < N} , for

each Δ.

(We are actually comparing {T
ε
'

ψ > Δ
(iΔ), 0 < i < N} with the vector

Ψ Δ
{φ(iΔ), 0 < i < N} when we say that S ' (T,φ) is an action functional. We keep

the simpler notation since we shall eventually consider the limit as Δ + 0.)

Now define

s)U'
Δ
(T,φ) - inf S

ψ
'

Δ
(T,f),

f€P
Δ
(φ)

where F
A
(φ) = {f:IΓ(φ(iΔ) + f(iΔ+Δ) - f(iΔ)) - φ(iΔ+Δ), i < N-l} . We can write
Δ G

(4.3) S^T.φ) Λ \ inf
G
 0 f€F

Δ
(φ)

 Δ

By the contraction principle (Varadhan, 1984, p.5), (4.3) is an action

functional for the process {X. ,iΔ<T} defined by a projected form of (4.1),

but where the projection occurs only at each iΔ/ε step.

b ( Ψ j
\

ξ j )
)

We next work with the 'feedback
1
 form of { χ

ε > ψ > Δ
} . Define X

ε
£

Δ
 by

(Δ/ε==k,χ
ε>
 ( .^interpolation, interval=Δ)

ε > Δ
 = χ

ε > ψ > Δ
 = X

ε

o o o
Let ψ (.) (respectively, χ

ε > ψ >
 (.)) denote the piecewise constant

interpolation of {ψ(iΔ),iΔ<T}, (respectively, {χ
ε
'

ψ > Δ
,iΔ<T}). Then it can be

shown that for any δ > 0 there are δ > 0 (which go to zero as δ + 0) such that

(4.4)d(χ
ε>Φ
'

Δ
(.),ψ

Δ
( )) < δ

2
 => d(χ

ε
'

Δ
(.),ψ

Δ
(.)) < δ => d(

X

ε
'

Φ
'

Δ
(.),φ

Δ
(.)) < 6

r

It follows from (4.4) that S
Δ
(T,φ) = S_

Φ>Δ
(T,φ) is an action functional for
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{χ
ε
'

Δ
(iΔ),iΔ<T}.

We can also show that for each δ > 0 there are δ > 0, δ > 0 (which

go to zero as δ > 0) such that for each φ( .) 6 C [0,T] and for small

enough Δ > 0,

(4.5) d(χ
ε
'

Δ
(.),φ

Δ
(.)) < δ

2
 => d(χ

ε
(.),ε

Φ
(.))

d(X
ε > Δ

(.),φ
Δ
(O)

Theorem 1 follows from (4.5), the assertion below (4.4) and Lemma 1

below (Dupuis and Kushner, 1985). The method of proof of Lemma 1 parallels that

in Freidlin (1978) for an unconstrained-continuous parameter case, with the

appropriate alterations made where the boundary and projection play a role. In

the next section, we prove that SQ(T, .) is l.s.c.

Given A <=:c
χ
[0,T], define

A
Δ
 = {(

V l
, . .,v

N
) = (φ(Δ),...,φ(NΔ)) : φ( .) £ A}.

LEMMA. 1. Assume the conditions of Theorem l SQ(T, .) is l.s.c For each

A cc
χ
[0,T],

lim inf.S
Δ
(T,φ) > inf S_(T,φ).

Δ φ£A φ^A

For each φ(.) for which S^(T,φ) < °°, there are piecewise constant (on intervals

of length Δ) functions Φ
Δ
(.),Ψ

Δ
( ) converging uniformly to φ( .) on [0,T] and

such that

lim S
G

Δ
 (T,Φ

Δ
) < S

G
(T,φ).

Δ

5. The Lower Semi-continuity of S (T, .) .

Let φ (.) + Φ( ) in C
χ
[0,T]. The infimizing v is attained in
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inf . L(v,φ
n
(s))

v€B(φn
(s),φ

n
(s))

and we can choose a measurable minimizer which we write as

v^s) = v
n
(s) + b(φ

n
(s)) By extracting a convergent subsequence we can assume

that there is an absolutely continuous (since the U(x) are bounded) V( .) such

that

t T

/ v (s)ds -• V(t) = / v(s)ds.

0 0

Let δ > 0. Using the uniform continuity of L(.,.) on {(3,x) : $ € U (x), x€G} we

have

T _
lim S (T,φ ) = lim / L(b(φn

(s)) + v
Π
(s),φ

n
(s))ds

~5~
 G n

 T 0

T _

> lim lim / L(b(φ
n
(s)) + (l-δ)v

n
(s),φ

n
(s))ds

δ n 0

T _

(4.6) = lim lim / L(b(φ(s)) + (l-δ)v
n
(s),φ(s))ds

δ n 0

T

- lim lim {lim / L(ΐ(φ(s)) + (l-δ)v
n
(s),φ

Δ
(s))ds - α

Δ
}

δ Δ n 0

N-l iΔ+Δ _

> lim lim {lim Σ Δ L(-±- / [b(φ(s))

δ Δ n 0 iΔ

+ (l-δ)v
Π
(s)]ds,φ(iΔ)) - cχ

Δ
},

where α^ + 0 as Δ -»• 0. The first inequality uses the fact that L(b(x)+v,x) is a

convex function of v attaining its minimum at v » 0, and the last inequality

follows from Jensen's inequality and the convexity of L(.,x).

By the l s.c. of L(., ) and Fatou's lemma, we can continue the string

of inequalities in (4.6) as

T _

(4.7) > lim / L(b(φ(s) + (l-δ)v(s),φ(s))ds

δ 0

T _

> S L(b(φ(s)) + v(s),φ(s))ds.
0
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If Π
G
(φ(s),b(φ(s)) + v(s)) = φ(s) for almost all s < T we are done, since in

that case (from almost all s) b(φ(s) + v(s)) € B(φ(s), φ(s)) and

L(ϊ(φ(s)) + v(s),φ(s)) > inf . L(v,φ(s)) = L (φ(s),φ(s)) .

v€B(φ(s),φ(s)) h

See Dupuis and Kushner (1985) for a proof of this 'projection
1
 property.
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