WITH BETA PROTECTION IN ONE-PARAMETER FAMILIES*

Robert A. Wijsman
University of Illinois at Urbana-Champaign
A sequential confidence interval (CI) for a real parameter γ of the form $[L, \infty)$ is proposed, based on a consistent and asymptotically normal sequence $\mathrm{T}_{1}, \mathrm{~T}_{2}$, • . of real valued statistics. This CI is required to satisfy the coverage probability $P_{\gamma}\{L \leqslant \gamma\} \geqslant 1-\alpha$ for every γ, and to provide beta protection at $\phi(\gamma): P_{\gamma}\{L \leqslant \phi(\gamma)\} \leqslant \beta$ for every γ, where α, β, and the function $\phi(\gamma)<\gamma$ are given. It is shown that this can be achieved (under certain regularity assumptions) with a stopping time of the form $N=$ least integer $n \geqslant r+c^{2} \tau^{2}\left(T_{n}\right)$ and a terminal decision $L=\rho\left(T_{N}\right)$, in which the functions τ and ρ depend on ϕ and the asymptotic variance σ^{2}. Asymptotic values are derived for $P_{\gamma}\{L>\gamma\}$ and $P_{\gamma}\{L \leqslant \phi(\gamma)\}$ as γ varies over values for which $\tau(\gamma) \rightarrow \infty$.

1. Introduction.

Let T_{1}, T_{2}, \ldots be a sequence of real valued random variables whose joint distribution P_{γ} depends on a parameter γ with values in an interval「. Suppose a one-sided confidence interval (CI) for γ is desired of the form $[L, \infty]$, in which $L=L\left(T_{1}, T_{2}, \ldots\right)$, that satisfies the two conditions

[^0]\[

$$
\begin{align*}
& P_{\gamma}\{L \leqslant \gamma\} \geqslant 1-\alpha, \quad \gamma \in \Gamma, \tag{1.1}\\
& P_{\gamma}\{L \leqslant \phi(\gamma)\} \leqslant \beta, \quad \gamma \in \Gamma, \tag{1.2}
\end{align*}
$$
\]

in which α, β, and $\phi(\gamma)<\gamma$ are chosen by the experimenter. Here (1.1) is the usual coverage requirement, and (1.2) is a precision requirement that takes the place of the more customary prescribed width of a fixed width sequential CI. Motivation of this approach appears in Wijsman (1981). We shall describe (1.2) as beta protection at $\phi(\gamma)$. In Wijsman $(1981,1982)$ an example is worked out when γ is a normal mean; in Wijsman (1983) $\gamma=\mu / \sigma$ in a normal population; in Juhlin (1985) γ is the mean in a scale parameter exponential distribution. In the present paper a few general results will be proved for a family of models that includes the above mentioned examples as well as many others.

The sequence $\left\{T_{n}\right\}$ will be assumed consistent for γ and the function ϕ in (1.2) will be assumed to be such that there is no fixed sample size CI that satisfies both (1.1) and (1.2). A sequential procedure will be defined by first choosing a stopping time N on heuristic grounds, in the spirit of Chow and Robbins (1965). Whatever the choice of N, a terminal decision rule will be defined with help of a function ρ on Γ such that $\phi(\gamma)<\rho(\gamma)<\gamma$, and then putting $L\left(T_{1}, T_{2}, \ldots\right)=\rho\left(T_{N}\right)$. The resulting procedure will be denoted (N, ρ). The requirements (1.1) and (1.2) can then be written as

$$
\begin{equation*}
P_{\gamma}\left\{\rho\left(T_{N}\right) \leqslant \gamma\right\} \geqslant 1-\alpha, \quad \gamma \in \Gamma, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
P_{\gamma}\left\{\rho\left(T_{N}\right) \leqslant \phi(\gamma)\right\} \leqslant \beta, \quad \gamma \in \Gamma \tag{1.4}
\end{equation*}
$$

Since the search for a stopping time N is guided primarily by considering values of γ for which large average sample sizes are needed, it is to be expected that the distribution of T_{n} for large n is important. We shall assume $n^{1 / 2}\left(T_{n}-\gamma\right)$ to be asymptotically $N\left(0, \sigma^{2}(\gamma)\right)$. Let $\delta(\gamma)=\gamma-\phi(\gamma)$ be the precision gap and temporarily put $\tau(\gamma)=\sigma(\gamma) / \delta(\gamma)$. Also, temporarily take
$\rho(\gamma)=\gamma-\zeta \delta(\gamma)$, with $0<\zeta<1$ still to be chosen. Then heuristics as in Wijsman (1983) suggest the following type of stopping time:

$$
\begin{equation*}
N=\text { least integer } n \geqslant r+c^{2} \tau^{2}\left(T_{n}\right) \tag{1.5}
\end{equation*}
$$

in which $c>0$ and integer $r \geqslant 0$ still have to be chosen.
The temporary definitions of τ and ρ in the previous paragraph are not entirely satisfactory since the resulting procedure is not necessarily preserved under nonlinear transformations. Yet, for any $f: \Gamma \rightarrow \tilde{\Gamma}$ that is one-to-one and differentiable in both directions, with bounded derivatives, the problem in terms of $\tilde{\gamma}=f(\gamma)$ and the sequence $\tilde{T}_{n}=f\left(T_{n}\right)$ is the same as the original problem. It would be desirable if the procedure ($\tilde{N}, \tilde{\rho}$) in the new problem would have the property $\tilde{\mathrm{N}}=\mathrm{N}, \tilde{\rho}=\mathrm{f}(\rho)$. (equivariant interval estimator). This can indeed be achieved by the following definitions of τ and ρ (where $\tau^{-1}(\gamma)$ means $1 / \tau(\gamma)$, and similarly $\left.\sigma^{-1}(\gamma)\right)$:

$$
\begin{align*}
& \tau^{-1}(\gamma)=\int_{\phi(\gamma)}^{\gamma} \sigma^{-1}(x) d x, \gamma \in \Gamma, \tag{1.6}\\
& \int_{\rho(\gamma)}^{\gamma} \sigma^{-1}(x) d x=\zeta \tau^{-1}(\gamma), \quad \gamma \in \Gamma, \tag{1.7}
\end{align*}
$$

for any choice of $0<\zeta<1$. (Note that the asymptotic variance transforms as $\tilde{\sigma}^{2}(\tilde{\gamma})=f^{\prime 2}(\gamma) \sigma^{2}(\gamma)$; this causes $\left|\sigma^{-1}(x) d x\right|$ to be invariant and, as a result, $\tilde{\tau}(\tilde{\gamma})=\tau(\gamma)$.

2. Assumptions.

Throughout, Γ is an interval of the real line R. If Γ does not contain both endpoints (e.g., if $\Gamma=R$, or if $\Gamma=(0, \infty)$) let $\bar{\Gamma}$ be its compactification in the usual topology. For instance, if $\Gamma=R$, then $\bar{\Gamma}$ is R with \pm^{∞} added. One of the important tools needed is Anscombe's (1952) theorem. This uses the notion of uniform continuity in probability (u.c.i.p.); see also Woodroofe (1982), Section 1.3. We shall require these concepts in a
version that is uniform in $\gamma \in \Gamma$. The phrase "uniformly in $\gamma \in \Gamma$ " will occur often and will be abbreviated "u.i. γ."

ASSUMPTION A.

(i) There is a fixed probability space (Ω, A, P) and a family $\left\{T_{n \gamma}: n=1,2, \ldots, \gamma \in \Gamma\right\}$ of random variables defined on Ω, such that the distribution of $\left(T_{1}, T_{2}, \ldots\right)$ under P_{γ} is the same as that of ($T_{1 \gamma}, T_{2 \gamma}, \ldots$) under P; furthermore, $P\left\{T_{n \gamma} \in \Gamma\right\}=1, n=1,2, \ldots, \gamma \in \Gamma$;
(ii) for every $\gamma \in \Gamma, T_{n \gamma}{ }^{\text {apa }}{ }^{e} \gamma$ as $n \rightarrow \infty$;
(iii) there is a function σ on Γ such that
$\sigma^{-1}(\gamma) n^{1 / 2}\left(T_{n \gamma}-\gamma\right) \xrightarrow{d} N(0,1)$ as $n \rightarrow \infty$ u.i. $\gamma \cdot ;$
(iv) the sequence $\left\{\sigma^{-1}(\gamma) n^{1 / 2}\left(T_{n \gamma}-\gamma\right): n=1,2, \ldots\right\}$ is u.c.i.p., u.i. γ. ;
(v) the function σ is positive on the interior of Γ; both σ and ϕ (defined in Section 1) are continuously differentiable, with derivatives bounded in absolute value;
(vi) define τ on Γ by (1.6) and let γ^{*} stand for any endpoint of Γ at which $\tau(\gamma) \rightarrow \infty$ as $\gamma \rightarrow \gamma^{*}$; there is at least one such γ^{*};
(vii) there is $b>0$ such that $\tau(\gamma) \geqslant b, \gamma \in \Gamma$;
(viii) $T_{n \gamma}{ }^{\text {afe }}{ }^{e} \gamma^{*}$ as $\gamma \rightarrow \gamma^{*}$ uniformly in $n=1,2, \ldots$;
(ix) for every $\gamma_{0} \in \bar{\Gamma}, \tau\left(T_{n \gamma}\right) / \tau(\gamma)^{a_{i} e \cdot 1}$ as $n \rightarrow \infty, \gamma \rightarrow \gamma_{0}$.

Assumption $A(i)$ is made for convenience and seems to be satisfied in all examples studied. Assumption $A(v i)$ guarantees that no fixed sample size CI is able to achieve both (1.3) and (1.4). A(vii) simplifies statements and proofs of certain results and is not an essential restriction. $A(i x)$ is automatically true for any $\gamma_{0} \in \Gamma$, by $A(i i)$ and the continuity of τ. Verification of $A(i x)$ is therefore only needed for any γ_{0} that is an endpoint of Γ but is not in Γ.

The stopping time of N of (1.5) will be considered depending on c (whereas r will stay fixed throughout). In terms of the $T_{n \gamma}$ (1.5) can be written as

$$
\begin{equation*}
N=N_{c \gamma}=\text { least integer } n \geqslant r+c^{2} \tau^{2}\left(T_{n \gamma}\right) \tag{2.1}
\end{equation*}
$$

The dependence of N on c and γ will usually be suppressed in the notation. It is clear that N is finite with probability one for each $c>0$ and $\gamma \in \Gamma$. For by Assumption $\mathrm{A}(\mathrm{ii})$ and the continuity of τ (using the continuity of ϕ and (1.6)) the sequence on the right hand side of the inequality in (2.1) is bounded a.e. as $n \rightarrow \infty$.
3. The main theorems.

Let $\phi(\gamma)<\gamma$ be given; choose $0<\zeta<1$ and define $\tau(\gamma)$ and $\rho(\gamma)$ by (1.6) and (1.7). Furthermore, let c and r in (1.5) be chosen. Then let (N, ρ) be the procedure that takes N observations, defined by (1.5), and estimates γ by the CI $\left[\rho\left(T_{N}\right), \infty\right)$. For probability computations we may define N by (2.1). Then the error probabilities of $(N, \rho)=\left(N_{c \gamma}, \rho\right)$ as functions of $c>0$ and $\gamma \in \Gamma$ are

$$
\begin{align*}
& \alpha(c, \gamma) \equiv P_{\gamma}\left\{\rho\left(T_{N}\right)>\gamma\right\}=P\left\{\rho\left(T_{N \gamma}\right)>\gamma\right\}, \tag{3.1}\\
& B(c, \gamma) \equiv P_{\gamma}\left\{\rho\left(T_{N}\right) \leqslant \phi(\gamma)\right\}=P\left\{\rho\left(T_{N \gamma}\right) \leqslant \phi(\gamma)\right\} .
\end{align*}
$$

THEOREM 3.1. Under Assumption A, for any given $0<\zeta<1, \alpha, \beta>0$, and integer $r \geqslant 0$, there exists $c_{1}>0$ such that $c \geqslant c_{1}$ implies $\alpha(c, \gamma) \leqslant \alpha, \beta(c, \gamma) \leqslant \beta$ for every $\gamma \in \Gamma$.

THEOREM 3.2. Under Assumption A, for any given $0<\zeta<1, c>0$, and integer $r \geqslant 0$, if $N=N_{c \gamma}$ then $\alpha(c, \gamma) \rightarrow 1-\Phi(\zeta c)$ and $\beta(c, \gamma) \rightarrow 1-\Phi((1-\zeta) c)$ as $\gamma \rightarrow \gamma^{*}$, where γ^{*} is defined in $A(v i)$ and Φ is the standard normal distribution function.

Theorem 3.1 shows that the proposed type of procedure $\left(N_{c}, \rho\right)$ is capable of satisfying both (1.3) and (1.4) provided c is large enough. Theorem 3.2 deals with the values of the error probabilities for γ near γ where N tends
to be large. The theorem shows that if we would want $\alpha(c, \gamma) \rightarrow \alpha$ and $\beta(c, \gamma) \rightarrow \beta$ as $\gamma \rightarrow \gamma^{*}$, then we should choose $\zeta c=z_{\alpha},(1-\zeta) c=z_{\beta}$, where z_{α} is the upper α-point of $N(0,1)$. Taking $\zeta=z_{\alpha} /\left(z_{\alpha}+z_{\beta}\right)$ is reasonable, but the value $c=z_{\alpha}+z_{\beta}$ can be expected to be too small to guarantee $\alpha(c, \gamma) \leqslant \alpha, \beta(c, \gamma) \leqslant \beta$ for all γ.

The proofs of the theorems will be preceded by several lemmas.

LEMMA 3.1. $N \rightarrow \infty$ a.e. as $c \rightarrow \infty$ u.i. γ.

Proof. By (2.1) and $A(v i i), N \geqslant c^{2} b^{2}$ if $T_{n \gamma} \in \Gamma, n=1,2, \ldots$.

LEMMA 3.2. If $c_{1}>0$, then $N^{\text {a.e. }} \infty$ as $\gamma \rightarrow \gamma^{*}$ uniformly in $c \geqslant c_{1}$.

Proof. Let n_{0} be an arbitrary positive integer and $c \geqslant c_{1}$. Then

$$
\begin{equation*}
\left.\left[N \leqslant n_{0}\right] \subset{\underset{n=1}{n} 0}_{U_{n}}^{n} \geqslant r+c_{1}^{2} \tau^{2}\left(T_{n \gamma}\right)\right] \tag{3.3}
\end{equation*}
$$

By $A(v i)$ and $A(v i i i), \tau\left(T_{n \gamma}\right)^{a_{\rightarrow} e_{\infty}}$ as $\gamma \rightarrow \gamma^{*}, n=1,2, \ldots$. Thus, except for a set of P -probability 0 , the right-hand side of (3.3) converges to the empty set as $\gamma \rightarrow \gamma^{*}$.

LEMMA 3.3. $\tau\left(\mathrm{T}_{\mathrm{N} \gamma}\right) / \tau(\gamma)^{\text {a.e. }} 1$ as $\mathrm{c} \rightarrow \infty$ u.i. γ. or as $\gamma \rightarrow \gamma^{*}$ for any $c>0$.

Proof. To prove the second assertion use Lemma 3.2 and $A(i x)$, observing that $\gamma^{*} \in \bar{\Gamma}$. To prove the first assertion take any $\gamma_{0} \in \bar{\Gamma}$, then by Lemma 3.1 and $A(i x)$ we have $\tau\left(T_{N \gamma}\right) / \tau(\gamma)^{\text {afe }} \mathrm{e} 1$ as $c \rightarrow \infty, \gamma \rightarrow \gamma_{0}$. The compactness of $\bar{\Gamma}$ and a standard compactness argument finishes the proof.

LEMMA 3.4. Lemma 3.3 is valid with N replaced by $N-1$.

Proof. The proof of Lemma 3.3 is unchanged when replacing N by $N-1$:
as $N \rightarrow \infty \quad$ so does $N-1$.

LEMMA 3.5. $N / c^{2} \tau^{2}(\gamma)^{\text {a.e. }} 1$ as $c \rightarrow \infty$ u.i. γ. or as $\gamma \rightarrow \gamma^{*}$ for any $c>0$.

Proof. From (2.1) we have the double inequality

$$
\begin{equation*}
r+c^{2} \tau^{2}\left(T_{N \gamma}\right) \leqslant N<1+r+c^{2} \tau^{2}\left(T_{N-1, \gamma}\right) \tag{3.4}
\end{equation*}
$$

Divide both sides of (3.4) by $c^{2} \tau^{2}(\gamma)$. Then use $A(v i i)$ and Lemmas 3.3 and 3.4.

LEMMA 3.6. $\sigma^{-1}(\gamma) N^{1 / 2}\left(T_{N \gamma}-\gamma\right) \stackrel{d}{\rightarrow} N(0,1)$ as $c \rightarrow \infty$ u.i. γ. or as $\gamma \rightarrow \gamma^{*}$ for any $c>0$.

Proof. Use $A($ iii), $A(i v)$, Lemma 3.5, and a uniform (in γ) version of Anscombe's (1952) theorem.

LEMMA 3.7. $\sigma^{-1}(\gamma)\left(T_{N \gamma}-\gamma\right) \stackrel{P}{f} 0$ as $c \rightarrow \infty$ u.i. γ. or as $\gamma \rightarrow \gamma^{*}$ for any $c>0$.

Proof. This follows immediately from Lemma 3.6 and Lemmas 3.1 and 3.2.

LEMMA 3.8. $\sigma\left(\mathrm{T}_{\mathrm{N} \gamma}\right) / \sigma(\gamma) \stackrel{\mathrm{P}}{\rightarrow} 1$ as $\mathrm{c} \rightarrow \infty \mathrm{u} . \mathrm{i} \cdot \gamma$. or as $\gamma \rightarrow \gamma^{*}$ for any $\mathrm{c}>0$.

Proof. Write $\sigma\left(\mathrm{T}_{\mathrm{N} \gamma}\right) / \sigma(\gamma)-1=\sigma^{\prime}(\mathrm{t}) \sigma^{-1}(\gamma)\left(\mathrm{T}_{\mathrm{N} \gamma}-\gamma\right)$ with t between $\mathrm{T}_{\mathrm{N} \gamma}$ and γ. Since $\left|\sigma^{\prime}(t)\right|$ is bounded by $A(v)$, the result follows from Lemma 3.7.

LEMMA 3.9. There is a constant $0<B<\infty$ such that

$$
\begin{equation*}
\sigma^{-1}(\gamma) \tau(\gamma)[\gamma-\rho(\gamma)] \geqslant \zeta B^{-1}, \quad \gamma \in \Gamma \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\sigma^{-1}(\gamma) \tau(\gamma)[\rho(\gamma)-\phi(\gamma)] \geqslant(1-\zeta) B^{-1}, \quad \gamma \in \Gamma . \tag{3.6}
\end{equation*}
$$

Proof. We shall first show that there is $0<B<\infty$ such that
(3.7) $\sigma(\gamma)\left(x_{2}-x_{1}\right)^{-1} \int_{x_{1}}^{x_{2}} \sigma^{-1}(x) d s \leqslant B \quad$ if $\phi(\gamma) \leqslant x_{1}<x_{2} \leqslant \gamma, \quad \gamma \in \Gamma$.

By $A(v)$ there is $0<d<\infty$ such that $\sigma^{\prime}(\gamma) \leqslant d, \gamma \in \Gamma$. Take $\phi(\gamma) \leqslant x_{1}<x_{2} \leqslant \gamma$ arbitrary, then

$$
\begin{aligned}
\log \left(\sigma\left(x_{2}\right) / \sigma\left(x_{1}\right)\right) & =\int_{x_{1}}^{x_{2}} \sigma^{\prime}(x) \mathrm{d} x \leqslant \mathrm{~d} \int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \sigma^{-1}(\mathrm{x}) \mathrm{dx} \\
& \leqslant \mathrm{~d} \tau^{-1}(\gamma) \quad(\text { by }(1.6)) \leqslant \mathrm{db}^{-1} \text { by } \mathrm{A}(\text { vii }) .
\end{aligned}
$$

Thus, $\sigma\left(x_{2}\right) / \sigma\left(x_{1}\right) \leqslant \exp \left(d b^{-1}\right)=B$, say. In particular, take $x_{2}=\gamma$ and x_{1} any x for which $\phi(\gamma) \leqslant x \leqslant \gamma$, then $\sigma(\gamma) / \sigma(x) \leqslant B$ and (3.7) follows. Next (3.5) follows from (3.7) by taking $x_{1}=\rho(\gamma), x_{2}=\gamma$, by using (1.7), and inverting the resulting inequality. Similarly, (3.6) follows from (3.7) by taking $x_{1}=\phi(\gamma), x_{2}=\rho(\gamma)$, and using (1.6) and (1.7).

LEMMA 3.10. As $\gamma \rightarrow \gamma^{*}$,

$$
\begin{align*}
& \sigma^{-1}(\gamma) \tau(\gamma)[\gamma-\phi(\gamma)] \rightarrow 1 \tag{3.8}\\
& \sigma^{-1}(\gamma) \tau(\gamma)[\gamma-\rho(\gamma)] \rightarrow \zeta . \tag{3.9}
\end{align*}
$$

Proof. We shall show first that as $\gamma \rightarrow \gamma^{*}$,
uniformly in x_{1}, x_{2}, if $\phi(\gamma) \leqslant x_{1}<x_{2} \leqslant \gamma$. By $A(v)$ there exists $0<d<\infty$ such that $\left|\sigma^{\prime}(\gamma)\right| \leqslant d, \gamma \in \Gamma$. Take $\varepsilon>0$ arbitrary. Since by $A(v i) \tau^{-1}(\gamma) \rightarrow 0$ as $\gamma \rightarrow \gamma^{*}$, there is a neighborhood V of γ^{*} such that for all $\gamma \in V, \tau^{-1}(\gamma)<\varepsilon d^{-1}$. Then for $\gamma \in V$ and $\phi(\gamma) \leqslant x_{1}<x_{2} \leqslant \gamma$,

$$
\left|\log \left(\sigma\left(\mathrm{x}_{2}\right) / \sigma\left(\mathrm{x}_{1}\right)\right)\right|=\left|\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \sigma^{-1}(\mathrm{x}) \sigma^{\prime}(\mathrm{x}) \mathrm{dx}\right| \leqslant \mathrm{d} \tau^{-1}(\gamma)<\varepsilon
$$

Thus, $\sigma(\gamma) / \sigma(x)$ appearing in (3.10) is bounded between $e^{-\varepsilon}$ and e^{ε}, and the same must be true for the left-hand side of (3.10). Then (3.8) follows from (3.10) by taking in (3.10) $x_{1}=\phi(\gamma), x_{2}=\gamma$, and inverting. Similarly, (3.9) follows by taking in (3.10) $x_{1}=\rho(\gamma), x_{2}=\gamma$, and using (1.7).

Proof of Theorem 3.1. We shall keep $0<\zeta<1$ and integer $r \geqslant 0$ fixed and shall prove that $\alpha(c, \gamma)$ and $\beta(c, \gamma)$ converge to 0 uniformly in γ as $c \rightarrow \infty$. Write (3.1) in the form

$$
\begin{equation*}
\alpha(c, \gamma)=P\left\{T_{N \gamma}^{*}-A(N, \gamma)>0\right\}, \tag{3.11}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{T}_{\mathrm{NY}}^{*}=\sigma^{-1}(\gamma) \mathrm{N}^{1 / 2}\left(\mathrm{~T}_{\mathrm{N} \gamma}-\gamma\right) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
A(N, \gamma)=\sigma^{-1}(\gamma) N^{1 / 2}\left[T_{N \gamma}-\rho\left(T_{N \gamma}\right)\right] \tag{3.13}
\end{equation*}
$$

By (2.1), $A(N, \gamma) \geqslant c \sigma^{-1}(\gamma) \tau\left(T_{N \gamma}\right)\left[T_{N \gamma}-\rho\left(T_{N \gamma}\right)\right]$. Since by Lemma 3.8, $\sigma^{-1}(\gamma) \sigma\left(T_{N \gamma}\right) \xrightarrow{P} 1$ as $c \rightarrow \infty \quad$ u.i. $\gamma \cdot$, and by (3.5)

$$
\sigma^{-1}\left(T_{N \gamma}\right) \tau\left(T_{N \gamma}\right)\left[T_{N \gamma}-\rho\left(T_{N \gamma}\right)\right] \geqslant \zeta B^{-1}>0 \text { a.e. }
$$

(using $T_{N \gamma} \in \Gamma$ a.e. by $\left.A(i)\right)$ we
have $A(N, \gamma) \xrightarrow{P} \infty$ as $c \rightarrow \infty$ u.i. γ. Furthermore, $T_{N \gamma}^{*}$ is bounded in probability
as $c \rightarrow \infty$ u.i. γ by Lemma 3.6. It follows
that $T_{N \gamma}^{*}-A(N, \gamma) \xrightarrow{P}-\infty$ as $c \rightarrow \infty$ u.i. γ so
that $\alpha(c, \gamma) \rightarrow 0$ as $c \rightarrow \infty$ u.i. γ.

> Similarly, we write (3.2) in the form

$$
\begin{equation*}
B(c, \gamma)=P\left\{\phi^{*}\left(T_{N \gamma}\right)+B(N, \gamma) \leqslant 0\right\}, \tag{3.14}
\end{equation*}
$$

in which

$$
\begin{equation*}
\phi^{*}\left(\mathrm{~T}_{\mathrm{N} \gamma}\right)=\sigma^{-1}(\gamma) \mathrm{N}^{1 / 2}\left[\phi\left(\mathrm{~T}_{\mathrm{N} \gamma}\right)-\phi(\gamma)\right] \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
B(N, \gamma)=\sigma^{-1}(\gamma) N^{1 / 2}\left[\rho\left(T_{N \gamma}\right)-\phi\left(T_{N \gamma}\right)\right] . \tag{3.16}
\end{equation*}
$$

From (3.15) we obtain $\phi^{*}\left(\mathrm{~T}_{\mathrm{N} \gamma}\right)=\phi^{\prime}(\mathrm{t}) \mathrm{T}_{\mathrm{N} \gamma}{ }^{*}$, using (3.12), with t between $T_{N \gamma}$ and γ. Since by $A(v)\left|\phi^{-}(t)\right|$ is bourded above, and $T_{N \gamma}^{*}$ is bounded in probability, so is $\phi^{*}\left(T_{N \gamma}\right)$, as $c \rightarrow \infty$ u.i. γ. The term $B(N, \gamma)$ of (3.16) is treated in the same way as $A(N, \gamma)$ of (3.13), using (3.6). It follows that $\phi^{*}\left(T_{N \gamma}\right)+B(N, \gamma) \stackrel{P}{\rightarrow} \infty$ so that $\beta(c, \gamma) \rightarrow 0$ as $c \rightarrow \infty$ u.i. γ.

Proof of Theorem 3.2. Write $\alpha(c, \gamma)$ in the form (3.11), then $T_{N \gamma}^{*} \xrightarrow{d} N(0,1)$ as $\gamma \rightarrow \gamma^{*}$ by Lemma 3.6. Furthermore, $A(N, \gamma) \stackrel{P}{\rightarrow} \zeta c$ as $\gamma \rightarrow \gamma^{*}$, using Lemmas 3.3, 3.5, and 3.8 , and using (3.9) after observing that $T_{N \gamma} a_{\rightarrow} e_{\gamma} \gamma^{*}$ by $A($ viii). Therefore, the right-hand side of (3.11) converges to $P\{N(0,1)>\zeta c\}$.

Write $\beta(c, \gamma)$ in the form

$$
\begin{equation*}
B(c, \gamma)=P\left\{T_{N \gamma}^{*} \leqslant A(N, \gamma)-C(N, \gamma)\right\} \tag{3.17}
\end{equation*}
$$

in which $C(N, \gamma)=\sigma^{-1}(\gamma) N^{1 / 2}(\gamma-\phi(\gamma))$. Here $A(N, \gamma) \xrightarrow{P} \zeta c$ as before, and $C(N, \gamma){ }^{a_{\rightarrow}}{ }^{e} \cdot \mathrm{c}$, using (3.8) and Lemma 3.5. Thus, the right-hand side of (3.17) converges to $P\{N(0,1) \leqslant-(1-\zeta) c\}$.

4. Applications.

Only a few of these will be indicated.

4.1 Translation parameter.

Let X_{1}, X_{2}, \ldots be i.i.d. with known distribution except for the unknown mean γ. Suppose the X_{i} have finite variance, which we may assume to be unity. A possible choice of T_{n} is $\bar{X}_{n}=n^{-1} \Sigma_{i}^{n} X_{i}$. (This is the appropriate choice in the normal translation parameter problem since then $\left\{T_{n}\right\}$ is a sufficient sequence.) We may set $T_{n \gamma}=\bar{Z}_{n}+\gamma$ in which Z_{1}, Z_{2}, \ldots are i.i.d. with known distribution that has mean 0 , variance 1. According to (1.6) and (1.7), and using $\sigma(\gamma) \equiv 1$, we have $\tau^{-1}(\gamma)=\gamma-\phi(\gamma)=\delta(\gamma)$, and $\rho(\gamma)=\gamma-\zeta \delta(\gamma)$. Here $\Gamma=R$, and if $\delta(\gamma) \rightarrow 0$ as $\gamma \rightarrow \pm \infty$, then $\gamma^{*}= \pm^{\infty}$. Assumption $A(v)$ requires δ to be differentiable, with bounded derivative, and $A(i x)$ puts a further mild condition on δ; the latter is for instance satisfied if $\delta(x+y) / \delta(x) \rightarrow 1$ as $x \rightarrow \pm^{\infty}, y \rightarrow 0$. The uniformity in γ of $A(i i i)$ and $A(i v)$ is obvious since $T_{n \gamma}-\gamma=\bar{Z}_{n}$ does not involve γ. The estimation-oriented procedure in Wijsman (1982) is of the form (N, ρ) defined in Section 3 of the present paper.

4.2. Scale parameter.

Let $X_{i}=\gamma Z_{i}, \gamma \in(0, \infty)$, in which $Z_{1}, Z_{2} \ldots$ are i.i.d. with known distribution supported on $(0, \infty)$ and having mean 1 and variance σ_{0}^{2}. Suppose one chooses $T_{n}=\bar{X}_{n}$, so $T_{n \gamma}=\gamma \bar{Z}_{n}$. This would for instance be the appropriate choice if the Z_{i} have density $e^{-z}, z>0$, as studied by Juhlin (1985). Here $\sigma(\gamma)=\gamma \sigma_{0}$ and the uniformity in $A(i i i)$ and (iv) is again obvious since γ drops out. The functions τ and ρ defined by (1.6) and (1.7) are $\tau(\gamma)=-\sigma_{0}\left[\log \left(1-\gamma^{-1} \delta(\gamma)\right)\right]^{-1}$ and $\rho(\gamma)=\gamma\left[1-\gamma^{-1} \delta(\gamma)\right]^{\zeta}$. Here $\gamma^{*}=0$ or ∞ if $\gamma^{-1} \delta(\gamma) \rightarrow 0$ as $\gamma \rightarrow 0$ or ∞. Assumption $A(i x)$ will be satisfied for instance if $\delta(x y) / \delta(x) \rightarrow 1$ if $y \rightarrow 1$ and $x \rightarrow 0$ or ∞.

4.3 Translation-scale parameter.

Let $X_{i}=\mu+\sigma Z_{i}, Z_{1}, Z_{2}, \ldots$ being i.i.d. with known distribution.

If $\gamma=\mu / \sigma$ then one may base inference on the invariant sequence $T_{n}=\bar{X}_{n} / s_{n}$, where $s_{n}{ }^{2}$ is the sample variance of X_{1}, \ldots, X_{n}. This is studied in Wijsman (1983) for standard normal Z 's, in which case $\left\{T_{n}\right\}$ is invariantly sufficient. We may put $T_{n \gamma}=\left(\gamma+\bar{Z}_{n}\right) / s_{n}$ where now $s_{n}^{2}=(n-1)^{-1} \sum_{1}^{n}\left(Z_{i}-\bar{Z}_{n}\right)^{2}$. Verification of Assumption A, especially $A(i i i)$ and (iv), requires more care and will be treated in a separate study. Another problem is provided by considering $\gamma=\sigma^{2}$, in which case we may take $T_{n \gamma}=\gamma s_{n}{ }^{2}$.

REFERENCES

Anscombe, F.J. (1952). Large-sample theory of sequential estimation. Proc. Cambridge Phil. Soc. 48 600-607.

Chow, Y.S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457462 .

Juhlin, K.D. (1985). Sequential and non-sequential confidence intervals with guaranteed coverage probability and beta-protection. PhD Dissertation, University of Illinois.

Wijsman, R.A. (1981). Confidence sets based on sequential tests. Commun. Statist.-Theor. Meth. A 10 2137-2147.

Wijsman, R.A. (1982). Sequential confidence sets: estimation-oriented versus test-oriented construction. Statist. Decis. Theory and Rel. Top. III 2 (S.S. Gupta and J.0. Berger, eds.) 435-450. Academic Press, New York. Wijsman, R.A. (1983). Sequential estimation- and test-oriented confidence intervals for μ / σ in a normal population. Sequential Analysis 2 149-174. Woodroofe, M. (1982) . Nonlinear Renewal Theory in Sequential Analysis. CBMSNSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.

[^0]: * Research supported by the National Science Foundation Grants Nos. MCS 8201771 and DMS 85-03321.

 AMS 1980 subject classifications. Primary 62L12; Secondary 62F25, 62F35.
 Key words and phrases. Equivariant interval estimator, uniform asymptotic normality, uniform Anscombe theorem.

