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V. SUPREMA DISTRIBUTIONS

1. Introduction.

We now turn our attention to the distribution of the supremum of a
centered, Gaussian X over T, which, as always, we write either as | |X||r O Γ

simply as ||X|| when there is no danger of confusion. In particular, we shall
be interested in the asymptotic behavior of P{||X|| > λ} as λ —> oo.

As we have already seen, an upper bound to this probability comes from
Borell's inequality, which tells us that for all λ > 0

(5.1)

where σ% = supΓ EXf. This implies that for all λ > E\\X\\

(5.2)

Since Borell's inequality was the key to finding sufficient conditions for Gaus-
sian sample path continuity, that also turned out to be necessary, it seems
reasonable to assume that it is close to sharp. Nevertheless, the aim of this
chapter is to improve on (5.2) in two directions. Firstly, if we think of the

right hand side of (5.2) as /(λ)e~ "̂λ /σ* , then our aim will be to replace this
by /(λ)e~ ax*lστ , where /(λ) has a lower order of growth in λ than does the
exponentially growing /. In many cases, it is possible to find a polynomial

Having found such /, we would also like to know if we have found
the best possible, and so we shall also be interested in lower bounds for
P{||X|| > λ}. These almost always involve much more work than the upper
bounds, so we shall generally suffice with statements without proofs. The
situation is highly analagous to the continuity problem: sufficiency was easy,
necessity was hard. What is rather interesting in the upper bound proofs,
however, is that they proceed via a kind of "leap-froging", in which Borell's
inequality is used to improve on itself!

Before we look at the general situation, however, it is worthwhile to look
at an optimal situation, in which "almost everything" is known, so as to give
us an idea as to what sort of results we can hope for in general.

5.1 THEOREM. Let X be a centered, stationary Gaussian process on 3ί,
with covariance function R satisfying

(5.3) R{t) = 1 - C|ί|α + o(|ί |α), as t -> 0,

where α G (0,2] and C are positive constants. Then for each fixed h > 0
such that supc<t<Λ R(t) < 1 for all e > 0,



118 SUPREMA DISTRIBUTIONS V

where Ha is a finite constant depending only on α, and, as always,

(5.5) Φ(λ) = (27Γ)"1 Γ e-τχ2dx,
J\

is the probability that a standard normal variable exceeds λ.

This result dates back to Pickands (I969a,b), and you can find a full and
detailed proof in Leadbetter, Lindgren and Rootzen (1983). The fact that
the proof is 16 pages long indicates that this is not an easy result, and we
should not be too hopeful about obtaining extensions for processes on general
parameter spaces or for non-stationary processes. (There is an extension to
random fields on 5Rd, however. See Adler (1981) and references therein.)

Indeed, even in the case treated in Theorem 5.1, the result is not quite
as strong as it at first seems. The problem lies in the fact that except for
α = 1 and α = 2 (see Exercises 1.1 and 1.2) it is not known how to calculate
the constant Hα in (5.4). (It is known that if Y is the non-stationary process
on 3ϊ with mean — |ί|α and covariance function |s|α + |ί |α — \t — s\α then

Hα = lim Γ- 1 / e~xp{ sup Yt > -x\dx,

but this does not seem to very instructive, nor of much help in computing
Hα.) Aldous (1989), has some non-rigorous bounds on the values of Hα

for general α. Most of these arguments are based on his "Poisson clumping
heuristic", but they also use Slepian's inequality to interpolate Hα between
its known, exact values. For details, turn to Aldous' monograph, which also
makes interesting reading for a number of other reasons.

Perhaps the main message of Theorem 5.1 is that although there is
clearly very strong structure to asymptotic extrema distributions, and one
should be able to do much better than (5.1) and (5.2), we should not spend
too much time worrying about constants, since it is unlikely that we shall
ever be able to calculate them.

If we now return to the general situation, there are basically three dif-
ferent cases that require study. The first, and in many ways easiest, is when
X is non-homogeneous, and there exists a unique point to 6 T such that
EXfo = supΓ EX?. It turns out that in remarkably many situations

(5.β)
Φ(λ/σΓ)

In Section 5.3 we shall give a characterization of these cases, due to Talagrand
(1988a).

The second case, which is also not too difficult, is when X is either
homogeneous or has constant variance. In the purely homogeneous case,
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and often when X has constant variance, it is sometimes possible to identify
a function M(λ), which is closely related to the metric entropy function, and
a constant K such that

(5.7) K-1M{X/σ)^{λ/σ) < P{\\X\\ > λ} < JΓAf(λ/σ)Φ(λ/σ),

for all sufficiently large λ, where σ2 is now the constant variance σ2 = EX2.
(Weber, (1988), has results in this direction, that are of the precise form
(5.7) only when T = [0,1] and the covariance function satisfies some side
conditions. Patrik Albin has just informed me that he has some very general
results - not yet written up - of this form.)

The last case is probably the most interesting, particularly from the
point of view of applications to empirical processes, but also seems to be the
hardest. It is certainly the case where results are least tight (i.e. the known
upper and lower bounds do not always agree). This is the case in which X
does not have a constant variance (and, a fortiori, is not stationary) and
achieves its maximal variance over a comparatively large set. Typical exam-
ples are the pinned Brownian sheet on [0, l ] 2 , which achieves its maximal
variance of 1/4 along the line st(l — st) = 1/4, or set indexed versions of this
process. We shall treat this case in depth in Section 5.4.

We start, however, with some easy calculations.

2. Some Easy Bounds.

As we have noted at least once already, it is a remarkable and very
convenient fact that Borell's inequality, together with a simple application
of entropy concepts, can be used to improve on Borell's inequality.

To see this, let X be continuous and let e > 0 be arbitrary. In general,
e may depend on λ. For t 6 Γ, set

(5.8) μ(ί,e) = E sup X9,
sβB(t,e)

and

(5.9) μ(e) = supμ(ί,e).
teT

Since N(e) d-balls of radius e cover Γ, it is an immediate consequence of
Borell's inequality that, for λ > μ(e),

(5.10) P { | | X | | > λ } < 2ΛΓ(6)e-»<λ-μ<e»a'σ',

where, as usual, σ£ = supτ EXf. The following result shows how, with very
little work, (5.10) leads to almost the best bounds for P{||X|| > λ}.
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5.2 THEOREM. If N(e) < Ke~a, then for all A sufficiently large,

(5.11) P { | | X | | > λ } < C α λ« + 1 + f ϊ Ψ(λ/σ τ ) .

for every η > 0, where K and Cα — C(α, K) are Άnite constants.

REMARK: It is possible to replace the condition that λ be sufficiently large
by the seemingly weaker requirement that λ > 0, simply by choosing, if
necessary, a larger Cα. We shall do this is in the future. Nevertheless, you
should keep in mind the fact that both Theorem 5.2 and those following
are really sharpest for λ —* oo. (We shall see, however, that in a least one
example infinity is reached very quickly, and asymptotic theory is actually
good for very moderate values of λ.)

PROOF: To apply (5.10) we must first compute μ(e,t). By Corollary 4.15

(5.12) μ(t,e) < C Γ (logiV(e)) > de
Jo

< C Γ (\og(l/e))> de
Jo

< Cey/log{l/e),

where C = C(α) may change from line to line. Set e = e(λ) = A"1, choose
λ large enough so that λ > Cλ" x \/log λ for the C of (5.12), and substitute
into (5.10) to obtain

(5.13)

(Recall - (2.1) - that Φ(λ) - λ"λ e" ^ .) Since for η > 0 and λ large enough

e α v / l o g λ < A" , this completes the proof. •

The bound in (5.11) can be improved slightly, to C(λ log λ)αH"λ Φ(λ/σ τ),
by choosing e = e(λ) in the above proof to satisfy λ"1 = e(\og(l/e))1/2. The
gain, however, is rather small, in view of the fact that the following is true:

5.3 THEOREM. Under the conditions of Theorem 5.2, there exists a βnite,
positive Cα such that for all λ > 0

(5.14) C ^ A « ( l o g A p / 2 * ( A / a r ) < P{||X|| > A}

< C α A Λ Φ(λ/α Γ ).

Theorem (5.3) is a special case of Theorem 5.8 of Section 4 below. What
is important to note is that the simple proof we applied to prove Theorem
5.2 does not give the sharper upper bound of Theorem 5.3. While this is not
surprising, what is surprising, however, is the fact that an almost identical,
easy, proof does give the sharpest upper bound in the following result:



V.3 PROCESSES WITH A UNIQUE POINT OF MAXIMAL VARIANCE 121

5.4 THEOREM. IfN(e) < αexp(6e~a), 0 < a < 2, then for all λ > 0,

(5.15) P{\\X\\ > λ} < Cx exp ( /

where α, 6, C±, C2 are βnite, positive constants.

REMARK: Note that you cannot set α = 0 in this result to recover either
Theorem 5.2 or Theorem 5.3. That the upper bound given here is, under
mild side conditions, also a lower bound, is shown in Samorodnitsky (1987b,
1990).

PROOF: The proof is identical to that of the previous theorem, with the
exception that (5.12) must be replaced by

,€) < K ί (log(αexp{be-α)))*de
Jo

and the relation between e and λ given by e = λ~ 1 / ( 1 + α / 2 ) . The details of
the proof are left to you. •

3. Processes w i t h a Unique Point of M a x i m a l Variance.

Neither Borell's inequality, nor the improvement made on it in the pre-
vious section, made any particular use of the fact that the variance of Xt

may vary on Γ. In this section, we make our first step in this direction, with
the following elegant result of Talagrand (1988a).

5.5 THEOREM. Conditions (5.16) and (a)+(b) below are equivalent.

Φ(λ/σΓ)

(a) There exists a unique to eT such that EX2

o = σ\ = supτ £X t

2.
(b) Jf, for /ι > O, we define

Th = {<GT:ί;(I tI tJ>4-Λ2}

then

(5.17) lim hΓ E\\X — Xto \τκ — 0
h-+O

In view of the results of Chapter 4, condition (5.17) is quite easy to
check. Here is an example, treated initially by Berman (1985).
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5.6 COROLLARY. Let Xu t > 0 be centered Gaussian with stationary
increments and Xo = 0. Assume

P2{t) = E{Xi+.-X,Y = EX?

is convex, and that

(5.18) l im^Φ = 0.

Then

™ r Λ }
Φ(λ/στ)

where σ% =

PROOF: Since X has stationary increments, condition (a) of the theorem is
clearly satisfied for each Γ > 0 with to = T. Consider (b). Since

EXτXt = ^(p2(Γ) + P

2 (ί) - p 2 ( Γ - t ) ) ,

it follows that for ί <Ξ Th we have p2 (ί) > p2 (Γ) - 2h2 = σ2 - 2/ι2.
Since p2 (ί) is convex, it has a left derivative at each point, and so (draw

a picture) for t G Th we have ί > Γ — Kh2 for some finite K. Thus, since X
has stationary increments, to show that (5.17) holds it suffices to show that

(5.20) l im/i" 1 ^ sup |X t | = 0.
h~+° 0<t<fι3

But this follows immediately from an entropy bound such as Corollary 4.15,
along with the condition (5.18). •

PROOF OF THEOREM 5.5: We shall follow our by now standard practice
of only proving the theorem in one direction. In this case, however, we are
proving it in the harder, albeit more interesting direction; i.e. that (a) + (b)
implies (5.16). For the other half of the proof, see Exercise 3.1.

To save a little on notation, set στ = 1. With to the unique point of
maximal variance, start by setting

α(ί) - E{XtXto), Yt=Xt-α(t)Xto.

A simple covariance calculation shows that Yt is independent of Xto, and
since

Yt-(Xt-Xto) = (l-α(t))Xto,
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we have, from the definition of Th, that

E\\Yt - {Xt - Xto)\\τh < h?E\Xu\.

Thus, if (5.17) holds, we also have

(5.21) lim/r^llrHr, = 0

Thus we need only show that, under condition (a), (5.21) implies (5.16).
The idea of the proof is as follows: Since the maximal variance is at ίo, it

is most likely that if the process achieves a high supremum it will do so close
to to. Thus we divide the parameter space up into sets close, closer, and even
closer, etc. to ίo, treating each one separately, and noting that in each one
there is a maximal variance, strictly less than 1, that, by Borell's inequality,
governs the distribution of the supremum. The details are as follows:

Take a η > 0 with η < 1/16, and a G (0,1/8) such that

(5.22) # l l * Ί k < Vh, for all h < a.

For n > 0, define the following subsets of T:

An = Γ2-Λα = {t:a{t)>l-2-2na2}, Bn = Λ\Λ + i

(Draw a picture for T = [0,1], to = 1, to see what is happenning.)
Note that the An are monotonic non-increasing, the Bn disjoint and

(5.23) l - 2 " 2 n α 2 < α(ί) < 1 - 2"2(n + 1 V , f o r a l l ί G 5 n .

Since to is the unique point of maximal variance

sup{£Xt

2: α(ί) < l - α 2 } < 1.

It follows from Borell's inequality that

P{sup{X t: α ( t ) < l - α 2 }

5 S L

Thus to prove the theorem we need only show that

(5.24) l i m s u p P { l l ^ > Λ } < 1 +

for some universal constant K. (The corresponding lower bound needed to
establish (5.16) is, of course, trivial.) To do this, we use the same type of
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conditioning argument as in the previous two proofs. Using (5.23) we have
that for x > 0

P{\\X\\Bn>X\Xu=x} = P{\\Yt+a(t)x\\Bn>\}

(5.25) < P{\\Y\\Bn > λ - z ( l - 2 - 2 < n + 1 ) α 2 ) } .

To bound this, we need to bound supB^ EY2 < snpAn EYt

2. But

sup {EY2)' = sup ΛA/2 {E\Yt\}
A A

< V2πηa2~n

< r/α2~ n + 2 ,

where the first inequality is a property of normal distributions, the second
obvious, the third a consequence of Lemma 3.1, the fourth a consequence of
(5.22) and the fact that Yto = 0, and the final trivial.

Applying this, along with (5.22) and BorelPs inequality to (5.25), we
find that for x > 0

(5.26) P { | | X Ί | B . > X\Xt. = x}

~ \ ηa2~n+2

where φ(x) = y/2πφ{x) and, as usual, φ(x) = (2π)~ ' e~ ίx*. Set

Mλ) = Γ P{\\X\\Ao>X\Xto=x}φ(x)dx,
Jo

J2(λ) = Γ P{\\X\\Ao>X\Xto=x}φ(x)dx,
J — oo

so that

= P{Xto >λ}+ P{\\X\\Ao > λ, Xto < λ}

(5.27) = Φ(λ) + h{\) + /2(λ).
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Treating the easier term first, take x < 0 and note that then

P{ | |X | |Λ . > λ I Xto = x} = P{sup(yt + α(ί)x) > λ}

< P{\\Y\\U > λ}.

Thus J3(λ) < P { | | F | | Λ o > λ}. Since supAo EYt

2 < 1, BorelΓs inequality
gives us that limλ —«> -Mλ)/Ψ(λ) = 0. Thus it remains only to treat /ι(λ).

Since Ao — Un>0Bn, it follows from (5.26) that

/i(λ) < £ Γ P{\\X\\Bn>\\Xtΰ=x}φ(x)dx
n=0 /°

A f o / / λ x ( l 2 α ) Λ . . . .
< > / 2 V> ^ s - 7 ^ W dx

Make the change of variable x — X — z, set

to obtain

(5.28) Jx (λ) < 2 ] Γ ί03 V(7nλ + «ίw - i) φ(\ - *) dz.

Note that for all λ > 1, and all z there exists a finite K such that

φ{λ-z) < φ(X)eλz <

Applying this to (5.28) we find

(5.2$) h{λ) < 2KΦ(λ) Σ Γ
n=0Jn=0

But, since a2 < 1/8, η < 1/16, we have

(5.30) Ίnδn = 2 - ( ) > — > 2,

so that returning to (5.29) we find that, for appropriate constants K,
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But, applying (5.30) again yields

(5.31) Λ(λ) < η*
n = 0

Since ηn+ x = ̂ ηn, it is immediate that for large enough λ the sum is bounded
by a universal constant.

Thus, limλ_oo 7i(λ)/Φ(λ) < η2K, as required, and since η was arbi-
trary, the proof is complete. •

If we are prepared to assume a little more, it is possible to do better
than Theorem 5.5. In the notation of Theorem 5.5, set

L{h) = Esnp (Xt-a{t)Xto).
teτh

Recall that condition (5.17) of the Theorem is equivalent (c.f. (5.21)) to

lim h'^ίh) = 0,
/ι-0

i.e. L(h) = o(h). Dobric, Marcus and Weber (1989) have shown that if we
assume a little more about L(h) we can improve Theorem 5.5 as follows.

5.7 THEOREM. Suppose there exists a unique to G T such that o

1 = supτ EXf, and two functions ωljω2i concave for h G [0,Λ] for some
h>0 with ω{ (0) = 0. Define

Then if
Wi(Λ) < L{h) < ω2{h)

and sup t 6 T f c E[Xt - XtoE(XtXto)}2 < (2 - e)h2 for h e [0, h] for some e > 0,
there exist constants Cλ and C2 such that for all λ large enough

e
G1λω1(h1(X))

Φ(λ) -

If, for example,

lim s u p — — - > 1,

then, for all e > 0,

> λ >
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You can find a proof and applications of this result in Dobric, Marcus
and Weber (1988). I brought it here to show you two things: Firstly, one
can do better than Theorem 5.5. Secondly, in terms of the simplicity of the
result, one pays a lot the improvement.

4. General Bounds.

At the time of writing, this is the only remaining area in the general
theory of Gaussian extremes (over bounded Γ) that is not yet fully "tidied
up" under the influence of Borell's inequality. Thus, we shall suffice with a
statement of the main result, without proof.

Nevertheless, the result and proof of the previous section give us a strong
indication of how the proof must work. There, we treated processes with a
unique maximal variance, and the proof relied on studying just how fast the
variance decayed as one moved away from that point. In the general case,
there will be a subset Γ m a x C Γ where the maximal variance is achieved, and
one has to study two things: the "size" of Γ m a x (e.g. as measured in terms
of metric entropy) and how rapidly EX? decays as we move out of Tm a x .

To quantify this, define the following, for £, δλ, 62, e > 0:

Γ+ = {t β T : EX2

t > δ} T~ = {teT: EX2 < δ}

N+(δ,e) = N{T+,e), N~ (δ,e) = JV(Γ",c)

Niδ^δ^e) = N{T+nT-,e) 0 < δλ < δ2,

where N(T',e) is the minimum number of d-balls of radius e required to
cover T C T.

It is the function N(δ1,δ2)€) that is crucial in measuring the non-
stationary of X on T. Here is the main result, due to Samorodnitsky (1987a,
1990) and Adler and Samorodnitsky (1987).

5.8 THEOREM. Suppose that for finite, positive α,α,/3, the following con-
ditions are satisfied for small enough, positive, δ and e:

(5.32) α~1€'αδβ < ΛΓ+(στ-<$,e) < αCαδβ.

Then, if α > 2β, there exists a finite, positive K such that for all λ > 0

(5.33) K'1 Xα~2β ( logλ)- α / 2 Φ(λ/σ τ )

< Kλα-2β{logλ)βV{\/στ).

Ifα<2β, then

(5.34) tf-'Φίλ/σr) < P{||X|| > λ} <
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Under the additional assumption

(5.35) N{δ1,δ2,e) < CCα{δ2-δ1)
β,

the upper bound in (5.33) holds without the logarithmic term.

This result, of course, treats only polynomial entropy functions of the
type appearing in Theorems 5.2 and 5.3. (Note, in fact, that setting β = 0
above in fact gives Theorem 5.3.) The reason that we have not added the
exponential entropy case to theorem 5.8 is due to the fact, already noted,
that the easy bound of Theorem 5.4 is actually the best possible.

We shall conclude this section with two applications of Theorem 5.8.
The first, which treats a non-stationary process on [0,1], is designed to show
how sample roughness and non-stationarity interact to determine the distri-
bution of ||X||. (You can get a less interesting result for stationary processes
here by setting the parameter β to zero.) The second shows how to use the
general theory to do an empirical process problem.

5.9 EXAMPLE. Let X be stationary, centered on [0,1] with covariance func-
tion Rx satisfying

(5.36) αot
α < 1-Rx(t) < αxt

α,

for all t G [0, η] and αo,αλ,α and η positive. Let σ(t) be positive, continuous,
and monotonic increasing on [0,1] such that

(5.37) bo\t-s\β < \σ{t)-σ{s)\ < b^t - s \β

for all θ, t G [0,1] and b0, bλ and β positive, and define a new, nonstationary,
process Y by

(5.38) Y{t) = σ(ί)X(ί), tG [0,1].

Finally, let σ, without a parameter, denote σ(ί). Then, if 0 < β < α, we
have that for sufficiently large X there exists a finite C > 0 such that

(5.39) C - ' λ - ' e - ^ 3 / ' 3 < P{ sup Y{t) > λ} < C A ^ e " >χ2/σ\
t € [ 0 , l ]

if, however, 0 < α < β, then

(5.40) C - ^ - ^ ^ ^ 2 / 2

< P{ sup Y{t) > λ}
te[o, i ]
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PROOF: Clearly everything hinges on finding good upper and lower bounds
for N(δ1,δ29e) = JV(Γ+ Π Tό~ ,e), 0 < δx < δ2l so that we can establish
(5.32) and (5.35). We shall show how to get an upper bound. That the same
expression also serves as a lower bound is left as an exercise.

Note first that for σ(0) < δλ < <52,

Note that, in view of (5.37), the length of the interval I{δl9δ2) lies
between ((δ2 — S1)/b2)

1/'2 and ((δ2 — <5i)/6i)1/2. Furthermore, in view of the
definition (5.38),

E(Yt-Ys)
2 = (σt-σ9)

2 + 2σtσs (l - Rx (t - s))

(5.41) < b\\t-s\2β + 2 σ 2 α 1 | ί - s | α ,

the inequality holding for all \t — s\ < 7, by (5.38).
Moving now to the canonical metric on [0,1] in order to calculate en-

tropies, it follows that, if 0 < a < 2/?, then (5.41) implies

Combining this with the comments above on the length of I(δ1, <52), we have
that

(5.42) N{δ1,δ2,e) < C e - 2 ' * ^ - ^ ) 1 7 2 -

This is enough to establish the upper bounds in both (5.32) and (5.35)
and so yield, by the Theorem, and Exercise 4.1, (5.39) and (5.40) for the
case a < 2β.

The case a > 2β is similarly treated, and leads to (5.39). This completes
the proof. •

Our second example deals with the set indexed, pinned, Brownian sheet
W on the collection

Ak = {[s,t]: s,te [ 0 , 1 ] * }

of intervals in the A -dimensional unit square. Recall that if we take a general
reference (probability) measure v on [0, l]k then W is the centered Gaussian
process with covariance function

EW{A)W{B) = 1/{AΠB) - u{A)u{B).

The result is
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5.10 EXAMPLE. Assume that the measure v has a bounded density f that
is everywhere positive. Then, with the above notation, there exists a finite
C > 0 such that for large enough λ

A€Ak

(K Λ^\ <: /^\2(2fc-l) -2λ3

REMARK: The condition on v can be relaxed to demanding that v has
a strictly positive density on some interval [s — e,t + e] (θ,ί,e G [0, l]k) for
which f([θ, t]) > j , or, indeed, even further to those used by Adler and Brown
(1986) in obtaining corresponding bounds (but without the logarithmic term)
for W over the index set {[0, ί ] : t e [0, l]k }. See Samorodnitsky (1987a, 1990)
for details.

PROOF: A detailed proof involves an unentertaining amount of algebra, so
we shall suffice with only an outline.

F o r O < δλ <δ2 < | ,

Γ+ΠΓ- = {AeAk:δ1<iy(A)-u2(A)<δ2}

= I~ δ U 1+ δ ,

where

Consider approximating the sets in / " in terms of the canonical distance,
in order to find an upper bound for the entropy function. (J + is similar. The
lower bound is left to you. It is a little harder.) Choose as approximating
sets A -dimensional intervals whose endpoints sit on the points of the lattice

Lk

e =

What now has to be shown is that one needs O{e"4tk{δ2 — δx)*) such
intervals to approximate every set in I~ 6 in the canonical metric. This,

along with a similar bound for I~ δ yields that

which, in view of Theorem 5.9, is all we need in order to establish (5.43).
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Once one has worked one of these examples in detail, it is relatively easy
to work others. For example, for the Brownian sheet (based on Lebesgue
measure) on {{half planes} Π [0,1]2} a result similar to (5.43) holds, but
with the power of λ reduced to 2 and the power of the logarithm equal to
-2. (Samorodnitsky (1987a, 1990).) As I noted way back in the Preface, the
monograph by Piterbarg (1988), which I received only recently, has a wealth
of information related to the results of this subsection. His results also cover
the more classical "extremal theory" of Gaussian processes, that arises when
T is replaced by a sequence {Tn }n>± of subsets of Euclidean space that grow
towards all of dtd as n —> oo.

5. The Brownian Sheet on the Unit Square.

After all the general theory of this chapter it is rather natural to ask
whether one could not do better, given a particular process, calculating
P{||X|| > λ} for this process alone. Perhaps, then, it would be possible
to identify the elusive constants in the general bounds, or, better still, cal-
culate the precise distribution of the supremum. Sometimes, but rarely, this
is possible. For example, there are only six different stationary Gaussian
processes - i.e. six different covariance functions - on 8ΐ for which the precise
distribution of the supremum over finite intervals is known.

One is the simple cosine process of Exercise 1.1, and another the pro-
cess with triangular covariance function (Exercise 1.2). The most important
is the Ornstein-Uhlenbeck process with covariance exp(|i|), and the other
three are somehow related to either this or the triangular covariance pro-
cess. In all of these six cases, however, the derivation of the distribution
of the maximum is based not on general Gaussian techniques but either on
the simplistic nature of the process (as in the cosine process) or on Markov
methods. (The Ornstein-Uhlenbeck process is, of course, Markovian. The
triangular covariance process is pseudo-Markovian. See Adler (1981) for def-
initions and references.) Thus these six "success stories" are not really part
of the Gaussian framework.

Within the Gaussian framework, we noted already at the beginning of
this chapter that pre-entropy results identify the constants appearing in the
asymptotic bounds when T — [0,1] and R(s — t) ~ |ί — s\α as |ί — s\ —> 0.
However, even there it is not known how to obtain their precise numerical
values. In general, even establishing the fact that such constants exist is an
impossible task.

Nevertheless, in this section I want to show you how to calculate the
constants for one very special process, the pinned Brownian sheet on [0,1]2.
There are two reasons for this. Firstly, the result has importance in bivariate
Kolmogorov-Smirnov testing. Secondly, it is my favourite result in the entire
theory of Gaussian random fields (i.e. processes defined on 5Rfc, k > 1). The
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result and proof is due to Goodman (1975). A related upper bound is due
to Cabana and Wschebor (1981). It is harder to obtain and not as neat.
A higher dimensional version, and a linkage of the result to Kolmogorov-
Smirnov tests for empirical processes is given in Adler and Brown (1986).
The only other example that I know of for which a similar argument works
is in Adler (1984), where the random field on 3ϊ2 with covariance function

is treated. (It is probably worthwhile reiterating at this point that one of
the reasons that special results of this type are of interest is that information
on a specific process, along with Slepian's inequality, yields information on
many others. See, for example, applications of this idea in Orsingher (1987)
and Orsingher and Bassan (1988).)

Finally, it is important to note that the reasons that we can get results
for the Brownian sheet are more related to its Markovian nature than its
Gaussian properties. Nevertheless, it is a lovely calculation, particularly
when one recalls its history, and the fact that it grew out of the theory of
Banach space valued processes. It is rare indeed that such abstract theory
can be used to carry out a calculation that provides useful numbers.

Once again, recall that the Brownian sheet on [0,1]2 is the centered
Gaussian process with covariance

(5.44) EWΛtW..t. = (5Λs') (tΛt')

and the pinned sheet, a version of which is given by

(5.45) W.t = Wat-stW11.

has covariance function

(5.46) E{W9tWuυ) = « ι ( l - t t ; ) , (β,t), (u,t;) G [0,1]2.

5.11 THEOREM, if # is the pinned Brownian sheet on [0,1]2, then for all
λ > 0

2 ) e " 2 λ(5.47) P{ sup VΪst > λ} > (l + 2λ2)e
[ ] 3

The lower bound is, from the point of view of applications, the important
one. For λ > 1.5, it can be shown that it underestimates the true probability
by no more than .01, and that it actually gets tighter as λ —> oo. (See
Theorem 5.12 and the table following it.)
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PROOF: The trick is to turn Wst from a real-valued, two-parameter process,
to a Banach space valued, single parameter, Markov process, by, for each
t £ [0,1] letting Wt be the element of C[0,1] defined pointwise by

(5.48) Wt(s) = WΛU 0 < s < l .

The proof will then rely on the fact that

(5.49)
st

We need to collect a few facts, however, before we can exploit this equivalence
fully.

The first is that Wt is, in fact, a C[0,1] valued Markov process. Since
this statement is beyond the general interest of these notes, we shall assume
it is correct. (If you are uncomfortable with such processes, you can take

0 < Si < ... < sfc < 1 , and work with the 9ϊ* -valued process W} =
(W fa9t)...9W(sk,i)) in all that follows and, ultimately, send k —> oo. There
is no difficulty checking the Markovian nature oϊW^).

The second fact is that one way to obtain W from W is simply to
condition W on taking the value zero at the point (1,1). This follows by
comparing covariance functions.

Thirdly, since Wt is a well defined Markov process, it makes sense to
condition Wt, 0 < t < 1 on W1. A surprising fact, which is what makes the
whole proof work, is that Wt(s), conditioned on W1(s), is independent of
Wλ (u) for all u φ s. To see this, note that for any 0 < 6 , u < l , 0 < ί < l

= E{(W9t-tW9l)Wul}

(5.50) = (sΛu)(t Λl)-t(sΛu)(lΛl)

= 0.

Thus E{Wt (s) I W±} = tWx (s), and our claim is established.
(It is worthwhile reiterating that (5.50) is a very special relationship,

that will not work, for example, if the Gaussian white noise that W is based
on is defined relative to any measure other than Lebesgue.)

The fourth, and final, fact, is that the process Wλ9 conditional on
Wλ (1) = 0, is a standard Brownian bridge (i.e. the one-dimensional Brownian
sheet).

We can now start the calculation:

st
λ} =

<

P{supVF(s,ί) <
st

Ίnΐ P{supWt(s))

λ |

<

W(l,

X\W{

1) = 0 }

; i» i )=o}

= / inf P{sup Wt (s)<\\W1= w} dP* (ω),
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where P* is the probability measure on Ω* = {/ G C[0,1]: /(0) = /(I) = 0}
induced by the standard Brownian bridge. (If the last equality bothers you
- and it should - see Goodman's original proof for technical elucidation.)

By the third fact established above, we now have that

θ t < λ}
st

(5.51) < / mΐP{suvWt{s) <\\W1{s)=ω{s)}dP*(ω).

But for each s, the real valued process {W^(θ)}t>o is just a scaled Brownian
motion, and the conditional probability that Wt(s) < X for all 0 < t < 1,
given the value of W1{s)^ is well known, as a property of Brownian motion.
In fact (e.g. Feller (1971), page 341) we have

s) < \\WM=wls)} = 1-expf - 2
t \

Substituting into (5.51) now gives

(5.52) P { s u p ^ t < λ } < / ( l - exp (2λsup ^ ~~ Λ ) " )) dP*{w).

However, the distribution of Z = supa{(u;(s) — λ)/θ} when ω is a Brownian
bridge is also known, and has density

ί λ -2λ(z+λ) z > —X

λe z> Λ,
0 z<-X.

Substituting into (5.52) gives

P{sup#θt<λ} < Γ (l-e2Xz)2Xe-2(z+x)λdz
^ J-x

< l - ( l + 2 λ 2 ) e - 2 λ \

Consequently,

P{snpWβt > λ } > (l + 2 λ 2 ) e " 2 λ 2 ,
st

as required. •

While it is true that Theorem 5.11 is one of my favourite results, I
should point out that one can actually do considerably better. Furthermore,
whereas the proof given above relies on Markov and Banach space techniques,
the better result is a truly Gaussian one. That is, the proof of the result
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below proceeds by noting that the largest contribution to the probability of
the pinned Brownian sheet ever crossing a high level comes from that part
of [0,1]2 where the marginal probability of being above the level is highest;
i.e. where the variance is highest. This region can then be carefully broken
up into smaller pieces, and each one studied independently. This, of course,
is precisely the technique that we have employed throughout this chapter.
However, when carefully applied to a particular process, it is possible to
keep track of all the constants involved, and Hogan and Seigmund (1986) (to
whom you should turn for a proof) have thus managed to prove the following:

5.12 THEOREM. IfW is the pinned Brownian sheet on [0,1]2, then as
λ —> oo

(5.53) 2 Λ -P{ sup W,t > λ} ~ 4log2λ2 e

Note that in one sense, Theorem 5.12 is a little weaker than Theorem
5.11, as the latter gives an inequality for all λ > 0. It is interesting, never-
theless, to compare the two numerically, and so note that "oo" is a lot closer
to zero than one might initially expect.

The following table does this, giving P{sup[0 1 ] 2 W9t > λ} for a range
of λ, according to formulae (5.47), (5.53) and an approximation based on
400 simulations of a discrete approximation to a pinned Brownian sheet on
a 100 x 100 grid on [0,1]2 (graciously provided by Ron Pyke).

PINNED BROWNIAN SHEET TAIL PROBABILITIES
λ

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

Lower bound
.9928
.9098
.6899
.4060
.1812
.0611
.0156
.0030
.0004

Asymptotic
.1529
.4204
.5063
.3752
.1903
.0693
.0186
.0037
.0006

Simulation
.9883
.9226
.7133
.4191
.1737
.0503
.0116
.0000
.0000

If you have bothered to read these figures then you are enough of a
statistician to know that the last digit in the simulation results is totally
spurious, and that very little faith should be had in even the third.

A little thought also shows that at the extreme tail the simulation figures
should give lower probabilities than the true ones, since an approximation



136 SUPREMA DISTRIBUTIONS V

to W on a finite grid will have a stochastically smaller supremum than W
itself.

Nevertheless, the overall agreement, at least for λ > 1.25 is surprisingly
good, so that one is rather tempted to claim that, with an error of only 1%,
oo » 2.5σ! (Since σ£ = 1/4.) In fact, experience, based both on numerical
approximations and simulation indicates that this approximation is good for
a wide variety of extremal results. •

There is, of course, one thing wrong with both of the above Theorems:
both refer only to the Brownian sheet based on the uniform measure on
[0,1]2. With only a little work, and an application of Slepian's inequality,
one can do a lot better.

With a slight change of notation, so that the proof below will be easier
to read, let F be a continuous distribution function on S?2. Write WF to
denote the pinned Brownian sheet based on the measure with distribution
function F, so that for θ,ί G 9i2

(5.54) EWF{s)WF{t) = F{sΛt) - F(s)F{t),

where s A t is the coordinatewise minimum (s1 Λ tx, s2 Λ ί2)
Furthermore, let G denote the degenerate distribution, uniform on the

negatively sloped diagonal tx + ί2 = 1 in [0,1]2, so that

(5.55) G{t) = (tx + ί 2 - 1)+, tβ [0,1]2.

Here is a rather useful and somewhat surprising result:

5.13 THEOREM. Let F be any continuous distribution function on 5R2. For

any λ > 0

(5.56) P{ sup# F (ί) >λ} < P{ sup
3 t e [ o , i ] 3

Furthermore

oo

(5.57) P{ sup # σ ( ί ) > λ } < J^(8n 2 A 2 -2)e'

The value in this result lies in its applications to bivariate Kolmogorov-
Smirnov tests. You can find more details in Adler and Brown (1986) from
where the result comes, as well as in Adler, Brown and Lu (1990).

PROOF: We shall assume, without loss of generality, that F is concentrated
on [0,1]2 with uniform marginals. (Why is this true? Also, since this is true,
why is it not true that we can also assume F to be uniform on [0,1]2? Why
can we assume this in one dimension?)
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To save on space, write P for [0,1]2, and let m be the mapping from P
to the upper triangle {t G P : tx +t2 > 1}, defined by

(5.58) G(m{ή) = G(m1{t),m2{t)) = F{t), t G I2,

(5.59) m2 (t) - mx (ί) = t2 - t±, ί G J 2 .

We must check that m is well defined. But this is easy, for by (5.59) we
have that we are mapping lines of slope one onto themselves. At the lower
left end of each such line F = G = 0, and at the upper right end, as each
line leaves J 2 , the marginal uniformity of F and G ensures that they are
again equal. Since both F and G are nondecreasing along such lines, and G
is continuous and strictly increasing when it is not zero, it is easy to arrange
(5.58) in a unique fashion.

Now consider the processes WF and WG. We shall compare their sup-
rema via Slepian's inequality, for which we need to compare variances and
covariances. Note firstly that, for t G P,

(5.60) E(WF{t))2 =

a simple consequence of (5.58) and (5.54). We want to show that

(5.61) F(sΛt) > G(m(θ)Λm(t)),

from which it would follow that

(5.62)

fy{t) = F{sΛt) - F{s)F{t)

> G(m(s)Λm{t)) - G(m{s))G(m{t))

This will be enough to prove the first part of the Theorem, viz (5.56), since
(5.60) and (5.62) are precisely the ingredients for Slepian's inequality.

Therefore, consider (5.61), and assume that s < t in the sense of coor-
dinatewise ordering, (i.e. sλ < tx and tx < ί2 ) Then F(s A t) = F(s) =
G(m(s)) > G(m(θ)Λm(ί)), and so (5.61) holds. The case ί < s is clearly iden-
tical, so consider now the case sx > tx and s2 < t2. (The remaining case is
handled identically.) Then sΛt = (ίi,θ 2). Write w — {m1(t),m2(s)). There
are three possible cases to consider: m(s) > w > m(ί), m(t) > w > m(s),
and w = m(s) Λ m(ί). We shall look at the third case only, but you should
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check that our reasoning is valid for all three. Note (draw a picture!) that

F{sΛt) =

> [F(s)-(s1-t1)]\/[F(t)-(y2-s2)]

(by marginal uniformity)

^s) - m2(s)) - (mi{t) - m2(t))]} by (5.59), (5.60)

> m 2 (s) + m1 (f) - 1 by (5.55).

Hence, if m2 (s) + m1 (<) — 1 > 0, then the above yields

(5.63) F{sAt) > G(m1{t),m2{s)).

On the other hand, if m2 (s) + mx (ί) — 1 < 0, then G{rriι (f), m 2 (s)) = 0 and
so (5.63) is trivially true. Thus, in general,

F(sΛί) > G(m1(t),m2{s)) = G(w) = G (m{s) A m(t)).

From this we immediately obtain (5.61) and so the proof of (5.56).
To complete our proof we must establish (5.57). To this end, we define

a two-parameter process X(t) on P by setting

χ ( t t ) = ί ^ ( * i ) ^ ( l - * 2 ) t i + t a - l > 0
l 5 \ o tx + ί 2 - i > o ,

where W is the usual single parameter Brownian bridge W on [0,1]. Com-

parison of covariance functions shows that X is a version of WG. Thus

(5.64) P{ sup WG(t) > λ}
te/2

= P{ sup [^(ί j - W{t2): ίx + t2 - 1 > 0] > λ}

= P{ sup [W(t) - W(s): 0 < s < t < l] > λ}

s,te [0,1]] > λ}

sup
[0,1]

What we have gained here is that the supremum probability for the two-
parameter WQ hcis been expressed in terms of the single parameter process
W\ and, fortunately for us, Kac, Kiefer and Wolfowitz (1955, equation (4.6))
have shown, via clever use of the reflection principle - which in turn relies on
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the Markov type properties of the Brownian bridge - that the last probability
above is precisely that given by the right hand side of (5.57). This completes
our proof. •

REMARK: For the statistician who is still with us, and who might be in-
terested in good, numerical, bounds, we should note that the one inequality
in (5.64) is far from sharp. While it retains the right order of magnitude,
a little thought shows that it "costs", roughly, a factor of two. Comparison
of the upper bound of Theorem 5.13 and the lower bound of Theorem 5.11
(albeit for a specific process) seems to bear this out, as do simulations in
Adler, Brown and Lu (1990), to where, once again, I refer you for details on
how to use all of this.

Finally, it is interesting to ask what happens in treating the Brownian
sheet in dimensions greater than two. Do similar results hold? Unfortunately,
the answer seems to be negative, since there is no distribution in dimensions
> 3 which plays the same "extremal" role that G does in two dimensions.

You can look in Adler and Brown (1986) to see what happens in higher
dimensions, but all you will find there are special cases of the very general
theorems of this chapter. In fact, it was the results obtained there, for
particular processes, that got me interested in the general formulation. Since
I now seem to have got back to where I started, the cycle is complete, and
the time has come to stop writing.

6. Exercises.

SECTION 5 . 1 :

1.1 One of the useful consequences of Theorem 5.1 is that the asymptotic
distribution of the maximum of stationary Gaussian processes on 9? depends
on the covariance only through the constants C and α in the expansion (5.3).
Consequently, if we can find the value of Hα in (5.4) for a particular process
X with covariance function satisfying (5.3) for a specific α, we have Hα for
all such processes.
(i) Let A be a Rayleigh random variable, with density f(α) = αexp(—α2/2),
α > 0, and φ uniform on [0,2π), independent of A. Fix ω > 0 and define the
"cosine process with angular frequency ωn as

X(t) = A cos(ωt - φ).

Show that X is centered, Gaussian, and stationary. Find its covariance
function, and show that it satisfies (5.3) with α = 2.
(ii) From elementary geometric considerations, show that for 0 < T < π/ω
and λ > 0

P{ sup X(t) > λ} = Φ(λ) + ^
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(iii) Apply (i), (ii), and Theorem 5.1 to show that H2 = l/\ZτF.

1.2 Another specific case in which the distribution of the maximum can be
explicitly calculated is the Gaussian process with triangular covariance

R(t) = 1 - |ί |, \t\ < 1.

The fact that this process satisfies a pseudo Markov property allowed Slepian
(1961) to derive the distribution of the maximum. You might try going over
his calculation, and, en passant, showing that Hx = 1.

SECTION 5.3:

3.1 We shall now prove the necessity in Theorem 5.5
(i) Show that if (Z7, V) are centered, jointly Gaussian variables, with EU2 =
EV2 = 1 and EUV < 1, then

P{max(C/,y) > λ}
lim —^ ' ' - J = 2.

λ-oo Φ(λ)

Hence conclude that if (5.16) holds, then so must condition (a) following it.
(That is, if | |X|| behaves like a single Gaussian variable, then X achieves its
maximal variance at only one point.)
(ii) Show that for 0 < λ < z/,

Φ(λ) > Φ(ί/) + i/(i/-λ)Φ(i/).

(iii) Assume that (5.16) is in force. By (i), this implies that condition (a) of
Theorem 5.5 is also in force. Show now that (5.16) is equivalent to (5.17).
(iv) Complete the proof of necessity by showing that (5.17) implies (5.21).
An outline of the main steps is as follows: Choose e > 0 small enough so
that

6 2 )Φ(λ),

for large enough λ. With α(ί) and Y(t) as in the proof of Theorem 5.5, and
T = {ί € Γ : α(ί) > 0}, deduce that

Γ φ(y)φ(y)dy < β2Φ(λ),
J - oo

where φ(y) = P { s u p t e τ , ( F ( ί ) + a(t)y) > λ}, and φ, as usual, is a standard
Gaussian density.

Now complete the proof. You will need both (ii) and the result of
Exercise 1.1 of Chapter 3.
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SECTION 5.4:

4.1 Complete the proof of Example 5.8 by showing that the upper bound
(5.42) for N(61,62,e) also serves, albeit with a different constant, as a lower
bound.

4.2 Fill in all the missing details in the derivation of the upper bound for
the entropy in the proof of Example 5.9. If you are feeling truly courageous,
try proving that the upper bound also serves as a lower bound, as usual,
with a different constant.




