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A method is given for constructing multi-stage
tests that have prescribed error probabilities The
characteristics of the method and its computational
requirements are discussed. Numerical examples are
given for the case of testing the arrival rate of a
Poisson process.

1. Introduction.

Problems of constructing efficient multi-stage tests of hypotheses

were studied in Lorden (1983), where it was shown that certain three-stage tests

modeled after fully sequential tests are in a typical Koopman-Darmois testing

problem asymptotically optimal in comparison with sequential tests. (Two-stage

tests are not asymptotically optimal except in degenerate cases.) A major

drawback of the tests in that paper is the lack of a good approximation to their

error probabilities. The multi-stage tests of the current investigation (whose

asymptotic optimality will be established in a later paper) have the advantage

of attaining prescribed error probabilities. The price of this feature is

additional computational work required to carry out the tests, the amount of

work depending on the type of testing problem and the distributions involved.

The multi-stage tests in Lorden (1983) were constructed to emulate the

sequential likelihood ratio tests of G. Schwarz (1962), whereas the present

approach is, fittingly, modeled after the mixed likelihood ratio tests of
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Robbins (1970), with precursors in the work of Ville (1939) and Wald (1947).

Although the method of construction used here applies to the open-ended testing

problems considered by Robbins, it is more revealing to consider another special

case, the problem of testing between two simple hypotheses, θ = θ and θ = θ ,

about the parameter θ of a dominated family of distributions. The natural

Robbins-type mixture rules for this problem are based upon a ("prior")

probability measure, G, on 0, the parameter space, and the induced mixture of

the probabilities P
Q
( .) on the space of sample sequences, which will be denoted

by Q(.) Using the notation (dQ/dP
i
)

n
 to denote the G-mixed likelihood ratio of

the P
Q

f
s to PQ after n observations, the fully sequential tests stop at N = the

smallest n > 1 such that

(1) (dQ/dP
i
)

n
 > k

±
 for i-0 or 1,

with appropriate rejections, the A
i

t
s being chosen in advance.

2. Definition and properties of the tests .

Let n(α ,α ) denote the smallest fixed sample size for which error

probabilities
 α

0
»

α
i or smaller can be achieved. Assume that the

desired
 α
rv>

α
i are given and that n(α^,α ) is greater than one.

Determination of the first stage: Choose the design parameter

0 < γ < 1, whose role will be to fix

(2) Q(stoρ at first stage) = γ.

Find the first stage sample size, m, such that for some critical values

C ^ i-0,1, the regions

(3) reject
 θ
 if (dQ/dP^

 >
 C

±

with possible randomization in case of equality, yield
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(4) α.: = P (reject θ. at first stage) = γα , i = 0,1,

and also satisfy (2). Note that it is in general necessary to randomize between

two consecutive values of m in order to satisfy (2) and (4) (see the discussion

in the next section). It is, however, often unnecessary to do any calculations

involving (3), since the same rejection regions may be specifiable in terms of a

convenient sufficient statistic.

Construction of the continuation (if required): Determine the

(conditional) error probabilities

(5) a
±
 = α

i
(dQ/dP

i
)

m
, i = 0,1,

for the continuation, select a new design parameter, γ, and apply the same

prescription given for the first stage, with the role of Q now played by the

mixture Q induced by the posterior, G. The design parameters, γ, γ, etc. are

conveniently chosen before starting the test, e.g. for a three-stage test one

could specify that γ = .5, .4, 1, say, for the respective stages (the intended

last stage necessarily having γ = 1).

From (3) it is clear that whenever the test continues

(dQ/dP
i
)

m
 < E

i
[(dQ/dP

i
)

m
|reject θ at first stage]

for i = 0,1 and, hence,

Σ α. < Σ α E [(dQ/dP.) | reject 0 at first stage]

» Σ α Q(reject Θ at first stage)/α

± i I i

Σ Q(reject Θ at first stage)/γ
1

= 1.
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The same is clearly true at all later stages.

It is easy to verify that the desired error probabilities are

achieved:

(8) P
i
(reject Q

±
) = <x

±
 + \a>

±
l {continue}

= γα. + E.α.(dQ/dP ) l {continue}

01
. (Ύ

 +
 Q(continue)) = α .

As an illustration of the type of computation required in simple cases, consider

the problem of testing whether the drift per unit time, Θ, of a (unit variance)

Wiener process {X(t)} equals -1 or +1. Then it is easy to see that the first-

stage error probabilities α. in (4) are attained after sampling for (fixed) time

t by the rule

* 1/2
reject Θ

Q
 = -1 if X(t) > z ^

1
' - t,

reject Θ
χ
 = 1 if X(t) <

 z
^

continue otherwise,

where z and z. denote the upper α^ quantile and the lower α quantile,

respectively, of the standard normal distribution. The value of the first-stage

sample size, t, is determined by "trial and error" to satisfy

0 = h(t) = 1 - γ - Q(continue after the first stage)

- 1 - γ - / (Φ(z* - (θ + l)t
1 / 2

) - Φ(z* - (θ - l)t
1/2
))G(d0),

where Φ denotes the standard normal distribution function. The calculation of

values h(t) is easy of G is normal or is supported on a finite set (For the
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discrete time testing of a normal mean, only integer t are used and either one

has to settle for an approximate zero of h(t) or else randomize the choice of

t.) If the first stage fails to stop, then a straightforward calculation of the

conditional error probabilities, α., can be made using the G-mixture of

likelihood ratios; the same calculations (with different ot.) are used to

construct the second stage and later stages.

3. A Poisson example .

Suppose that one observes a Poisson process {N(t), 0 < t < °°} with

arrival rate Θ and it is desired to test θ
 a
 θ

fl
 vs. θ * θ. > θ. (This problem

permits simple calculation of expected sample sizes.) Let the "prior" G have

(natural conjugate) gamma density

7 w ~
e
 >

 e
 > °>

where v, 3 > 0. Then under the G-mixture, Q, the number of arrivals in time t

has negative binomial density

(9) f(n;v,p) = (
V
 )p (l-p)

n
, n=0,l,...,

where p = 3/(3+t). For randomization purposes it is helpful to regard the

probability mass f(n;v,p) as "smeared evenly" over [n,n+l), yielding the

distribution functions

[x]
(10) F(x;v,p) = Σ f(n;v,p) - (x+l-[x])f([x] v,p), x > 0.

n=0

Similarly, let h(n λ) denote the Poisson probability exp(-λ)λ
n
/n! and define the

"smeared" distribution function

[x]
(11) H(x λ) « Σ h(n λ) - ([x]+l-x)h([x] λ), x > 0.

n=l
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For typical choices of the prior parameters v and 3, the construction

of the first stage proceeds as follows. The form of the rejection rules (3) for

first stage sampling time τ becomes

(3
1
) reject Θ

Q
 if N(τ) > b, reject θ

χ
 if N(τ) < a,

where it is convenient (for randomization) to allow a and b to be arbitrary non-

negative numbers under the following interpretation: if N(τ) = [a] then reject

0 with probability a - [a], whereas if N(τ) = [b] then reject 0 with

probability [b] + 1 - b. To determine a and b such that (4) is satisfied,

express it as

(4
f
) HCa θ ^ ) = γc^ and 1-H(b;θ

o
τ) = γα

Q
,

which determines a and b as "Poisson quantiles" for given τ. To satisfy

relation (2), note that

Q(stop at first stage) = 1 - [F(b;v,3/(3+τ)) - F(a;v,3/(3+τ))].

This last increases in τ, so that finding the τ that yields the value γ required

by (2) is straightforward numerically. This first-stage sampling time, τ, and

its associated a and b determine the first stage of the test Continuation, if

called for, is based upon the same constructions, starting with

α
1
f(N(τ);v,β/(B+τ))/h(N(τ);

and the posterior G and its Q, which are determined by 3 « 3 + τ and v = v + N(τ)«

Note that in the more common discrete time situations there are, in

effect, only integer values of τ available, so that Q (stop at first stage)

generally "crosses over" γ at consecutive values τ and τ + 1. Randomization of

the choice between τ and τ + 1 for the first stage sample size yields the
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corresponding convex combination of the Q(stoρ)
τ
s for τ and τ + 1, which is

easily chosen to yield γ

A series of computer calculations was made to compare the expected

sample sizes of tests of the type proposed with those of fixed sample size tests

and 2-SPRT
f
s. The latter sequential tests have triangular continuation regions

and were shown in Lorden (1976) to nearly minimize the expected sample size at

the specified Θ chosen in their construction. The results shown below are

typical of those obtained over a range of error probabilities in the problem of

testing 0 = 1 vs. 0 = 2. The value Θ
 s
 1,5 was used to construct the 2-SPRT

and was included with Θ = 1 and 2 in the evaluation of sample sizes The

parameters chosen for the gamma prior were v = 60, β = 40, yielding a mean of

1.5 and standard deviation of .19. The values of the design parameter γ in the

multiple stages were chosen (without an exhaustive search) to make the expected

sample size small at Θ = 1.5.

fixed sample
2-stage (γ=.63,l)
3-stage (γ=.45, .6,1)
2-SPRT

4. General testing problems.

Suppose that k terminal decisions are possible and let Θ , i=l,...,k,

be the subset of the parameter space where the i decision incurs positive

regret. In addition to G, one needs to specify for each i a mixing measure G^

supported on Θ . Letting P^(.) denote the induced measure, the error

probability constraints become

(12) P
i
(decision i) = α , i=l,...,k.

(In the Θ vs. 0 problem, let the i
t h
 decision be "reject Θ " and let G^

concentrate at Q^.) Then (1) defines sequential tests of the asymptotically

optimal type studied by Kiefer and Sacks (1963). The definition and properties

Expected Sample Sizes
(α

Q
=4.93%, 0^=4.83%)

0=1
16.1

12.1
11.1
9.7

0=1.5

16.1
13.9
13.2
11.2

0=2
16.1
11.7
10.4

7.5
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of the multi-stage tests given in Section 2 apply with the changes that

"reject Θ^
1
 becomes "decision i" everywhere and after (5) is used in the

construction of the continuation, the role of P.̂  is played by P., induced by the

"posterior", G. , associated with G.̂ .

As an example of this formulation, consider the problem of

testing k > 3 simple hypotheses (with G possibly supported on an interval).

Identify "decision i" as "choose Θ " (which is different from the k = 2

description above, where the decision labels are the reverse), so that G.

assigns weights to the Θ.
f
s with j Φ i and α equals the corresponding weighted

average of probabilities of choosing Θ .

As another example, consider the problem of testing Θ = Θ vs .

Θ Φ Θ
Q
. Let GQ be concentrated at Θ and G

1
 in Θ - θ (perhaps at two points),

with the error constraints controlling P (reject Θ ) and the Gj-mixture

of PQ (accept Θ
Q
) . In typical Koopman-Darmois cases, the computational work

required to satisfy (2) and (4) in the construction of each stage will be

greater than in the Θ vs. Θ. problem, but still reasonable.
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