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Empirical Bayes research has expanded significantly
since the ground-breaking paper (1956) of Herbert
Robbins, and its province currently incorporates a range
of methods in statistics. For example, Stein's famous
estimator (James and Stein, 1961) is now best understood
from the parametric empirical Bayes viewpoint
Appropriate generalizations and applications of Stein's
rule in other settings (Efron and Morris, 1973, 1975;
Morris, 1983b) are facilitated dramatically by the
empirical Bayes viewpoint, relative to the frequentist
perspective — this will be indicated below.

Parametric empirical Bayes models differ from those considered in

early empirical Bayes work, which focused on consistent estimation of Bayes

rules for general prior distributions, allowing the number of parameters, k, to

become asymptotically large. Rather, Stein's estimator and the generalizations

developed by Efron and Morris take k fixed and possibly quite small, and ask for

uniform improvement on standard estimators

A series of examples are offered below to illustrate how empirical

Bayes modeling is properly seen as a compromise between frequentist modeling and

Bayesian modeling, and how the empirical Bayes model permits extension of

various concepts, such as minimax properties and confidence regions, to more
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general settings .

We now consider a general model that includes the frequency, Bayes,

and empirical Bayes viewpoints.

A General Model for Statistical Inference:

This model provides two families of distributions, one for observed

data y, the other for unobserved parameters θ ζ 0, both y and θ possibly

multivariate The model may be specified in "descriptive" form or in

"inferential" form.

I. Descriptive form:

(A) Data: Given θ € Θ,

y has density f(y|θ), f fully known,

(B) Parameters:

θ has density g (θ), α £ A, A (possibly infinite dimensional) a

known set of hyperparameters, g fully known.

Part (A) may be thought of as the likelihood function, (B) as the family of

possible prior distributions The descriptive form is usually considered when

specifying a model. It is equivalent to the same model in inferential form.

II. Inferential Form:

(A
1
) Data: Given α t A,

* *
y has density f (y), f fully known.

(B
1
) Parameters: Given y and α £ A,

* *
θ has density g (θ|y), g fully known.

Part (B
f
) is the possible family of posterior distributions for the
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parameters θ given the data, computed via Bayes theorem. Part (A
1
), the

marginal distribution of the data, provides information on the likely values

*

of o 6 A via the marginal likelihood function f (y) .

Evaluations within this model are made by integrating utility or loss

functions with respect to both variables θ and y However, when an ancillary

statistic T=t(y) is available, i.e., one having distribution independent

of α € A for the marginal distribution (Af) for y, it is appropriate to

calculate these integrals as θ and y vary, but with T fixed at its observed

value

This general model was proposed in (Morris, 1983b) as a framework for

empirical Bayes analysis. Hill (1986) first recognized the importance in this

context of requiring risk calculations to be conditional on ancillarity

statistics, and has developed the model in a variety of ways.

The Bayesian framework, with known prior distribution, restricts A to

have but one member. Thus the data in (A
1
) are ancillary and only (B

f
) is of

interest. Evaluations then are conditional on all observed data, and so

appropriate evaluations integrate over θ alone. Frequentists are unwilling to

assume any knowledge about the prior distribution, and so A indexes all possible

prior distributions on Θ, including those that assign point mass to any

one θ. Thus the frequentist takes A = θ, and the posterior densities in (B
f
)

become trivial, ignoring the data. The frequentist then is only interested in

(A
1
) which is entirely equivalent to (A), in that context.

Empirical Bayes has considered a range of models intermediate between

the frequentist and Bayesian models, with A having more than one element, but

not all possible distributions. The empirical Bayesian, unlike the frequentist

or the Bayesian, must deal with information in both (A
1
) and (B

f
). Most

familiar empirical Bayes models let θ « (θ ,..., θ ) be a k-dimensional vector,

0 e R
k
 and let y = (y ,..., y ) , y

 a
 one-dimensional sufficient statistic

for θ , usually following an exponential family of distributions. The

pairs (y , θ ) are independent, i = l,2,...,k. Thus model (A) typically has

taken the form
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k

f(y|θ) = π f
1
(y

1
|θ

1
)

Model (B) usually has provided independent identical (exchangeable)

distributions

k
g

α
(θ) - π p(θ

i
).

One example of the latter, e.g., Robbins (1956), chooses

A, = (pip - density on R ) . Parametric examples might include all conjugate

priors A« = {α = (α ,α ): p = p^ is a density on R known up two parameters

(α , α )}, with α and α the mean and variance of the conjugate prior

distribution. These are "non-parametric" and "parametric" empirical Bayes

assumptions on the prior distributions. Because A
?
CA., A2 is more general, but

both choices are very restrictive subsets of all possible distributions on

0 C R
k
 (the same p applies to each θ ) . When these assumptions are valid, they

permit the substantial gains often provided by empirical Bayes methods relative

to standard methods that do not use information from observations other

than y when estimating Q^ .

Although parametric empirical Bayes methods are less general in this

setting than nonparametric methods, they have the advantage of working well for

k small (applications for k in the range 4-10 being plentiful) . Parametric

models are readily extendable to settings with non-exchangeable pairs

(y,, ^ ), as when θ follows a regression model, and to situations where the

distribution of y^ differs from that of y. because sample sizes vary. See

(Morris, 1983b) for parametric examples, including references to applications.

Within the general model, various concepts can be defined such as

unbiasedness, best unbiased, consistency, sufficiency, ancillarity, minimaxity,

confidence sets, and so on. All properties are with respect the double integral

over (y, θ) and must hold for all α € A. They reduce to the standard definitions

of frequentist statistics when A contains all prior distributions. These
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definitions apply to empirical Bayes models in useful ways, several examples in

the setting of independent normal distributions being considered below.

Suppose the descriptive model is, for k > 3,

(3)
 y

jj
θ
i "

 N
(

θ
i»

 v

±
) independently, i=l,..., k

where V^ is assumed known and y^ represents the sample mean. Also let

(4) θ - N(O,α) independently, i=l,..., k

Thus A = {α: α > 0}, and (3), (4) form a parametric empirical Bayes model with

α unknown

The inferential model has (y,, θ ) independent,

(5) y
±
|α - N(0, V

±
 + ot)

and

(6) θ
i
|y

i
, α

with B
±
 Ξ V /(V

±
 + α ) .

Stein's rule (James and Stein, 1961) for this situation is

(7) Θ
A
 - (1 - B)y

±
, i = l,...,k

Λ
 2

with B = (k - 2)/S, S = Σ y./V. . It is known to dominate (yi,.*.,y
u
) as an

J J iκ

estimate of θ = ( θ ^ , ^ ) ^oτ every θ with respect to expected loss for the
1 K

2
loss function Σ (θ - θ ) /V , and therefore is "minimax" in the usual

(frequentist) sense. However, it is not minimax (risk less than ΣV.̂ ) for the

2
unweighted loss function Σ(θ - θ^) and various

the simplest by Hudson (1974) and Berger (1976):

2
unweighted loss function Σ(θ - θ ) and various alternatives have been offered,
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Λ Λ Λ
 (k~2) 2 2

Note that the Hudson-Berger rule (8) reduces to Stein's (7) if the variances are

equal, and that neither is minimax for the loss function justifying the opposite

one if the variances differ substantially.

From the empirical Bayes standpoint, assuming exchangeable prior

distributions (4), neither (7) nor (8) is satisfactory because shrinkage

B. should increase with V
i
, not stay constant or decrease. In fact no rule can

reasonably approximate Bayes rules (B near B. as k —• °°) and also be minimax

Λ
 2

for loss Σ(θ - θ ) . "Empirical Bayes minimax" rules do exist, however, where

empirical Bayes minimax means (following definitions from the general model)

that

(9) E(θ
i
 - θ

±
)

2
 < V

±
 all i=l,...,k, all α > 0.

The expectation in (9) is with respect to variation in both y and θ. Thus

empirical Bayes minimax requires minimaxity for every component. No weights

need be specified for the loss function before adding components, because adding

is not required. Thus, an empirical Bayes minimax rule retains its property

2
independent of the weights w.̂  in the loss function Ew.(θ ~

 θ
α)

A simple rule having the empirical Bayes minimax property is

k-2
 V

i
(10)

 θ
i
 = ( 1

"
B
i

) y
i ' k * * i-l,...,k

with

(ID α Ξ i- Σ(yJ -
 V ±
)

and vj =max(V, V
±
 + - ^ (V

m a χ
 - v

±
» ,
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The choice α, although unbiased for α, is not the most efficient, and the

regrettable increase from V. to V. is necessary in the denominator of (10)

mainly to prevent the denominator from becoming negative. (Better rules could

be offered, but the proof of empirical Bayes minimaxity, already tedious for

(10), would be even harder.) Note that for large k, (10) behaves very well

(near the Bayes rule) if V^ = V , and it behaves reasonably well

if V > V. But for components with V < Ϋ", B in (10) is substantially too

small It is almost certain that these defects can be corrected without

sacrificing empirical Bayes minimaxity. Of course (10) also reduces to Stein's

rule when the variances are equal

We have a dramatic example, using (7) and (10) showing how empirical

Bayes minimax differes from frequentist minimax. In particular, for

substantially unequal variances, V
m a χ

 substantially larger than minίV^, it can

be proved that

(a) The Hudson-Berger rule (7) is minimax for unweighted loss, but is

not empirical Bayes minimax.

(b) However, (7) is not minimax for other loss functions, e.g.

(c) The estimator (10) is empirical Bayes minimax, but not minimax for

either of the loss functions discussed.

(d) The estimator (10) is "empirical Bayes consistent" (achieves the

Bayes risk as k —> °° with respect to the model (3) - (4)) for components

with V. > V, (but shrinks too little otherwise). (7) is inconsistent for all

components

Of course, rules that are empirical Bayes minimax and empirical Bayes

consistent undoubtedly exist, and would be preferable to (10).
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The concept of "empirical Bayes confidence intervals" also follows

from the general statistical model. This requires that the probability (again,

double integral over y and θ) of coverage exceed a pre-specified amount, say

0.95 for every α € A (Morris, 1983a, b). In the setting of independent normal

distributions (3) - (4), just considered, (^(y) is a 0.95 "empirical Bayes

confidence interval" for θ if

(12) P
α
(θ

i
 € C±(y)) > 0.95 all α > 0

where (12) is computed with both y and θ random. For the equal variances case

V - V = V. all i,j, sets of the form C
jL
(y) = [ θ

±
 - 1.96s

i
, θ

±
 + 1.968^ have

been shown to have property (12) with θ close to Stein's rule

2
 Λ

 2
and s. = V(l - B) + v y. , v an estimate of the variance of (B - B), (Morris,

1983a).

Little attention has been paid to the interval estimation problem in

the nonparametric empirical Bayes literature, although recently such ideas have

been considered in the prediction setting (Robbins, 1977, 1983). As k —• », of

course, the entire posterior distribution can be estimated consistently, so the

non-parametric approach could replace confidence intervals by posterior

probability intervals, which would satisfy (12) asymptotically.
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