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1. INTRODUCTION

Statistics is a science which studies methods of inference, from

observed data, concerning the probabilistic structure underlying such data.

The class of all the possible probability distributions is usually too wide to

consider all its elements as candidates for the true probability distribution

from which the data were derived. Statisticians often assume a statistical

model which is a subset of the set of all the possible probability distribu-

tions, and evaluate procedures of statistical inference assuming that the model

is faithful, i.e., it includes the true distribution. It should, however, be

remarked that a model is not necessarily faithful but is approximately so. In

either case, it should be very important to know the shape of a statistical

model in the whole set of probability distributions. This is the geometry of a

statistical model. A statistical model often forms a geometrical manifold, so

that the geometry of manifolds should play an important role. Considering that

properties of specific types of probability distributions, for example, of

Gaussian distributions, of Wiener processes, and so on, have so far been studied

in detail, it seems rather strange that only a few theories have been proposed

concerning properties of a family itself of distributions. Here, by the proper-

ties of a family we mean such geometric relations as mutual distances, flatness

or curvature of the family, etc. Obviously it is not a trivial task to define

such geometric structures in a natural, useful and invariant manner.

Only local properties of a statistical model are responsible for the

asymptotic theory of statistical inference. Local properties are represented

by the geometry of the tangent spaces of the manifold. The tangent space has a
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natural Riemannian metric given by the Fisher information matrix in the regular

case. It represents only a local property of the model, because the tangent

space is nothing but local linearization of the model manifold. In order to

obtain larger-scale properties, one needs to define mutual relations of the two

different tangent spaces at two neighboring points in the model. This can be

done by defining a one-to-one affine correspondence between two tangent spaces,

which is called an affine connection in differential geometry. By an affine

connection, one can consider local properties around each point beyond the

linear approximation. The curvature of a model can be obtained by the use of

this connection. It is clear that such a differential-geometrical concept pro-

vides a tool convenient for studying higher-order asymptotic properties of

inference. However, by connecting local tangent spaces further, one can obtain

global relations. Hence, the validity of the differential-geometrical method is

not limited within the framework of asymptotic theory.

It was Rao (1945) who first pointed out the importance in the

differential-geometrical approach. He introduced the Riemannian metric by using

the Fisher information matrix. Although a number of researches have been

carried out along this Riemannian line (see, e.g., Amari (1968), Atkinson and

Mitchell (1981), Dawid (1977), James (1973), Kass (1980), Skovgaard (1984),

Yoshizawa (1971), etc.), they did not have a large impact on statistics. Some

additional concepts are necessary to improve its usefulness. A new idea was

developed by Chentsov (1972) in his Russian book (and in some papers prior to

the book). He introduced a family of affine connections and proved their unique-

ness from the point of view of categorical invariance. Although his theory was

deep and fundamental, he did not discuss the curvature of a statistical model.

Efron (1975, 1978), independently of Chentsov1s work, provided a new idea by

pointing out that the statistical curvature plays an important role in higher-

order properties of statistical inference. Dawid (1975) pointed out further

possibilities. Efron's idea was generalized by Madsen (1979) (see also Reeds

(1975)). Amari (1980, 1982a) constructed a differential-geometrical method in
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statistics by introducing a family of affine connections, which however turned

out to be equivalent to Chentsov's. He further defined α-curvatures, and point-

ed out "-he fundamental roles of the exponential and mixture curvatures played in

statistical inference. The theory has been developed further by a number of

papers (Amrn (1982b, 1983a, b), Amari and Kumon (1983), Kumon and Amari (1983,

1984, 1985), Nagaoka and Amari (1982), Eguchi (1983), Kass (1984)). The new

developments were also shown in the NATO Research Workshop on Differential Geo-

metry in Statistical Inference (see Barndorff-Nielsen (1985) and Lauritzen

(1985)). They together seem to prove the usefulness of differential geometry as

a fundamental method in statistics. (See also Csiszar (1975), Burbea and Rao

(1982), Pfanzagl (1982), Beale (1960), Bates and Watts (1980), etc., for other

geometrical work.)

The present article gives not only a compact review of various

achievements up to now by the differential geometrical method most of which have

already been published in various journals and in Amari (1985) but also a pre-

view of new results and half-baked ideas in new directions, most of which have

not yet been published. Chapter 2 provides an introduction to the geometrical

method, and elucidates fundamental geometrical properties of statistical mani-

folds. Chapter 3 is devoted to the higher-order asymptotic theory of statisti-

cal inference, summarizing higher-order characteristics of various estimators

and tests in geometrical terms. Chapter 4 discusses a higher-order theory of

asymptotic sufficiency and anci'llarity from the Fisher information point of

view. Refer to Amari (1985) for more detailed explanations in these chapters;

Lauritzen (1985) gives a good introduction to modern differential geometry. The

remaining Chapters 5, 6, and 7 treat new ideas and developments which are just

under construction. In Chapter 5 is introduced a fibre bundle approach, which

is necessary in order to study properties of statistical inference in a general

statistical model other than a curved exponential family. A Hubert bundle and

a jet bundle are treated in a geometrical framework of statistical inference.

Chapter 6 gives a summary of a theory of estimation of a structural parameter
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in the presence of nuisance parameters whose number increases in proportion to

the number of observations. Here, the Hubert bundle theory plays an essential

role. Chapter 7 elucidates geometrical structures of parametric and non-para-

metric models of stationary Gaussian time series. The present approach is use-

ful not only for constructing a higher-order theory of statistical inference on

time series models, but also for constructing differential geometrical theory of

systems and information theory (Amari, 1983 c). These three chapters are

original and only sketches are given in the present paper. More detailed theo-

retical treatments and their applications will appear as separate papers in the

near future.



2. GEOMETRICAL STRUCTURE OF STATISTICAL MODELS

Metric and α-connection

Let S = {p(x,θ)} be a statistical model consisting of probability

density functions p(x,θ) of random variable xεX with respect to a measure P on

X such that eyery distribution is uniquely parametrized by an n-dimensional

vector parameter θ = (θ
1
) = (θ ,. . . , θ

n
) . Since the set ίp(x)} of all the den-

sity functions on X is a subset of the L, space of functions in x, S is consid-

ered to be a subset of the L . space. A statistical model S is said to be geo-

metrically regular, when it satisfies the following regularity conditions

A-. - Ag, and S is regarded as an n-dimensional manifold with a coordinate system

θ.

A-.. The domain Θ of the parameter θ is homeomorphic to an n-dimen-

sional Euclidean space R
n
.

A
2
 The topology of S induced from R

n
 is compatible with the

relative topology of S in the L-. space.

A
3
 The support of p(x,θ) is common for all θεθ, so that p(x,θ)

are mutually absolutely continuous.

A*. Every density function p(x,θ) is a smooth function in Θ

uniformly in x, and the partial derivative 9/ae
1
 and integration of log p(x,θ)

with respect to the measure P(x) are always commutative.

Aς. The moments of the score function (a/3θ
Ί
)log p(x,θ) exist up to

the third order and are smooth in θ.

A
c
. The Fisher information matrix is positive definite,
o

Condition 1 implies that S itself is homeomorphic to R
n
. It is

25
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Figure 1

possible to weaken Condition 1. However, only local properties are treated

here so that we assume it for the sake of simplicity. In a later section, we

assume one more condition which guarantees the validity of Edgeworth expansions.

Let us denote by 3. = 3/3Θ
1
 the tangent vector e. of the i-th

coordinate curve θ
1
 (Fig. 1) at point θ. Then, n such tangent vectors e. = 3.,

i = 1,..., n, span the tangent space T at point θ of the manifold S. Any tan-

gent vector AεT is a linear combination of the basis vectors 3.,
θ i

A = AV,

where A are the components of vector A and Einstein's summation convention is

assumed throughout the paper, so that the summation Σ is automatically taken

for those indices which appear twice in one term once as a subscript and once as

a superscript. The tangent space T is a linearized version of a small neigh-

borhood at θ of S, and an infinitesimal vector dθ = dθ
Ί
3. denotes the vector

connecting two neighboring points θ and θ + dθ or two neighboring distributions

p(x,θ) and p(x, θ + dθ).

Let us introduce a metric in the tangent space T
Λ
. It can be done

u

by defining the inner product g
i Ί
 (θ) = <3., 3 > of two basis vectors 3. and 3.

at θ. To this end, we represent a vector 3-εT. by a function 3.£(x,θ) in x,

where £(x,θ) = log p(x,θ) and 3̂  (in 3.. A) is the partial derivative 3/3θ
Ί
.

Then, it is natural to define the inner product by

g. (θ) = <3.,3.> = E [3,£(x,θ)3,£(x,θ)], (2.1)
• J J 0 1 J
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where E
Q
 denotes the expectation with respect to p(x,θ). This g.. is the

σ I j

Fisher information matrix. Two vectors A and B are orthogonal when

<A,B> = <A
1
a

i
,B

J
'a.> = A

Ί
B

J
'g.. = 0.

It is sometimes necessary to compare a vector AεT of the tangent
θ

space T
A
 at one point θ with a vector BεT , belonging to the tangent space T

A
,

D σ σ

at another point θ'. This can be done by comparing the basis vectors a. at T

with the basis vectors a
1
, at T .. Since T

A
 and T

Λ l
 are two different vector

I D O D

spaces, the two vectors a. and a
1
, are not directly comparable, and we need some

way of identifying T
n
 with T . in order to compare the vectors in them. This

can be accomplished by introducing an affine connection, which maps a tangent

space T
Q X
 ._ at θ + dθ to the tangent space T

n
 at θ. The mapping should reduce

to the identity map as dθ->0. Let m(a'.) be the image of 3' εT
Q
, . mapped to T .

J J DTQU σ

It is slightly different from a.εT . The vector
τ ίm(3'.) - 3.]

i
 J
 dθ->0 dθ

represents the rate at which the j-th basis vector a. εT "intrinsically
11
 changes

J σ

as the point θ moves from θ to θ+dθ (Fig. 2) in the direction a.. We call

v. a. the covariant derivative of the basis vector 3. in the direction a..

Since it is a vector of T , its components are given by
σ

Γ,,. = <V
3
 3,,3.> , (2.2)

Figure 2
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and

where r. .̂  = Γ-j-j"
1
^- We call r... the components of the affine connection. An

affine connection is specified by defining v_ 3. or r.... Let A( Θ ) be a vector
σ J i J K

field, which assigns to every point θεS a vector A(θ) = A (θ)a. ε T
A
. The

I θ

intrinsic change of the vector A(θ) as the position θ moves is now given by the

covariant derivative in the direction a. of A(θ) = A
J
(θ)a., defined by

in which the change in the basis vectors as well as that in the components

A
Ί
(θ) is taken in

B
Ί
a is given by

A
Ί
(θ) is taken into account. The covariant derivative in the direction B =

V
R
A = B Y A.
B 3.

We have defined the covariant derivative by the use of the basis

vectors a. which are associated with the coordinate system or the parametriza-

tion θ. However, the covariant derivative vJ\ is invariant under any parametri-

zation, giving the same result in any coordinate system. This yields the trans-

formation law for the components of a connection r... . When another coordinate
I JK

system (parametrization) θ' = θ'(θ) is used, the basis vectors change from

{a.} to {a
1
.,}, where

a
1
., = B ] , 3

Γ

1* Ί Ί '

and B , = ae /ae
1
 is the inverse matrix of the Jacobian matrix of the coor-

dinate transformation. Since the components r
1
.., . ,

k
, of the connection are

written as

Γ
' i' j k'

 = < v a
i

 a
j "

9
k

l >

in this new coordinate system, we easily have the transformation law

We introduce the α-connection, where α is a real parameter, in the

statistical manifold S by the formula
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(α) 1-α

ijk θ i j ' 2 i ' j

It is easily checked that the connection defined by (2.3) satisfies the trans-

formation law. In particular, the 1-connection is called the exponential con-

nection, and the -1-connection is called the mixture connection.

2.2 Imbedding and α-curvature

Let us consider an m-dimensional regular statistical model M =

ίq(x*u)}, which is imbedded in S = ίp(x,θ)} by

q(x,u) = p{x,θ(u)}.

Here, u = (u
a
) = (u ,...,u

m
) is a vector parameter specifying distributions of

M, and defines a coordinate system of M. We assume that θ = θ(u) is smooth and

its Jacobian matrix has a full rank. Moreover, it is assumed that M forms an

m-dimensional submanifold in S. We identify a point uεM with the point

θ = θ(u) imbedded in S. The tangent space T
u
(M) at u of M is spanned by m

vectors 3 . a = 1,..., m, where 3, = 3/3u
a
 denotes the tangent vector of thea a

coordinate curve u
a
 in M. The basis 3 can be represented by a function

a
3 £(x,u) in x as before, where £(x,u) = log q(x,u). Since M is imbedded in S,a

the tangent space T (M) of M is regarded as a subspace of the tangent space

T
Q
,x(S) of S at θ = θ(u). The basis vector 3

a
εT

u
(M) is written as a linear

combination of 3.,

3
a
 = B

a
( u )

V

where B] = 3θ
Ί
(u)/3u

a
. This can be understood from the relation

Hence, the tangential directions of M at u is represented by m vectors 9 ,
a

(a = 1,...,m) or B = (B
Ί
) in the component form with respect to the basis 3.

a a l

o f T
θ(u)<

S
>

It is convenient to define n - m vectors 3 , K = m + 1,...,n in

T , x(S) such that n vectors {3 ,3 }, a = 1,...,m; K = m + l,...,n, together
Ό\u) a K

form a basis of T / J S ) and moreover 3 's are orthogonal to 3 's, (Fig. 3),
σ\U) K α

9aκ
(u) = < 3

a ' V
 =
 °
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The v e c t o r s a s p a n t h e o r t h o g o n a l c o m p l e m e n t o f T (M) i n T , \ ( S ) . We d e n o t e
K U θ ̂ U)

the components of a with respect to the basis a. by a = B
Ί
(u)a.. The inner

K 1 K K 1

products of any two basis vectors in {a ,a } are given by
a K

Figure 3

9ab ( u ) = < 3 a ' V = BaBb gij '

- < 3 κ ' V " (2.4)

" W
The basis vector a may change in its direction as point u moves ina

M. The change is measured by the α-covariant derivative
α
'a of a in the

a a

direction a. , where the notion of a connection is necessary, because we need to

compare two vectors a and a
1
 belonging to different tangent spaces T / \(S) and

θ(uΓ

T
Λ
/ i \(S). The α-covariant derivative v^°θiu d

b

is calculated in S as

When the directions of the tangent space T (M) of M do not change as point u

moves in M, the manifold M is said to be α-flat in S, where the tangent direc-

tions are compared by the α-connection. Otherwise, M is curved in the sense of

the α-connection. The α-covariant derivative v, / a
a
 is decomposed into the

a
b
 a
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tangential component belonging to T (M) and the normal component perpendicular

to T (M). The former component represents the way 9 changes within T (M),u a u

while the latter represents the change of 9 in the directions perpendicular to
a

T (M), as u moves in M. The normal component is measured by

tl=<^
a)
\^>--(\i + <^)SX

Γ
 (2.5)

a

which is a tensor called the α-curvature of submanifold M in S. It is usually

called the imbedding curvature or Euler-Shouten curvature. This tensor repre-

sents how M is curved in S. A tensor is a multi-linear mapping from a number of

tangent vectors to the real set. In the present case, for A = A
a
9 εT (M)
a u

B = B 9.εT (M) and C = C
K
9 belonging to the orthogonal complement of T (M), we

have the multi-linear mapping hr ,H
( α )
(A,B,C) = H

(
^ A

a
B

b
C

κ
.

This Fτα' is the α-curvature tensor, and H\^' are i ts components. The sub-

manifold M is α-flat in S when H u = 0 holds. The m x m matrix
abK

h
M
 J
ab acK bdλ

g

α-curvature of M, v̂

matrix of g and g ,, respectively. Efron called the scalar

represents the square of the α-curvature of M, where g
κ
 and g are the inverse

the statistical curvature in a one-dimensional model M, which is the trace of

the square of the exponential- or 1-curvature of M in our terminology.

Let Θ = θ(t) be a curve in S parametrized by a scalar t. The curve

c: Θ = θ(t) forms a one-dimensional submanifold in S. The tangent vector 9. of

the curve is represented in the component form as

9
t
 = θ

i
(t)9

i

or shortly by θ, where denotes d/dt. When the direction of the tangent

vector 9. = Θ does not change along the curve in the sense of the α-connection,

the curve is called an α-geodesic. By choosing an appropriate parameter, an

α-geodesic θ(t) satisfies the geodesic equation
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v ( ^ θ = 0

or in the component form

θ
1
 + rf

J

G
^

Ί
θ

J
θ

k
 = 0 . (2.6)

2.3 Duality in α-flat manifold

Once an affine connection is defined in S, we can compare two

tangent vectors AεT
Q
 and A'εT , belonging to different tangent spaces T and

T
Λ
, by the following parallel displacement of a vector. Let c: θ = θ(t) be a
u

curve connecting two points θ and θ
1
. Let us consider a vector field A(t) =

A (t)a.εT ,.x defined on each point θ(t) on the curve. If the vector A(t) does

not change along the curve, i.e., the covariant derivative of A(t) in the

direction θ vanishes identically
v A(t) = A(t) + r

j k

Ί
Ά

k
(t)θ

d
 = 0 ,

the field A(t) is said to be a parallel vector field on c. Moreover,

A(t')εT
θ
,

tl
x at θ(t') is said to be a parallel displacement of

 A
(t)εT

Q
/

t
x at

θ(t). We can thus displace in parallel a vector AεT
n
 at θ to another point θ

1

along a curve θ(t) connecting θ and θ
1
, by making a vector field A(t) which

satisfies the differential equation v A(t) = 0, with the boundary conditions
Θ

θ = θ(0), θ
1
 = θ(l), and A(0) = AεT . The vector A

1
 = A(l)εT , at θ

1
 = θ(l) is

the parallel displacement of A from θ to θ
1
 along the curve c: θ = θ(t). We

denote it by A
1
 = π A. When the α-connection is used, we denote the α-parallel

displacement operator by τΛ
α
 . The parallel displacement of A from θ to θ

1
 in

general depends on the path c: θ(t) connecting θ and θ
1
. When this does not

depend on paths, the manifold is said to be flat. It is known that a manifold

is flat when, and only when, the Riemann-Christoffel curvature vanishes identi-

cally (see textbooks of differential geometry). A statistical manifold S is

said to be α-flat, when it is flat under the α-connection.

The parallel displacement does not in general preserve the inner

product, i.e., <π A,π B> = <A,B> does not necessarily hold. When a manifold has

two affine connections with corresponding parallel displacement operators π
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and π* and moreover when

<π A,π*B> = <A,B> (2.7)

holds, the two connections are said to be mutually dual. The two operators π

and π* are considered to be mutually adjoint. We have the following theorem

in this regard (Nagaoka and Amari (1982)).

Theorem 2.1. The α-connection and -α-connection are mutually dual.

When S is α-flat, it is also -α-flat.

When a manifold S is α-flat, there exists a coordinate system (θ
1
)

such that

7
ft

(α)
3. = 0 or rj^(θ) = 0

identically holds. In this case, a basis vector d. is the same at any point θ

in the sense that 3 εT
Λ
 is mapped to 3,.εT

Ql
 by the α-parallel displacement

I σ I t )

irrespective of the path connecting θ and θ
1
. Since all the coordinate curves

θ
Ί
 are α-geodesics in this case, θ is called an α-affine coordinate system. A

linear transformation of an α-affine coordinate system is also α-affine.

We give an example of a 1-flat (i.e., α = 1) manifold S. The

density functions of exponential family S = {p(x,θ)} can be written as

p(x,θ) = exp{θ
Ί
χ. - ψ(θ)}

with respect to an appropriate measure, where θ = (θ
Ί
) is called the natural or

canonical parameter. From

3.£(x,θ) = x
Ί
 - a.ψ(θ), a^.JiU.θ) = -3

Ί
 3jψ(θ) ,

we easily have

g
i j

( θ ) =
 V j

ψ ( θ ) > Γ
i j k

( θ ) =
 "TΓ

 9
i V k

ψ

Hence, the 1-connection r:./ vanishes identically in the natural parameter,

showing that θ gives a 1-affine coordinate system. A curve θ
Ί
(t) = a

Ί
t + b

1
,

which is linear in the θ-coordinates, is a 1-geodesic, and conversely.

Since an α-flat manifold is -α-flat, there exists a -α-flat coor-

dinate system n = (n^) = (n
1
»-...n

n
) in an α-flat manifold S. Let

3
Ί
 = 3/aη.j be the tangent vector of the coordinate curve n

Ί
 in the new coordin-
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ate system η. The vectors O
1
} form a basis of the tangent space T (i.e. at

T
n
 where θ = θ(η)) of S. When the two bases O } and {a

1
} of the tangent space

T satisfy
Θ

at ewery point θ (or η), where ό'? is the Kronecker delta (denoting the unit

matrix), the two coordinate systems θ and η are said to be mutually dual.

(Nagoaoka and Amari (1982)).

Theorem 2.2. When S is α-flat, there exists a pair of coordinate

systems θ = (θ
Ί
) and η = (η.) such that i) θ is α-affine and η is -α-affine,

ii) θ and η are mutually dual, iii) there exist potential functions ψ(θ) and

ψ(η) such that the metric tensors are derived by differentiation as

Λ a
j
> = a

Ί
'a

j
Φ(η) ,

where g. . and g
 ΊJ
 are mutually inverse matrices so that

holds, iv) the coordinates are connected by the Legendre transformation

θ
1
 = 9%(n), η

Ί
 = 3

Ί
.ψ(θ) (2.8)

where the potentials satisfy the identity

ψ(θ) + φ(η) - θ η = 0, (2.9)

where θ η = θ
Ί
η..

In the case of an exponential family S, ψ becomes the cumulant

generating function, the expectation parameter η = (η.)

is -1-affine, θ and η are mutually dual, and the dual potential ψ(η) is given

by the negative entropy,

φ(η) = E[log p] ,

where the expectation is taken with respect to the distribution specified by η.
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2.4 α-divergence and α-projection

We can introduce the notion of α-divergence D ( Θ , Θ ' ) in an α - f l a t

manifold S, which represents the degree of divergence from d i s t r i b u t i o n p(x,θ)

to p ( x , θ ' ) . I t is defined by

D
α
(θ,θ') = ψ(θ) + φ(η') - θ η' , (2.10)

where η
1
 = n(θ') are the η-coordinates of the point θ

1
, i.e., the -α-coordinates

of the distribution p(x,θ'). The α-divergence satisfies D (Θ,Θ') > 0 with the

equality when and only when θ = θ
1
. The -α-divergence satisfies D (Θ,Θ') =

D (θ',θ). When S is an exponential family, the -1-divergence is the Kullback-

Leibler information,

D^ίθ.θ ) = I[p(x,θ') : p(x,θ)] =Jp(x,θ)log g j ^ ^ dP.

As a preview of later discussion, we may also note that, when

S = ίp(x)} is the function space of a non-parametric statistical model, the

α-divergence is written as

D
α
{p(x),q(x)} = - 4 , (1 " [P(x)

θ
~

α ) / 2
 q ( x )

Π + α ) / 2
 dP)

1-α '

when α f ±1, and is the Kullback information or its dual when α = -1 or 1.

When θ and θ
1
 = θ + dθ are infinitesimally close,

D
α
(θ,θ + dθ) = 1 g

i
,(θ)dθ

1
dθ

J
 (2.11)

holds, so that it can be regarded as a generalization of a half of the square

of the Riemannian distance, although neither symmetry nor the triangular

inequality holds for D . However, the following Pythagorean theorem holds

(Efron (1978) in an exponential family, Nagaoka and Amari (1982) in a general

case).

Theorem 2.3. Let c be an α-geodesic connecting two points θ and

θ', and let c' be a -α-geodesic connecting two points θ
1
 and θ" in an α-flat

S. When the two curves c and c
1
 intersect at θ' with a right angle such that

θ, θ
1
 and θ" form a right triangle, the following Pythagorean relation holds,
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D
α
(θ,θ') + D

α
(θ\θ") = D

α
(θ,θ") . (2.12)

Let M = ίq(x,u)} be an m-dimensional submanifold imbedded in an

α-flat n-dimensional manifold S = ίp(x,θ)} by θ = θ(u). For a distribution

p(x,θ
o
)εS, we search for the distribution q(x,u)εM, which is the closest dis-

tribution in M to p(x,θ
Q
) in the sense of the α-divergence (Fig. 4a),

min D
α
{θ

0
,θ(u)} = D

α
{θ

Q
,θ(u)} .

uεM

We call the resulting u(θ
Q
) the α-approximation of p(x,θ

Q
) in M, assuming such

exists uniquely. It is important in many statistical problems to obtain the

α-approximation, especially the -1-approximation. Let c(u) be the α-geodesic

connecting a point θ(u)εM and θ
Q
, c(u) : θ = θ(t u), θ(u) = θ(0,u), θ

Q
 = θ(l,u)

(Fig. 4b). When the α-geodesic c(u) is orthogonal to M at θ(u), i.e.,

<θ(0;u)»9 > = 0a

where 3 = a/au
a
 are the basis vectors of T (M), we call the u the α-projection

a u

of θ
0
 on M. The existence and the uniqueness of the α-approximation and the

α-projection are in general guaranteed only locally. The following theorem was

first given by Amari (1982a) and by Nagaoka and Amari (1982) in more general

form.
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Figure 4

Theorem 2.4. The α-approximation u(θQ) of θQ in M is given by the

α-projection U(Θ'Q) of θQ on M.



3, HIGHER-ORDER ASYMPTOTIC THEORY OF STATISTICAL INFERENCE IN

CURVED EXPONENTIAL FAMILY

Ancillary family

Let S be an n-dimensional exponential family parametrized by the

natural parameter θ = (θ
Ί
) and let M = ίq(x,u)} be an m-dimensional family

parametrized by u = (u
a
), a = 1,..., m. M is said to be an (n,m)-curved expo-

nential family imbedded in S = {p(x,θ)} by θ = θ(u), when q(x,u) is written as

q(x,u) = exp[θ
1
(u)x

i
 - ψ{θ(u)}].

The geometrical structures of S and M can easily be calculated as follows. The

quantities in S in the θ-coordinate system are

τ
ijk

The quantities in M are

< 3
a ' V =

 B
a

B
b9ij '

T
abc "

 B
a

B
b

B
c

T
ijk ' B j - a ^ ί u ) .

Here, the basis vector 8 of T
M
(M) is a vector

a u
3
a "

 B
a

3
i

in T / \(S). If we use the expectation coordinate system η in S, M is repre-

sented by η = n(u). The components of the tangent vector a are given by

38
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B
ai

 =
 W

u
> "

 B
a9ji '

where : = B .9
1
, 8

1
 = 3/3η..

SI 1

Let Xji|,
 X
(2)'*"'

X
(N) ̂

e N
 independent observations from a distri-

bution q(x,» )εM. Then, their arithmetic mean

N
x = (Σ X/,x)/N

j=l
 [3)

is a minimal sufficient statistic. Since the joint distribution q(x,,x,...,

x,.,x; u) can be written as

N
 Ί

IT q(x/,x»u) = exp[N{θ (u)x. - ψίθ(u)}}],
j=l

 [3) Ί

the geometrical structure of M based on N observations is the same as that

based on one observation except for a constant factor N. We treat statistical

inference based on x. Since a point x in the sample space X can be identified

with a point η = x in S by using the expectation parameter η, the observed suf-

ficient statistic x defines a point η in S whose η-coordinates are given by x,

η = x. In other words, we regard x as the point (distribution) η in S whose

expectation parameter is just equal to x. Indeed, this η is the maximum likeli-

hood estimator in the exponential family S.

Let us attach an (n-m)-dimensional submanifold A(u) of S to each

point uεM, such that all the A(u)'s are disjoint (at least in some neighborhood

of M, which is called a tubular neighborhood) and the union of A(u)'s covers S

(at least the tubular neighborhood of M). This is called a (local) foliation of

S. Let v = (v
κ
), κ = m + l , . . . , n b e a coordinate system in A(u). We assume

that the pair (u,v) can be used as a coordinate system of the entire S (at

least in a neighborhood of M). Indeed, a pair (u,v) specifies a point in S such

that it is included in the A(u) attached to u and its position in A(u) is given

by v (see Fig. 5). Let η = η(u,v) be the η-coordinates of the point specified

by (u,v). This is the coordinate transformation of S from w = (u,v) to η,

where w = (u,v) = (w
3
) is an n-dimensional variable, β = 1,..., n, such that its

first m components are u = (u
a
) and the last n - m components are v = (v

κ
).
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Figure 5

Any point η (in some neighborhood of M) in S can be represented uniquely by

w = (u,v). We assume that A(u) includes the point η = η(u) on M and that the

origin v = 0 of A(u) is put at the point uεM. This implies that n(u,0) is the

point η(u)εM. We call A = {A(u)} an ancillary family of the model M.

In order to analyze the properties of a statistical inference

method, it is helpful to use the ancillary family which is naturally determined

by the inference method. For example, an estimator u can be regarded as a map-

ping from S to M such that it maps the observed point η = x in S determined by

the sufficient statistic x to a point u(x)εM. Its inverse image ΰ" (u) defines

an (n-m)-dimensional subspace A(u) attached to uεM,

A(u) = u"
Ί
(ll) = {ηεS I U(η) = U} .

Obviously, the estimator u takes the value u when and only when the observed x

is included in A(u). These A(u)'s form a family A = {A(u)} which we will call

the ancillary family associated with the estimator u. As will be shown soon,

large-sample properties of an estimator u are determined by the geometrical

features of the associated ancillary submanifolds A(u). Similarly, a test T

can be regarded as a mapping from S to the binary set {r,r}, where r and r

imply, respectively, rejection and acceptance of a null hypothesis. The
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inverse image T~^(r)<= S is called the critical region, and the hypothesis is

rejected when and only when the observed point η = xεS is in T (r). In order

to analyze the characteristics of a test, it is convenient to use an ancillary

family A = {A(u)} such that the critical region is composed of some of the

A(u)'s and the acceptance region is composed of the other A(u)'s. Such an

ancillary family is said to be associated with the test T.

In order to analyze the geometrical features of ancillary submani-

folds, let us use the new coordinate system w = (u,v). The tangent of the

R R
coordinate curve w is given by 3

O
 = 3/3w . The tangent space T (S) at point

p n

n = η(w) of S is spanned by {3
O
}, 3 = 1*..., n. They are decomposed into two

P

parts {3 } = {8, 9 }, 3 = 1,...» n; a = 1,..., m; K = m + l,...,n. The former
p a K

part 3 = 3/3u
a
 spans the tangent space T

M
(M) of M at u and the latter 3 =a U K

3/3v
κ
 spans the tangent space T (A) of A(u). Their components are given by

B
o

 = 3
o
r
i, (

w
)
 Ίn

 the basis 3
Ί
. They are decomposed as

pi P I

with B . = 3 η (u,v), B . = 8 η.(u,v). The metric tensor in the w-coordinate

system is given by

where

B
α
 =

The metric tensor is decomposed into three parts:

9ab
( u )
 =

 < 3
a ' V

 = B
a i

B
b j

g l J (3 2 )

is the metric tensor of M,

is the metric tensor of A(u), and

g^ = o
a
,3 > = B

a
,B .g

1j
 (3.4)

dK d K αi KJ

represents the angles between the tangent spaces of M and A(u). When g (u,0)
d K

= 0, M and A(u) are orthogonal to each other at M. The ancillary family
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A = {A(u)} is said to be orthogonal, when g (u) = 0, where f(u) is the abbre-

viation of f(u,0) when a quantity f(u,v) is evaluated on M, i.e., at v = 0.

We may treat an ancillary family A., which depends on the number N of observa-

tions. In this case g _ also depends on N. When g
a
 = <9 ,8 > is a quantity of

otp aic a K
-1 /2order N converging to 0 as N tends to i n f i n i t y , the ancillary family is

said to be asymptotically orthogonal.

The α-connection in the w-coordinate system is given by

where T = B
Ί
BgB T. .. . The M-part r v ' gives the components of the α-connec-

tion of M and the A-part r\' gives those of the α-connection of A(u). When A

is orthogonal, the α-curvatures of M and A(u) are given respectively by

μ
(α) _ (α)

 μ
(α) _ (α)

 (7
 r\

H
abκ "

 Γ
abκ '

 H
κλa "

 Γ
κλa "

 (3
'

6)

The quantities g
a
 (u), H\' and H \ ' are fundamental in evaluating asymptotic

3κ auK Kλa

properties of statistical inference procedures. When α = 1, the 1-connection is

called the exponential connection, and we use suffix (e) instead of (1). When

α = -1, the -1-connection is called the mixture connection, and we use suffix

(m) instead of (-1).

3.2 Edgeworth expansion

We study higher-order asymptotic properties of various statistics

with the help of Edgeworth expansions. To this end, let us express the point

n = x defined by the observed sufficient statistic in the w-coordinate system.

The w-coordinates w = (u,v) are obtained by solving

X = η(w) = η(u,v) . (3.7)

The sufficient statistic x is thus decomposed into two parts (u,v) which to-

gether are also sufficient. When the ancillary family A is associated with an

estimator or a test, u gives the estimated value or the test statistic,
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respectively. We calculate the Edgeworth expansion of the joint distribution of

(u,v) in geometrical terms. Here, it is necessary further to assume a condition

which guarantees the Edgeworth expansion. We assume that Cramer's condition is

satisfied. See, for example, Bhattacharya and Ghosh (1978).

When UQ is the true parameter of distribution, x converges to η(u
Ω
,

0) in probability as the number N of observations tends to infinity, so that the

random variable w also converges to w
Q
 = (UQ,0). Let us put

% = ΛϊίX - η(u
o
,O)} , fif = ΛT(W - W Q ) ,

u = ΛΓ(u - u
0
) , v = y f v , (3.8)

Then, by expanding (3.7), we can express w in the power series of x. We can

obtain the Edgeworth expansion of the distribution P(W UQ) of w = (u,v). How-

ever, it is simpler to obtain the distribution of the one-step bias-corrected

version w* of w defined by

w w
 "

where E denotes the expectation with respect to p(x,w). The distribution of w
w

is obtained easily from that of w*. (See Amari and Kumon (1983).)

Theorem 3.1. The Edgeworth expansion of the probability density

p(w*,u
Q
) of w*, where q(x,u

Q
) is the underlying true distribution, is given by

p(w*,u
Q
) = n(Sί*;g

α3
){l

 +
 J - K ^ h " *

 +
 1 A ^ )

 +
 O ^

3
'

2
) } ,

6 / N
 (3.9)

N 4
 C
α3

h +
 24

 K
α3γδ

h +
 72

 K
αβγ

K
δεφ

h

where n(w*;g _) is the multivariate normal density with mean 0 and covariance
otp

q
α
^ = (g )"'

5
 h

α
^

Ύ
 etc. are the tensorial Hermite polynomials in w* and

K
αβγ

 6
 αβγ

C
2 _ (m) (m) γείσ .

C
αβ "

 Γ
γδα

 Γ
εσg

 9 9
 '

 e t C
"

The tensorial Hermite polynomials in w with metric g
α β
 are defined

by
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where D
α
 = g

α β
(3/3w

β
), cf. Amari and Kumon (1983), McCullagh (1984). Hence,

h° = 1, h° = w
α
, h

α β
 = w

α
w

β
 - g

α β
 ,

i_otβΎ α β Ύ ccβ Ύ αΎ β 6 Ύ ot .

h = w w w - g w - g w - g w , e t c .

Theorem 3.1 shows the Edgeworth expansion up to order N of the

joint distribution of u* and v*, which together carry the full Fisher informa-

tion. The marginal distribution can easily be obtained by integration.

Theorem 3.2. When the ancillary family is orthogonal, i.e., g
a κ
(u)

= 0, the distribution p(u*,u
Q
) of u* is given by

p(u*,u
0
) = n(u*;g

ab
){l + J N-

1 / 2
K

a b (
.h

a b c

+ rf\(u*)} + 0(N'
3 / 2

) , (3.10)

w h e r e K
abc

= τ
 c
L

h β b

+ terms common to all the orthogonal ancillary families,

C
ab = (^4

 +
 2^4

 + (
Φab

f
Γ

m
)

2
 =

 Γ
(m)

Γ
(m) ce df

[T ;
ab cda efb

 g 9
 '

,
μ
ex2 _

 μ
(e)

 μ
(e) cd Kλ

( H
M

}
ab "

 H
acκ

 H
bdλ

 g g
 '

^ - u(m) μ(m)
 n

κ λ
n

v
^

A
]
ab "

 H
κva

 H
λμb

 g g

3.3 Higher-order efficiency of estimation

Given an estimator u : S-»M which maps the observed point ή = xεS to

Q(x)εM, we can construct the ancillary family A = {A(u)} by

A(u) = u"
Ί
(u) = {ηεS I U(η) = U} .

The A(u) includes the point η(u) = n(u,0), when and only when the estimator is

consistent. (We may treat a case when A(u) depends on N, denoting an ancillary
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family by A-Ju). In this case, an estimator is consistent if lim A
N
(u)-*η(u,0).)

Let us expand the covariance of the estimation error u = /N(u - u
0
) as

cov[ΰ\ΰ
b
] = gf

 +
 g i V

/ 2

 +
 g j V + 0(N"

3/2
) .

A consistent estimator is said to be first-order efficient or simply efficient,

when its first-order term g* (u) is minimal among all the consistent estimators

at any u, where the minimality is in the sense of positive semidefiniteness of

matrices. The second- and third-order efficiency is defined similarly.

Since the first-order term g^ is given from (3.9) by

g
?
 = ( g

ab "
 g
a κ

g
b λ

g K λ )
" >

the minimality is attained, when and only when g = 0, i.e., the associated

ancillary family is orthogonal. From this and Theorem 3.2, we have the follow-

ing results.

Theorem 3.3. A consistent estimator is first-order efficient, iff

the associated ancillary family is orthogonal. An efficient estimator is always

second-order efficient, because of g
2
 = 0.

There exist no third-order efficient estimators in the sense that

g~ (u) is minimal at all u. This can be checked from the fact that g^ includes

a term linear in the derivative of the mixture curvature of A(u), see Amari

(1985). However, if we calculate the covariance of the bias-corrected version

u* = u - E-[u] of an efficient estimator u, we see that there exists the third-

order efficient estimator among the class of all the bias-corrected efficient

estimators. To state the result, let g
3 a b
 = g^ 9

c a
9

b d
 be the lower index

_r abversion of g~ .

Theorem 3.4. The third-order term g~ . of the covariance of a bias-

corrected efficient estimator u* is given by the sum of the three non-negative

geometric quantities

" \ ̂ a b
 +
 (

H
M>ab

 +
 \ <ΐ>.

2
b
 (3 12)
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The first is the square of mixture connection components of M, and depends on

the parametrization of M but is common to all the estimators. The second is

the square of the exponential curvature of M, which does not depend on the

estimator. The third is the square of the mixture curvature of the ancillary

submanifold A(u) at n(u), which depends on the estimator. An efficient estima-

tor is third-order efficient, when and only when the associated ancillary family

is mixture-flat at η(u). The m.l.e. is third-order efficient, because it is

given by the mixture-projection of ή to M.

The Edgeworth expansion (3.10) tells more about the characteristics

of an efficient estimator u*. When FT™' vanishes, an estimator is shown to be

mostly concentrated around the true parameter u and is third-order optimal

under a symmetric unimodal loss function. The effect of the manner of paramet-

rizing M is also clear from (3.10). The α-normal coordinate system (parameter)

in which the components of the α-connection become zero at a fixed point is \/ery

important (cf. Hougaard, 1983; Kass, 1984).

3.4 Higher-order efficiency of tests

Let us consider a test T of a null hypothesis H
Q
 : uεD against the

alternative H . : u^D in an (n,m)-curved exponential family, where D is a region

or a submanifold in M. Let R be a critical region of test T such that the

hypothesis H
π
 is rejected when and only when the observed point n = x belongs to

R. When T has a test statistic λ(x), the equation λ(η) = const, gives the

boundary of the critical region R. The power function Py(u) of the test T at

point u is given by

P
τ
(u) = I P(x u) dx >

where p(x u) is the density function of x when the true parameter is u.

Given a test T, we can compose an ancillary family A = {A(u)> such

that the critical region R is given by the union of some of A(u)'s, i.e., it

can be written as

R
 "
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where R^ is a subset of M. Then, when we decompose the observed statistic

n = x into (u,v) by x = η(u,v) in terms of the related w-coordinates, the hypo-

thesis H
Q
 is rejected when and only when ΰεR^. Hence, the test statistics λ(x)

is a function of only u. Since we have already obtained the Edgeworth expansion

of the joint distribution of (u,v) or of (u*,v*), we can analyze the character-

istics of a test in terms of geometry of associated A(u)'s.

We first consider the case where M = ίq(x,u)} is one-dimensional,

so that u = (u
a
) is a scalar parameter, indices a, b, etc becoming equal to 1.

We test the null hypothesis H
Q
 : u = u

Q
 against the alternative H . : u f u« ,

Let u. be a point which approaches u
Q
 as N tends to infinity by

u
t
 = u

Q
 + t(Ng)~

Ί / 2
 , (3.13)

-1/2i.e., the point whose Riemannian distance from u
Q
 is approximately tN ' ,

where g = g
 k
( u

n
) . The power P

τ
(u.,N) of a test T at u. is expanded asaD u 1 x, L

P
τ
(u

t
,N) = P

τ l
(t) + P

T 2
(t)N"

1 / 2
 + P

τ3
(t)fΓ

Ί
 + 0(N"

3 / 2
) .

A test T is said to be first-order uniformly efficient or, simply, efficient,

if the first-order term P
τ l
(t) satisfies Pj-j(t) > P-p-.(t) at all t, compared

with any other test T
1
 of the same level. The second- and third-order uniform

efficiency is defined

P
τ
(u

t
,N)'s defined by

efficiency is defined similarly. Let P(u.,N) be the envelope power function of

P(u
t
,N) = sup P

τ
(u

t
,N) . (3.14)

Let us expand it as

P(u
t
,N) = P

Ί
(t) + P

2
(t)N"

1 / 2
 + P

3
(t)N"

1
 + 0(N"

3 / 2
) .

It is clear that a test T is i-th order uniformly efficient, iff

P
τ k
(t) = P

k
(t)

holds at any t for k = l,...,i.

An ancillary family A = {A(u)} in this case consists of (n-1)-

dimensional submanifolds A(u) attached to each u or η(u)εM. The critical

region R is bounded by one of the ancillary submanifolds, say A(u
+
), in the
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one-sided case, and by two submanifolds A(u
+
) and A(u_) in the two-sided unbias-

ed case. The asymptotic behavior of a test T is determined by the geometric

features of the boundary 8R, i.e., A(u
+
)[and A(u_)]. In particular, the angle

between M and A(u) is important. The angle is given by the inner product

9
a
 (u) = <9 ,3 > of the tangent d of M and tangents 9 of A(u). When g (u) =a < a κ a K a K

0 for all u, A is orthogonal. In the case of a test, the critical region and

hence the associated ancillary A and g (u) depend on N. An ancillary family is

-1 /2said to be asymptotically orthogonal, when g (u) is of order N . We can
aK

assume g
a
 (u

n
) = 0, and g

a
 (u.) can be expanded as

aK u 3κ L

where Q . = a g. (u
Q
). The quantity Q . represents the direction and the

magnitude of inclination of A(u) from being exactly orthogonal to M. We can

now state the asymptotic properties of a test in geometrical terms (Kumon and

Amari (1983), (1985)).

Theorem 3.5. A test T is first-order uniformly efficient, iff the

associated ancillary family A is asymptotically orthogonal. A first-order

uniformly efficient test is second-order uniformly efficient.

Unfortunately, there exist no third-order uniformly efficient test

(unless the model M is exponential family). An efficient test T is said to be

third-order t
Q
-efficient, when its third-order power P-ro(t) is minimal among

all the other efficient tests at t
Q
, i.e., when P J O U Q ) = P Q U Q ) *

 anc
* when

there exist no tests T
1
 satisfying Pχι

3
(t) > PyoU) for all t. An efficient

test is third-order admissible, when it is t
β
 - efficient at some t

Q
. We define

the third-order power loss function (deficiency function) ΔP
τ
(t) of an efficient

test T by

P
τ
(t) = lim N{P(u

t
,N) - P

τ
(u

t
,N)} = P

3
(t) - P^ίt) . (3.16)

It characterizes the behaviors of an efficient test T. The power loss function

can be explicitly given in geometrical terms of the associated ancillary A

(Kumon and Amari (1983), Amari (1983a)).
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Theorem 3.6. An efficient test T is third-order admissible, only

when the mixture curvature of A(u) vanishes as N-*» and the A(u) is not exactly

orthogonal to M but asymptotically orthogonal to compensate the exponential
(p\

curvature H
v
. ' of model M such that

Q . = c H ^ (3.17)
abK ab<

holds for some constant c. The third-order power loss function is then given by

ΔP
τ
(t) = a.(t,α){c - J

Ί
.(t,α)}

2
γ

2
 , (3.18)

where a.(t,α) is some fixed function of t and α,α being the level of the test,

γ
2
 = α

κ λ
hΓ

e
) H^

e
) α

a c
α ^ Π 19}

is the square of the exponential curvature (Efron's curvature) of M, and

J
Ί
(t,α) = 1 - t/{2u, (α)},

J
2
(t,α) = 1 - t/[2u

2
(α)tanh{tu

2
(α)}],

i = 1 for the one-sided case and i = 2 for two-sided case, n being the standard

normal density function, and u^(α) and u
2
(α) being the one-sided and two-sided

100α% points of the normal density, respectively.

The theorem shows that a third-order admissible test is character-

ized by its c value. It is interesting that the third-order power loss function
2

(3.18) depends on the model M only through the statistical curvature γ , so that
2

ΔPj(t)/γ gives a universal power loss curve common to all the statistical

models. It depends only on the value of c. Various widely used tests will next

be shown to be third-order admissible, so that they are characterized by c

values as follows.

Theorem 3.7. The test based on the maximum likelihood estimator

(e.g. Wald test) is characterized by c = 0. The likelihood ratio test is char-

acterized by c = 1/2. The locally most powerful test is characterized by c = 1
2

in the one-sided case and c = 1 - l/{2u
2
(α)} in the two-sided case. The con-

ditional test conditioned on the approximate ancillary statistic a =
 H
lκ

is characterized also by c = 1/2. The efficient-score test is characterized by
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c = 1, and is inadmissible in the two-sided case.

We show the universal third-order power loss functions of various

tests in Fig. 6 in the two-sided case and in Fig. 7 in the one-sided case,

where α = 0.05 (from Amari (1983a)). It is shown that the likelihood ratio test

has fairly good performances throughout a wide range of t, while the locally

most powerful test behaves badly when t > 2. The m.l.e. test is good at around

t = 3^4.

We can generalize the present theory to the multi-parameter cases

with and without nuisance parameters. It is interesting that none of the

above tests are third-order admissible in the multi-parameter case. However, it

is easy to modify a test to get a third-order t^-efficient test by the use of

the asymptotic ancillary statistic a (Kumon and Amari, 1985). We can also

design the third-order t
Q
-most-powerful confidence region estimators and the

third-order minimal size confidence region estimators.

It is also possible to extend the present results of estimation and

testing in a statistical model with nuisance parameter ξ. In this case, a set

M(UQ) of distributions in which the parameter of interest takes a fixed value

u
fi
, but ξ takes arbitrary values, forms a submanifold. The mixture curvature

and the exponential twister curvature of M(u
Q
) are responsible for the higher-

order characteristics of statistical inference. The third-order admissibility

of the likelihood ratio test and others is again proved. See Amari (1985).
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N4Pτ(t)/r d = 0.05 -two- sided tests

o.s

efficient score test

locally most powerful test

m.l.e. test

likelihood ratio test

Figure 6

NΛPτ(t)/Γ = 0.05 Ohe-sided t βts

score test
(locally most porfffuf test)

m.l.e. test

likelihood ratio test

Figure 7



4. INFORMATION, SUFFICIENCY AND ANCILLARITY

HIGHER ORDER THEORY

Information and conditional information

Given a statistical model M = ίp(x,u)}, u = (u
a
), we can follow

Fisher and define the amount 9
a
k(T) of information included in a statistic

T = t(x) by

g
a b
(T) = E[8

a
*(t,u)8

b
£(t,u)] , (4.1)

where £(t,u) is the logarithm of the density function of t when the true para-

meter is u. The information g
at)
(T) is a positive-semidefinite matrix depending

on u. Obviously, for the statistic X, g
a b
(X) is the Fisher information matrix.

Let T(X) and S(X) be two statistics. We similarly define, by using the joint

distribution of T and S, the amount g
 b
(T,S) of information which T and S to-

gether carry. The additivity

9ab(
T
'
S
> " W

T
>
 +
 h b ^

does not hold except when T and S are independent. We define the amount of

conditional information carried by T when S is known by

g
ab
(T|S) = E

s
E

T
|

$
[8

a
£(t|s,u)a

b
£(t|s,u)] , (4.2)

where £(t|s,u) is the logarithm of the conditional density function of T con-

ditioned on S. Then, the following relation holds,

9ab
( T
'

S ) =
 9ab

( T ) +
 9ab

(S
l

T
> = 9

a
b

( S ) +
 9ab

( T
l

S )

From g
a
b(S|"O

 =
 9

a
b^

T
'

δ
) "

 g
ab^

T
^'

 w e s e e t h a t t h e conc
*itional information

denotes the amount of loss of information when we discard s from a pair of

statistics s and t, keeping only t. Especially,

52
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is the amount of loss of information when we keep only t(x) instead of keeping

the original x. The following relation is useful for calculation,

Δg
a b
(T) = E

τ
Cov[3

a
<ι(x,u),3

b
s,(x,u)|t] , (4.4)

W
S
I

T
> = W

1
) - 9

ab
(T S) . (4.5)

where Cov[.|t] is the conditional covariance.

A statistic S is sufficient, when 9
a b
(S) = 9

a b
W or Δg

a b
(S) = 0.

When S is sufficient, 9
a b
("Π

s
)
 =
 ° holds for any statistic T. A statistic a is

ancillary, when 9
a b
(A) = 0. When A is ancillary, 9

a b
(T

5
A) = 9

a b
(

τ
l

A
)
 f o r a n

y
 τ

It is interesting that, although A itself has no information, A together with

another statistic T recovers the amount

of information. An ancillary statistic carries some information in this sense,

and this is the reason why an ancillarity is important in statistical inference.

We call g . (A|T) the amount of information of ancillary A relative to statistic

T.

When N independent observations x,,...,x
N
 are available, the Fisher

information 9
ab
(X ) is Ng

a b
(X), N times that of one observation. When M is a

curved exponential family, x = ΣX./N is a sufficient statistic, keeping the

whole information, g . (X) = Ng
 b
(X) Let t(x) be a statistic which is a func-

tion of x. It is said to be asymptotically sufficient of order q, when

Δ
9ab

{ T ) =
 9 a b W - 9 a b

( T
>
 = 0 ( N

'
q + 1

> ^

Similarly, a statistic t(x) is said to be asymptotically ancillary of order q,

when

g
a b
(τ) = o(N-

q
) (4.7)

holds. (The definition of the order in the present article is different from

that by Cox (1980) etc.)
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4.2 Asymptotic efficiency and anciΠarity

Given a consistent estimator u(x) in an (n,m)-curved exponential

family M, we can construct the associated ancillary family A. By introducing

an adequate coordinate system v in each A(u), the sufficient statistic x is de-

composed into two statistics (u,v) by x = η(u,v). The amount Δg .(U) of inform-

ation loss of estimator u is calculated from (4.4) by using the stochastic ex-

pansion of 3 £(x,u) asa
-Kλ

Hence, when and only when A is orthogonal, i.e., g (u) = 0, u is first-order
aK

sufficient. In this case, u is (first-order) efficient. The loss of informa-

tion of an efficient estimator u is calculated as
Δ W ΰ > = <<)fb + 0 / 2 ) 0 5 4 t o i i r 1 ) ' (4 8>

where (H^) is the square of the exponential curvature of the model M and (H^)

is the square of the mixture curvature of the associated ancillary family A at

v = 0. Hence, the loss of information is minimized uniformly in u, iff the

mixture curvature of the associated ancillary family A(u) vanishes at v = 0 for

all u. In this case, the estimator u is third-order efficient in the sense of

the covariance in §3. The m.l.e. is such a higher-order efficient estimator.

Among all third-order efficient estimators, does there exist one

whose loss of information is minimal at all u up to the term of order N~ ? Is

the m.l.e. such a one? This problem is related to the asymptotic efficiency of

estimators of order higher than three. By using the Edgeworth expansion (3.9)

and the stochastic expansion of 3
a
£(x,u), we can calculate the terms, which
a

depend on the estimator, of the information loss of order N~ in geometrical

terms of the related ancillary family. The loss of order N~ includes a term

related to the derivatives of the mixture curvature H\l of A in the direction
Kλa

of a and 3 (unpublished note). From this formula, one can conclude that
μ a

there exist no estimators whose loss Δg
a b
(U) of information is minimal up to

the term of order N~ at all u among all other estimators. Hence, the loss of

information of the m.l.e. is not uniformly minimal at all u, when the loss is
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evaluated up to the term of order N~ .

We have already obtained the Edgeworth expansion up to order N~ of

the joi.'t distribution of (u,v), or equivalently (u*,v*) in (3.9). By integra-

tion, we have the distribution of v*,

p(v*;u) = n(v*;g
κλ
){l + 1 /N K

κ λ μ
h

κ λ μ
 + OCN"

1
)), (4.9)

where g ,(u) and K (u) depend on the coordinate system v introduced to each
K Λ K Λy

A(u). The information g u(V*) of v* can be calculated from this. It depends on

the coordinate system v, too. It is always possible to choose a coordinate

system v in each A(u) such that {d } is an orthonormal system at v = 0, i.e.,

g (u) = 6 . Then, v* is first-order ancillary. It is always possible to
K λ KΛ

choose such a coordinate system that K (u) = 0 further holds at v = 0 in eyery

A(u). This coordinate system is indeed given by the (α = - l/3)-normal coor-

dinate system at v = 0. The v* is second-order ancillary in this coordinate

system. By evaluating the term of order N" in (4.9), we can prove that there

exists in general no third-order ancillary v.

However, Skovgaard (1985), by using the method of Chernoff (1949),

showed that one can always construct an ancillary v of order q for any q by

modifying v successively. The q-th order ancillary v i s a function of x

depending on N. Hence, our previous result implies only that one cannot in

general construct the third-order ancillary by using a function of x not depend-

ing on N, or by relying on an ancillary family A = {A(u)} not depending on N.

There is no reason to stick to an ancillary family not depending on N, as

Skovgaard argued.

4.3 Decomposition of information

Since (u,v) together are sufficient, the information lost by sum-

marizing x into u is recovered by knowing the ancillary v. The amount of

recovered information g
 b
(V|U) is equal to Δg

a b
(U). Obviously, the amount of

information of v relative to u does not depend on the coordinate system of A(u).

In order to recover the information of order 1 in
 Δ
9

a b
(U)> not all the compo-

nents of v are necessary. Some functions of v can recover the full information
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of order 1. Some other functions of v will recover the information of order N

and some others further will recover the information of order N . We can de-

compose the whole ancillary v into parts according to the order of the magnitude

of the amount of relative information.

The tangent space T (A) of the ancillary subspace A(u) associated

with an efficient estimator u is spanned by n - m vectors 3 . The ancillary v

can be regarded as a vector v = v
κ
a belonging to T (A). Now we decompose T (A)

as follows. Let us define

K
a a

 Ί = (v
ί

e)
'

 v
ί

e)
 K >' P

 > 2
 <

4
'

1 0
)

a
r
 a
p

 a
i V i

 a

P

which is a tensor representing the higher-order exponential curvature of the

model. When p = 2, it is nothing but the exponential curvature HI? , and when

p = 3, K .
 Ί
 represents the rate of change in the curvature π ? , and so on.

For fixed indices a,,...,a , K
 Ί

 is a vector in T (S), and its projection

to T (A) is given by

Let T
M
(A)_ (p > 2) be the subspace of T,,(A) spanned by vectors K ,
U p - U α-|d

o
κ

K ,...»K , and let P be the orthogonal projection from T (A) to

T
u
(A)

p
. We call

the p-th order exponential curvature tensor of the model M, where I = (I
κ
) is

the identity operator. The square of the p-th order curvature is defined by

,
μ
2xp _

 H
(e) n(e) α

κ λ

α

a i b i

 α
V l V l (Λ I( H

M
}
 ab "

 H
a a

Γ
..a

p
_

1
κ
 H
b b

Γ
. . b

p
_

l λ

 9 g
 "*

g
 "

 (4
*
1

fe)
There exists a finite p

n
 such that H

v ;

 a
 vanishes for p > p

n
.

0
 a

r
 a
p "

 ϋ

Now let us consider the following sequence of statistics,

T, = {G}, T = H^
e
] (G)v

κ

5
... .

Moreover, let t = d £,(x,u), which vanishes if u is the m.l.e. Obviously, the
a a

sequence T
9
, T

ς
, ... gives a decomposition of the ancillary statistic v = (v

κ
)
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into the higher-order curvature directions of M. Let

V V τ2 = « . W τp = {τp-rT

P

}

Then, we have the following theorems (see Amari (1985)).

Theorem 4.1. The set of statistics τ is as

of order p. The statistic T carries information of order p relative to τ

Theorem 4.1. The set of statistics τ is asymptotically sufficient

f order p relative to ,,

(4 13)

Theorem 4.2. The Fisher information g
a b
(X) = Ng . (X) is decomposed

into

<W*> " p£l

The theorems imply the following. An efficient estimator u carries

all the information of order N. The ancillary v, which together with u carries

the remaining smaller-order information, is decomposed into the sum of p-th

order curvature-direction components a
 a

 = H*
e
' v

κ
, which carries all

α-ι . . . a d
Ί
 . . . a,κ

-D+2
 ]
 ?

 ] p

the missing information of order N
 κ
 relative to τ ,. The proof is obtained

by expanding 3 £(x,u), where ΰ = u - u, asa

3 *(x,u) = 9 £(X,U) + 5 ^- 3 3 3 £(x,u)ΰ
a
l ...ΰ

 P

α a p— i p i a α i . . . a

and by c a l c u l a t i n g g k ( T Iτ Ά ) . The i n f o r m a t i o n c a r r i e d by 3 a 3 a & ( x , u )
αD p p— I a α-ι ... α

is equivalent to (3 B
 a

 Ί
)B .v

κ
 or hΓ

e
^
 a

 v
κ
 relative to τ , up to the

a dη u K I αα-| . . α κ P~ '

necessary order.

4.4. Conditional inference

When there exists an exact ancillary statistic a, the conditionality

principle requires that statistical inference should be done by conditioning on

a. However, there exist no non-trivial ancillary statistics in many problems.

Instead, there exists an asymptotically ancillary statistic v, which can be

refined to be higher-order ancillary. The asymptotic ancillary statistic car-

ries information of order 1, and is very useful in improving higher-order

characteristics of statistical inference. For example, the conditional covari-

ance of an efficient estimator is evaluated by
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N Cov[u
a
,u

b
|v] = (g

a b
 + H ^ V ) "

1
 + higher order terms ,

where g . + Hjv'v
κ
 = - 3 a,£(x,u) is the observed Fisher information. When two

groups of independent observations are obtained, we cannot get a third-order

efficient estimator for the entire set of observations by combining only the two

third-order efficient estimators u, and iL for the respective samples. If we

can use the asymptotic ancillaries H jj^v* and H ^ v ^ , we can calculate the

third-order efficient estimator (see Chap. 5). Moreover, the ancillary H^^v

can be used to change the characteristics of an efficient test and of an

efficient interval estimator. We can obtain the third-order t^-efficient test

or interval estimator by using the ancillary for any given t~. It is interest-

ing that the conditional test conditioned on the asymptotic ancillary v is

third-order admissible and its characteristic (deficiency curve) is the same as

that of the likelihood-ratio test (Kumon and Amari (1983)).

In the above discussions, it is not necessary to refine v to be a

higher-order asymptotic ancillary. The curvature-direction components H\
 y
v

are important, and the other components play no role. Hence, we may say that

H k v
κ
 is useful not because it is (higher-order) ancillary but because it re-

covers necessary information. It seems that we need a more fundamental study on

the invariant structures of a model to elucidate the conditionality principle

and ancillarity (see Kariya (1983), Barndorff-Mielsen, (1937).) There are

many interesting discussions in Efron and Hinkely (1978), Hinkley (1980), Cox

(1980), Barndorff-Nielsen (1980). See also Amari (1985).



5. FIBRE-BUNDLE THEORY OF STATISTICAL MODELS

Hiibert bundle of a statistical model

In order to treat general statistical models other then curved

exponential families, we need the notion of fibre bundle of a statistical model.

Let M = ίq(x,u)} be a general regular m-dimensional statistical model parametr-

ized by u - (u
a
). To each point uεM, we associate a linear space H consisting

of functions r(x) in x defined by

H
u
 = ίr(x)|E

u
[r(x)] = 0, E

u
[r

2
(x)]<~}, (5.1)

where E denotes the expectation with respect to the distribution q(x,u).

Intuitively, each element r(x)εH denotes a direction of deviation of the dis-

tribution q(x,u) as follows. Let εq(x) be a small disturbance of q(x,u), where

ε is a small constant, yielding another distribution q(x,u) + εq(x), which does

not necessarily belong to M. Here, q(x)dP = 0 should be satisfied. The

logarithm is written as

log{q(x,u) + εq(x)} = *(x,u) + ε

where £(x,u) = log q(x,u). If we put

it satisfies E
u
[r(x)] = 0. Hence, r(x)εH

u
 denotes the deviation of q(x,u) in

the direction q(x) = r(x)q(x,u). The condition E
u
[r ]<« implies that we con-

sider only deviations having a second moment. (Note that given r(x)εH
u
, the

function

q(x,u) + εr(x)q(x,u)

59



60 Shun-ichi Amari

does not necessarily represent a probability density function, because the

positivity condition

q(x,u) + εr(x)q(x,u) > 0

might be broken for ±ε even when ε is an infinitesimaΠy small constant.)

We can introduce an inner product in the linear space H
u
 by

<r(x),s(x)> = E
u
[r(x)s(x)]

for r(x), s(x)εH . Thus, H is a Hubert space. Since the tangent vectors

M ( x > u ) , which span T
M
(M), satisfy E[a £] = 0, E[(8 £)

2
] = g

aa
(u)<~, they belong

α U a. a O.O.

to H . Indeed, the tangent space T (M) of M at u is a linear subspace of H ,

and the inner product defined in T is compatible with that in H . Let N be

the orthogonal complement of T in H
u
 Then, H

u
 is decomposed into the direct

sum

H
u •

 T
u

 + N
u

The aggregate of all H 's attached to eyery uεM with a suitable

topology,

H(M) =
 U
U

M
 H

u
 . (5.2)

is called the fibre bundle with base space M and fibre space H. Since the fibre

space is a Hubert space, it is called a Hubert bundle of M. It should be

noted that H and H , are different Hubert spaces when u f u
1
. Hence, it is

convenient to establish a one-to-one correspondence between H and H ,, when u

and u
1
 are neighboring points in M. When the correspondence is affine, it is

called an affine connection. Let us assume that a vector r(x)εH at u corres-

ponds to r(x) + dr(x)εH
 +
. at a neighboring point u + du, where d denotes

infinitesimaΠy small change. From

E
u + ( J u

[r(x) + dr(x)] = j{q(x,u) + dq(x,u)Mr(x) + dr(x)}dP

= E
u
[r] + E

u
[dr(x) + a

a
*(x,u)r(x)du

a
] = 0

and E [r] = 0, we see that dr(x) must satisfy

EΓdr] = - E[3_AΓ] du
a
 ,

u α

where we neglected higher-order terms. This leads us to the following defini-
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tion of the α-connection: When dr(x) is given by

dr(x) = - ψ E[3a£r] dua - λ-ψ s^rdu* , (5.3)

the correspondence is called the α-connection. More formally, the α-connection

is given by the following α-covariant derivative v^
α
'. Let r(x,u) be a vector

field, which attaches a vector r(x,u) to ewery point uεM. Then, the rate of

the intrinsic change of the vector r(x,u) as u changes in the direction 3 is

a
given by the α-covariant derivative,

where E[3 &r] = - E[3^r] is used. The α-covariant derivative in the directiona a

A = A
a
3

a
εT

u
(M) is given by

> )
Γ = A

a
v
( « )

Γ m
A 9

a

The 1-connection is called the exponential connection, and the -1-connection is

called the mixture connection.

When we attach the tangent space T (M) to each point uεM instead of

attaching the Hubert space H , we have a smaller aggregate

KM) =
 U
U

M
 T

u
(M) .

which is a subset of H_ called the tangent bundle of M. We can define an affine

connection in 1(M) by introducing an affine correspondence between neighboring

T and T ,. When an affine connection is given in H(M) such that rεH, corres-u u — u

ponds to r + drεH
 +
. , it naturally induces an affine connection in J(M) such

that rεT (M)CH corresponds to the orthogonal projection of r + drεH
u + d u

 to

T +H (M). It can easily be shown that the geometry of M is indeed that of J(M),

so that the α-connection of χ(M) or M, which we have defined in Chapter 2, is

exactly the one which the present α-connection of H_(M) naturally induces.

Hence, the α-geometry of H_(M) is a natural extension of that of M.

Let u = u(t) be a curve in M. A vector field
 r
(

χ
'

t
)

ε H

u
(t)

 d e f i n e d

along the curve is said to be α-parallel, when

v
( ° )

r
 =

 r
 . ̂ E

u
[ r ]

 +
^ r i = 0 (5.5)
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is satisfied, where r denotes ar/at, etc. A vector r..(χ)
ε
H is the α-parallel

shift of r
n
(x)εH along a curve u(t) connecting u

n
 = u(t

n
) and u

Ί
 = u(t

Ί
), when

U UΛ U U I I

r
n(

χ
) = r(x,t

Q
) and r,(x) = r(x,t-.) in the solution r(x,t) of (5.5).

The parallel shift of a vector r(x) from u to u
1
 in general depends

on the curve u(t) along which the parallel shift takes place. When and only

when the curvature of the connection vanishes, the shift is defined independent-

ly of the curve connecting u and u
1
. We can prove that the curvature of h[(M)

always vanishes for α = ±1 connections, so that the e-parallel shift (α = 1) and

the m-paraΠel shift (α = - 1) can be performed from a point u to another point

u
1
 independently of the curve. Let ̂ π

U
 and ̂

m
'π

U
 be the e- and m-parallel

shift operators from u to u'. Then, we can prove the following important

theorem.

Theorem 5.1. The exponential and mixture connections of h[(M) are

curvature-free. Their parallel shift operators are given, respectively, by
( e )

/ r ( x ) = r(x) - E
u
,[r(x)] , (5.6)

. (5.7)

The e- and m-connections are dual in the sense of

<r,s>
u
 = <^Λ . K / s

V
 .

where <.,.> is the inner product at u.

Proof. Let c: u(t) be a curve connecting two points u = u(0) and u
1
 = u(l).

Let r^(x,t) be an α-parallel vector define

satisfies (5.5). When α = 1, it reduces to

Let r^(x,t) be an α-parallel vector defined along the curve c. Then, it

Since the right-hand side does not depend x, the solution of this equation with

the initial condition r(x) = r'
e
'(x,0) is given by

r
( e )

(x,t) = r(x) + a(t) .

where a(t) is determined from

E
u ( t )

[r(
e
>(x,t)] = 0
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as

a(t) = - E
u ( t )

[r(x)] .

This yields (5.6), where we put u(t) = u
1
. Since E ,[r(x)] does not depend on

the path connecting u and u
1
, the exponential connection is curvature free.

Similarly, when α = -1, (5.5) reduces to

f
( m )

(x,t) + r
(m)
(x,t)£(x,u(t)) = 0 .

The solution is

r
(m)
(x,t)q(x,u(t)) = a(x) ,

which yields (5.7). This shows that the mixture connection is also curvature

free. The duality relation is directly checked from (5.6) and (5.7).

We have defined the imbedding α-curvature H ? of a curved exponen-

tial family. The concept of the imbedding curvature (which sometimes is called

the relative or Euler-Schouten curvature) can be defined for a general M as

N
follows. Let P be the projection operator of H to N which is the orthogonal

subspace of T (M) in H . Then, the imbedding α-curvature of M is a function in

x defined by

ab u 3
g
 b ' '

which is an element of N c H . The square of the α-curvature is given by

The scalar γ = 9 (
H
y| )

a b
 is the statistical curvature defined by Efron in the

one-dimensional case.

5.2. Exponential bundle

Given a statistical model M = {q(x,u)}, we define the following

elements in H ,

X — ~\ n I y ι i \
1 — " X> \ Λ , U / ,ιa a

λ 2ab V 3 a l b '

X = v ( α > X
A I V Λ1 ,

k a η . . . 3 ι . 3 a » k a ^ . . . a i ,
fα k̂

and attach to each point uεM the vector space T
v
 '

 J
 spanned by these vectors,
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where we assume that they are linearly independent. The aggregate

i
( α
'

k )
(M) =

 U ε

U

M
T

u

( α
'

k )
 (5.9)

with suitable topology is then called the α-tangent bundle of degree k of M.

All the α-tangent bundles of degree 1 are the same, and are merely the tangent

bundle J(M) of M. In the present paper, we treat only the exponential (i.e.,

α = 1) tangent bundle of degree 2, which we call the local exponential bundle

of degree 2, although it is immediate to generalize our results to the general

α-bundle of degree k. Note that when we replace the covariant derivative v^
α
'

by the partial derivative 3, we have the so-called jet bundle. Its structures

(9)
are the same as the exponential bundle, because v

v ;
 reduces to 3 in the

logarithm expression 3 £(x,u) of tangent vectors.

(1 2) (2)

The space T
 v
 ' , which we will also more briefly denote by r ',

is spanned by vectors X, and X
2
, where X-, consists of m vectors

X.(x,u) = 3 £(x,u), a = l,...,m
u α

and Xp consists of m(m + 1)/2 vectors
X

a b
(x,u) = v^

e )
3

b
 = 3

a
3

b
£(x,u) + g

a b
(u), a, b = l,...,m .

a
(See Fig. 8.) We often omit the indices a or a, b in the notation X or X . ,

(2)
briefly showing them as X j or X

2
 Since the space T^

 ;
 consists of all the

linear combinations of X-j and X
2
, it is written as

T<
2 )
 = {θ

Ί
'χ.(x,u)}

where the coefficients θ = ( θ
1
^

2
) consist of θ

1
 = (θ

a
), θ

2
 = (θ

a b
), and

ί2)The metric tensor of Γ| ' isThe

then

Here

set X
Ί

giver

forms

i by

denotes

a basis of

g
ij

 =

an m x m

9n

fl
]
X + Θ

2
X

the linear

<X
i
,X

j
> = E

ι

matrix

=
 < X

a '
X
b

>
 =

space Ί^

«
[ X
i

( x
'

u ) >

E[9 13
b
i]

l
K The π

:j(x.u)] .

1 = g
a b
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Figure 8

which is the metric tensor of the tangent space T (M) of M. The component

g21 = g12 r e P r e s e n t s

921 • W " <Xab'V = Γibc '

Similarly, g«o is a quantity having four indices

g
22

 = < X
ab

f X
cd

>
 '

The exponential connection can be introduced naturally in the local

exponential fibre bundle χ
v ;

(M) of degree 2 by the following principle:

1) The origin of T A corresponds to the point

X
Ί
du = X (x,u)du

a
εT

( 2 )

I a u

2) The basis vector X
η
 (x,u + du)εT

v

+
ί is mapped to T

v
 ' by 1-

(2)
parallely shifting it in the Hubert bundle h[ and then projecting it to Ί

κ
 .

(2) (2)
We thus have the affine correspondence of elements in T,

iX
^

M
 and T

v
 ',

X.(u + du) +-> X.(u) + dX. = X.(u) + H.X.(u)du
a
 ,

1 I I I αl J

i (2)
where τi are the coefficients of the exponential affine connection in T (M).

aj —

The coefficients are given from the above principle (2) by

Γ
al = °

 Γ
a1

 = δ
a

6
3'

 Γ
lz = 9

]5
E[^

Λ
^i(x,u)l . (5.10)

We remark again that the index i = 1 stands for a single index b, for example,

and i = 2 stands for a pair of indices, for example b, c.
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Let θ(u) = θ
Ί
(u)X

Ί
.(x,u)εT^ be a point in J^

2
\ We can shift the

(2) (2)
point θ(u)ε"Π ' to point θ(u')ε"Π, belonging to another point u

1
 along a curve

u = u(t). Since the point θ
Ί
 (u)X. (u)ε"Π ' corresponds to the point θ^u + du)

(2)
(X. + dX.) + X,duεT

v

+
{ , where dX. is determined from the affine connection and

the last term X,du corresponds to the change in the origin, we have the follow-

ing equation

θ
1
 + r\ θ

j
ύ

a
 + u V = 0 . (5.11)

aj a

whose solution θ(t) represents the corresponding point in T (i}> where θ
Ί
 =

ύ
a
a Θ

Ί
( U ) . Note that we are here talking about the parallel shift of a point in

affine spaces, and not about the parallel shift of a vector in linear spaces

where the origin is always fixed in the latter case.

(2)
Let u

1
 be a point close to u. Let θ(u' u) be the point in T

v
 '

in)

corresponding to the origin θ(u') = 0 of the affine space T ,'. The map depends

in general on the curve connecting u and u
1
. However, when |u' - u| is small,

the point Θ(U' U) is given by

θ^u' u) = δj(u'-u) + \ δj (u'-u)
2
 + 0(|u'-u|

3
) .

Hence, if we neglect the term of order |u'-u| , the map does not depend on the
route. In the component form,

θ
a
(u';u) = u'

a
-u

a

Θ
2
(u';u) = θ

bc
(u';u) = \ (u'

b
-u

b
)(u'

C
-u

C
) , (5.12)

where we neglected the term of order |u'-u| . Since the origin θ(u') = 0 of

(2)
T ,

;
 can be identified with the point u' (the distribution q(x,u')) in the model

M, this shows that, in the neighborhood of u, the model M is approximately re-

(2)presented in Γ
 ;
 as a paraboloid given by (5.12).

Let us consider the exponential family E = {p(x,θ;u)l depending

on u, whose density function is given by

p(x>θ;u) = q(x,u)exp{θ
Ί
X

Ί
 (x,u) - Ψ

u
(θ)} , (5.13)

ine

(2)

(2)
where θ is the natural parameter. We can identify the affine space "Π with

i (2)
the exponential family E

u
, by letting the point θ = θ X^εΓj ' represent the
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Figure 9

distribution p(x,θ;u)εE
u
 specified by Θ. We call E the local exponential

family approximating M at u. The aggregate

with suitable topology is called the fibre bundle of local exponential family of

degree 2 of M. The metric and connection maybe defined from the resulting identi-

fication of E!(M) with j} '(M). The distribution q(x,u) exactly corresponds to

the distribution p(x,0;u) in E
u
, i.e., the origin θ = 0 of E or V '. Hence,

the point θ = θ(u' u) which is the parallel shift of θ(u') = 0 at E ,, is the

counterpart in E of the q(x,u')εM, i.e., the distribution p{x,θ(u',u); u}εE

is an approximation in E of q(x,u')εM. For a fixed u, the distributions

\ = {q(x,u';u)} ,

q(x,u' u) = p{x,θ(u' u); u}

form an m-dimensional curved exponential family imbedded in E (Fig. 9). The

point of this construction is that M is approximated by a curved exponential

family M in the neighborhood of u. The tangent spaces T (M) of M and T (M )

of M exactly correspond at u, so that their metric structures are the same at

u. Moreover, the squares of the imbedding curvatures are the same for both M

and P(
u
 at u, because the curvature is obtained from the second covariant
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derivative of X, = 3 £. This suggests that we can solve statistical inference
i a

problems in the curved exponential family M instead of in M, provided u is suf-

ficiently close to the true parameter u
Q
.

5.3. Statistical inference in a local exponential family

Given N independent observations
 x
m » »

X
( N ) »

 w e c a n
 define the

observed point η(u)εE , for each u, by

1
 N

n.,.(u) = X.(u) = i jΣ
Ί
 X

i
(x

( j )
,u) . (5.14)

We consider estimators based on the statistics η(u). We temporarily fix a point

u, and approximate model M by M , which is a curved exponential family imbedded

in E . Let e be a mapping from E to M that maps the observed X(u)εE to the

estimated value e(u) in M when u is fixed, by denoting it as

e(u) = e{X(u);u} .

The estimated value depends on the point u at which M is approximated by M .

The estimator e defines the associated ancillary family A = {A (u
1
), u'εM }

for every u, where

A
u
(u') = e ' V u) = {ηεE

u
|e(η;u) = u

1
} .

When the fixed u is equal to the true parameter u
n
, M approximates M yery
υ u

Q

well in the neighborhood of u
n
 However, we do not know u

Q
. To get an estima-

tor u from e, let us consider the equation

e{X(u);u} = u .

The solution u of this equation is a statistic. It implies that, when M is

approximated at u, the value of the estimator e at EQ is exactly equal to u.

The characteristics of the estimator u associated with the estimator e in M are

given by the following geometrical theorems, which are direct extensions of the

theorems in the curved exponential family.

Theorem 5.2. An estimator u derived from e is first-order efficient

when the associated ancillary family A is orthogonal to M . A first-order

efficient estimator is second-order efficient.

Theorem 5.3. The third-order term of the covariance of a bias cor-

rected efficient estimator is given by
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_ 1
 f r
( m h 2 ί

H
(e),2 1 #

μ
(mh2

g
3ab " 2

 (Γ
 'ab

 + ( H
M >ab

 +
 2

 ( H
A

 ]
ab '

The bias corrected maximum likelihood estimator is third-order efficient,

because the associated ancillary family has vanishing mixture curvature.

The proof is obtained in the way sketched in the following. The

true distribution q(x,u
Q
) is identical with the distribution q(x,θ(u

n
);u

n
) at

u
n
 of the curved exponential family M . Moreover, when we expand q(x,u) andυ u

0

q(x
9
θ(u) ,u

0
) at u

Q
 in the Taylor series, they exactly coincide up to the terms
2

of u-u
0
 and (u-u

Q
) , because E is composed of X, and X

?
. Hence, if the estima-

tion is performed in E , we can easily prove that Theorems 5.2 and 5.3 hold,

because the Edgeworth expansion of the distribution u is determined from the

expansion of A(X,U) up to the second order if the bias correction is used. How-

ever, we do not know the true u
Q
, so that the estimation is performed in EQ.

In order to evaluate the estimator u, we can map E- (and M-) to M by the
u u u

0

exponential connection. In estimating the true parameter, we first summarize N

observations into X(u) which is a vector function of u, and then decompose it

into the statistics X(u) = {^(u),X
2
(u)}, where e(X(u);u) = u. The X

2
(u) be-

comes an asymptotic ancillary. When the estimator is the m.l.e., we have X- (u)
= 0 and X

0
(u) = H v Y in M

r
. The theorems can be proved by calculating the

c. auK u

Edgeworth expansion of the joint distribution of X(u) or (u,v). The result is

the same as before.

We have assumed that our estimator e is based on X(u). When a

general estimator
u'=

 f
(X(i)» »

x
(

N
))

is given, we can construct the related estimator given by the solution of

re

e
f
(X;u) = E

u
[f(x

( 1 )
,...,x

( N )
)|X(u) = X] .

e
f
(X/x;u) = u, where

Obviously, e
f
(X;u) is the conditional expectation of u

1
 given X(u) = X. By

virtue of the asymptotic version of the Rao-Blackwell theorem, the behavior of

e
f
 is equal to or better than u

1
 up to the third-order. This guarantees the
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validity of the present theory.

The problem of testing the null hypothesis H
Q
:u = u

Q
 against

hi., : u f u
Q
 can be solved immediately in the local exponential family E . When

HQ is not simple, we can also construct a similar theory by the use of the

statistics u and X(u). It is possible to evaluate the behaviors of various

third-order efficient tests. The result is again the same as before.

We finally treat the problem of getting a better estimator u by

gathering asymptotically sufficient statistics X(u)'s from a number of indepen-

dent samples which are subject to the same distribution q(x,u
0
) in the same

model. To be specific, let X
M )i »• •• » X

M ) N
 anc

'
 x
(2)l

9 #
'''

X
(2}N ^

e t w o Ίnc
*epen-

dent samples each consisting of N independent observations. Let u, and u
?
 be

the m.l.e. based on the respective samples. Let X/ \(u.) be the observed point

in E- , i = 1, 2. The statistic X/.% consists of two components X/ \
Ί
 =

u.. [ i \i) i

U \ and Y = (Y } CinΛΛ it -ί c f"hp m Ί P

is satisfied. The statistic u. carries the whole information of order N

included in the sample and the statistic X
2
(u )» which is asymptotically ancil-

lary, carries whole information of order 1 together with u.. Obviously

is the curvature-d

exponential family

(e) K
is the curvature-direction component statistic, X/ M O

 =
 ab (i)

 ln t
'
Ίe curvec

'

Given two sets of statistics (u.,
 x
(-j)2^i^» i = 1, 2, which

summarize the original data, the problem is to obtain an estimator u, which is

third-order efficient for the 2N observations. Since the two statistics X(u
Ί
 )

give points n/ \
 =
 X(u ) in the different E- , in order to summarize them it is

necessary to shift these points in parallel to a common E ,. Then, we can

average the two observed points in the common E , and get an estimator u in

this E ,. The parallel affine shift of a point in E to a different E , has

already been given by (5.11) in the θ-coordinate system. This can be rewritten

-1/2in the η-coordinate system. In particular, when du = u - u
1
 is of order N

-117
and η(u) is also of order N~ ' , the parallel affine shift of η(u)εE

u
 to E

u
« is
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given in the following expanded form for η = (ί^ , ^ ) , ^ = (f,
a
) and ίL = (η , ),

η
a
(u') = n

a
(u) + g

a b
du

b
 - n

a b
(u)du

b
 + 1η

a
(u') = n

a
(u) + g

a b
du

b
 - n

a b
(u)du

b
 + 1 Γ ^ d u

b
d u

c
 + 0(N"

3 / 2
)

Mow, we shift the two observed points X/
Ί
 \(u ) to a common E ,,

where u
1
 may be any point between u-j and u

2
, because the same estimator u is

obtained up to the necessary order by using any E ,. Here, we simply put

u' = (u-j + u
2
)/2, and let δ be

δ = (u
1
 - u

2
)/2 .

— ^
Then, the point X,.Λ(U.) is shifted to X/ \(u') of E , as

and we get similar expressions for X,~\ by changing δ to -δ. Since u. is the

m.l.e., X/
Ί
 \

a

 =
 0. The average of X,-.x and X/

2
> in the common E , gives the

estimated observed point X(u') = (X jXp) from the pooled statistics (u ,X/.χ

X
l " 2

 ( X
2ab •

 X
l a b

) ό +
 2

 Γ
bca

6 ό
 '

"" 1
X
2
 =
 2

 ( X
2ab

 + X
lab

)

By taking the m.l.e. in E , based on (X, , X
2
) , we have the estimator

-a ,a 1 ab,- z x.c ̂  1 ab^fmkc.d
u
 =

 u
 " 2 9 (

χ
2bc "

 X
lbc

) δ +
 2

 g Γ
cdb

6 6
 '

which indeed coincides with that obtained by the equation e(u) = u up to the

third order. Therefore, the estimator u is third-order efficient, so that it

coincides with the m.l.e. based on all the 2N observations up to the necessary

order.

The above result can be generalized in the situation where k

asymptotically sufficient statistics (u^X/^^)
 a r e

 given in EQ , i = l,...,k,

u. being the m.l.e. from N independent observations. Let

u
1
 = ΣN

i
u

i
/ΣN

i
 .

Moreover, we define the following matrices
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G
ab -I

 G
iab ' ^ = KW"

1

Then, we have the following theorem.

Theorem 5.4. The bias corrected version of the estimator defined by

u" = G
a b
[ , G.

bc
uξ]

is third-order efficient.

This theorem shows that the best estimator is given by the weighted

average of the estimators from the partial samples, where the weights are

given by G. . . It is interesting that G. , is different from the observed

Fisher information matrix

J
Tab

They are related by

See Akahira and Takeuchi [1981] and Amari [1985].



6. ESTIMATION OF STRUCTURAL PARAMETER IN THE PRESENCE

OF INFINITELY MANY NUISANCE PARAMETERS

Estimating function and asymptotic variance

Let M = {p(x;θ,ξ)} be a family of probability density functions of

a (vector) random variable x specified by two scalar parameters Θ and ξ. Let

x,, Xp,...,x
N
 be a sequence of independent observations such that the i-th

observation x. is a realization from the distribution p(x;θ,ξ.), where both θ

and ζ. are unknown. In other words, the distributions of x. are assumed to be

specified by the common fixed but unknown parameter θ and also by the unknown

parameter ξ. whose value changes from observation to observation. We call θ

the structural parameter and ξ the incidental or nuisance parameter. The prob-

lem is to find the asymptotic best estimator θ.. = θ
N
(x, ,Xp5 .. ,x

N
) of the

structural parameter θ, when the number N of observations is large. The asymp-

totic variance of a consistent estimator is defined by

AV(θ,Ξ) = lim V [ / N ( Θ
M
 - θ)] (6.1)

N-**>
 N

where V denotes the variance and Ξ denotes an infinite sequence Ξ = (ξ . »ξ
2
» )

of the nuisance parameter. An estimator θ is said to be best in a class C of

estimators, when its asymptotic variance satisfies, at any θ,

A V [ Θ , Ξ ] < A V [ Θ \ Ξ ]

for all allowable Ξ and for any estimator θ'ε C. Obviously, there does not

necessarily exist a best estimator in a given class C.

Now we restrict our attention to some classes of estimators. An

estimator θ is said to belong to class C
Q
, when it is given by the solution of

the equation

73
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N
.Σ y ( χ

Γ
θ ) = o ,

where y(x,θ) is a function of x and θ only, i.e., it does not depend on ξ. The

function y is called the estimating function. Let C-j be a subclass of C
Q
, con-

sisting of all the consistent estimators in C
Q
. The following theorem is well

known (see, e.g., Kumon and Amari [1984]).

Theorem 6.1. An estimator θεC
Q
 is consistent if and only if its

estimating function y satisfies

E
θjξ
[y(x,θJ] = 0 , E

θ j ξ
[8

θ
y(x,θ)] + 0 ,

where E
Q
 denotes the expectation with respect to p(x;θ,ξ) and 3

n
 = 3/3Θ. The

asymptotic variance of an estimator θεC, is given by

AV( Θ , Ξ ) = lim N ΣV[y(x
Γ
θ)] /{(Σ3

0
y)}

2
 ,

where Σ8
o
y(x.,θ)/N is assumed to converge to a constant depending on θ and Ξ.
Θ i

Let H (M) be the Hubert space attached to a point (θ,ξ)εM,

H
fl
 J M ) = ίa(x) I E

fl
 [a] = 0 , E.

 Γ
[a

2
] < »}.

The tangent space T
 r

(M) <= H (M) is spanned by u(x;θ,ξ) = 3
Q
£(x;θ,ξ) and

v(x;θ,ξ) = 3 £(x;θ,ξ) . Let w be

w(x θ.ξ) = u -
 < u >

2
>
 v ,

<v >

o
where <v > = <v,v>. Then, the partial information g

Λ A
 is given by

ΌΌ

g
θ θ
 = g

θ θ
 - v

2 /
9

ξ ξ

 = <w2>
 '

2 2
where g = <u >, g ^ = <v >, g

Λ
^ = <u,v> are the components of Fisher informa-

θθ ξξ θξ

tion matrix. The theorem shows that the estimating function y(x,θ) of a con-

sistent estimator belongs to H for any ξ. Hence, it can be decomposed as
" 9 ξ

y(x,θ) = a(θ,ξ)u(x;θ,ξ) + b(θ,ξ)v(x;θ,ξ) + n(x;θ,ξ) ,

where n belongs to the orthogonal complement of T
 r
 in H

n r
, i.e.,

θ,ξ Θ ,ξ

<u,n> = <v,n> = 0 .

The class C, is often too large to guarantee the existence of the

best estimator. A consistent estimator is said to be uniformly informative
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(Kumon and Amari, 1984) when its estimating function y(x,θ) can be decomposed as

y(x,θ) = w(x;θ,ξ) + n(x;θ,ξ) .

The class of the uniformly informative estimators is denoted by C..,. A uniform-

ly informative estimator satisfies

<y,w>
θ f ξ
 = <w

2
>

θ j ξ
 = g

θ θ
(θ,

ξ
) .

Let Cjy be the class of the information unbiased estimators introduced by

Lindsay [1982], which satisfy a similar relation,

<V«W> = <V >
y
'

w
 θ,ξ

 y
 θ,ξ

Note that <y,w> = <y,u> holds.

Let us define the two quantities

g°(Ξ) = lim 1 <Σn(x;θ,ξ.)
2
> ,

N*»

which depends on the estimating function y(x,θ) and

g(Ξ) = limJi Σg
θθ
(θ,ξ

Ί
.) ,

which latter is common to all the estimators. Then, the following theorem gives

a new bound for the asymptotic variance in the class C,.. (see Kumon and Amari

(1984)).

Theorem 6.2. For an information unbiased estimator Θ

A V [ Θ ; Ξ ] = g"
1
 + g"

2
g° .

We go further beyond this theory by the use of the Hubert bundle theory.

6.2. Information, nuisance and orthogonal subspaces

We have already defined the exponential and mixture covariant de-

rivatives v ^ and v
( r η
) in the Hubert bundle H = U,

 r
xH

Ω r
(M). A field

r(x;θ,ξ)εH
A
 (M) defined at all (θ,ξ) is said to be e-invariant, when v ;

e
V = 0

θ,ξ d

holds. A field r(x;θ,ξ) is said to be strongly e-invariant (se-invariant),

when r does not depend on ξ. A se-invariant field is e-invariant. An estimat-

ing function y(x,θ) belonging to C-j is an se-invariant field, and conversely,

an se-invariant y(x,θ) gives a consistent estimator, provided <u,y> j 0.

Hence, the problem of the existence of a consistent estimator in C
Q
 reduces to



7
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the problem of the existence of an se-invariant field in the Hubert bundle

H(M).

We next define the subspace H
Λ r
 of H

 r
 by

θ>ξ θ,ξ

<
ξ
 = U

ξ
, {

( m
^ , a ( x ) I a(x)εT

θ j ξ l
} ,

i.e., the subspace composed of all the m-paraΠel shifts to (θ,ξ) of the vectors

belonging to the tangent space T , at all (θ,ξ')'s with common θ. Then,

H is decomposed into the direct sum
Θ ξ

where H. is the orthogonal complement of HT
 r
. We call H^

 r
 the orthogonal

subspace at (θ,ξ). We next define the nuisance subspace H^
 r
 at (θ,ξ) spanned

by the m-parallel shifts 'π:!,v from (θ,ξ ) to (θ,ξ) of the ξ-score vectors

v(x;θ,ξ') = 3 £ for all ξ
1
. It is a subspace of H_

 r
 > so that we have the

decomposition

I NT
where H is the orthogonal complement of H in H

Q
 _. It is called the

θ>ξ Θ ,ξ Θ ,ξ

information subspace at (θ,ξ). Hence,

Any vector r(x;θ,ξ)εH can uniquely be decomposed into the sum,

θ ,ξ

r(x;θ,ξ) = r^x θ.ξ) + r
N
(x;θ,ξ) + r°(x;θ,ξ) , (6.2)

where r^H
1
 , r

N
εH

N

 r
 and r°εH?

 r
 are called respectively the I-, N- and 0-

θ ,ξ θ ,ξ θ ,ξ

parts of r.

We now define some important vectors. Let us first decompose the

θ-score vector u = 3
A
&εT

n r
 into the three components. Let u (x;θ,ξ)εH_

θ θ,ξ ϋ ,ς

be the I-part of the θ-score uεT
A r
. We next define the vector

ϋίx θ.ζ ξ
1
) =

 (m)
π^,u(x;θ,ξ ) (6.3)

in H , which is the m-shift of the θ-score vector uεT , from (θ,ξ*) to
θ,ξ σ ,ξ

(θ,ξ). Let ΰ
1
 be its I-part. The vectors ΰ^x θjξ ξ

1
) in H* where (θ,ζ) is

fixed, form a curve parametrized by ξ' in the information subspace H . When
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alΊ o f
 g l l U Ί ΰ ^ x θ.ζ ξ ' M Ϊ lie in a hyperplane in πl

 C
 for all ξ

1
, we say

that u are coplanar. In this case, there exists a vector w εH: for which

<w
I
,G

I
(x;θ,ξ;ξ')> = g

θ θ
(ξ') (6.4)

holds for any ξ
1
. The vector w (w;θ,ξ)εH

Q r
 is called the information vector.

When it exists, it is unique.

6.3. Existence theorems and optimality theorems

It is easy to show that a field r(x;θ,ξ) is se-invariant if its

Nt r vanishes identically

y(x,θ)εC, is decomposed into the sum

N
nuisance part r vanishes identically. Hence, any estimating function

y(x>θ) = y ^ x θ.ξ) + y°(x;θ,ζ) .

We can prove the following existence theorems.

Theorem 6.3. The class C, of the consistent estimators is nonempty

if the information subspace H
A
 _ includes a non-zero vector.

Theorem 6.4. The class Cy, of the uniformly informative estimators

in C, is nonempty, if ΰ (x;θ,ξ;ξ') are coplanar. All the uniformly informative

estimators have the identical I-part y (x;θ,ξ), which is equal to the informa-

tion vector w (x;θ,ξ).

Outline of proof of Theorem 6.3. When the class C, is nonempty,

there exist an estimating function y(x,θ) in C-.. It is decomposed as

y(x,θ) = y ^ x θ.ξ) + y°(x;θ,ξ) .

Since y is orthogonal to the tangent space H
 r
 we have

<y°,u> = 0 .

By differentiating <y(x,θ)> = 0 with respect to θ, we have

0 = <a
θ
y> + <y,u>

Since <dv> = 0, we see that y ^ x θ.ξ) j 0, proving that H

includes a non-zero vector. Conversely, assume that there exists a non-zero

vector a(x,θ) in H*
 r
 for some ξ. Then, we define a vector

θ,ξ

y(x;θ,ξ') =
 ( e )

π f a(x,θ) = a(x,θ) - E ,[a]
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in each H.
 r
, by shifting a(x,θ) in parallel in the sense of the exponential

connection. By differentiating <a>
 r
 = E

Ω
 Ja"] with respect to ξ, we have

3 <a> = <a a> + <a,v> = 0 ,

because a does not include ξ and a is orthogonal to H . This proves

Hence, the above y(x θ.ξ') does not depend on ξ' so that it is an estimating

function belonging to C j. Hence, C-j is nonempty, proving theorem 6.3.

Outline of proof of Theorem 6.4. Assume that there exists an

estimating function y(x,θ) belonging to Cyj. Then, we have

<y,u(x;θ,ξ)>
θjξ
 = g

θ θ
(ξ) ,

because of <y,v> = 0. Hence, when we shift y in exponential parallel and we

shift u in mixture parallel along the ξ-axis, the duality yields

or

<y
I
(x;θ,ζ), ii

I
(x;θ,ξ;ξ

l
)>= g

Q Θ
(ξ') .

This shows that ΰ are coplanar, and the information vector w is given by

projecting y to H ,. Conversely, when ΰ are coplanar, there exists the
θ ,ξ

information vector w ε H:
 r
. We can extend it to any ξ

1
 by shifting it in ex-

ponential parallel,

y(χ,e) =
 ( e )

^ V ,

which yields an estimating function belonging to Cyj.

The classes C, and Cyj are sometimes empty. We will give an

example later. Even when they are nonempty, the best estimators do not neces-

sarily exist in C-. and in Cx... The following are the main theorems concerning

best estimators. (See Lindsay (1982) and Begun et al. (1983) for other

approaches to this problem.)

Theorem 6.5. A best estimator exists in C,, iff the vector field

u (x;θ,ξ), which is the I-part of the θ-score u, is e-invariant. The best

estimating function y(x,θ) is given by the e-invariant u , which in this case

is se-invariant.
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Theorem 6.6. A best estimator exists in C. j, iff the information

vector w (x;θ,ξ) is e-invariant. The best estimating function y is given by

the e-invariant w , which in this case is se-invariant.

Outline of proofs. Let θ be an estimator in C-j whose estimating

function is y(x,θ). It is decomposed into the following sum,

y(x,θ) = c(θ,ξ) u
1
 + a

J
(x;θ,ξ) + y°(x;θ,ξ) ,

where u (x,θ) is the projection of u(x;θ,ξ) to H, _., c(θ,ξ) is a scalar, and
θ jξ

a εH _ is orthogonal to u in H
Q r
. The asymptotic variance of θ is calculated

Θ,ξ Θ ,ξ

as

A V [ Θ ; Ξ ] = lim N{Σ(C
 2
A. + B.)}/{(ΣC.A.)

2
} ,

N^co
 Ί Ί Ί η Ί

where Ξ = (ξ^ξg,...), c. = c(θ,ξ
Ί
.), and

A
Ί
 = <u ,u >

ξ>
 ,

B, = <(a
I
(x))

2
> + <(y°)

2
> .

From this, we can prove that, when and only when B. = 0, the estimator is

uniformly best for all sequences Ξ. The best estimating function is u (x;θ,ξ)

for Ξ = (ξ,ξ,ξ, . . . ) . Hence it is required that u is se-invariant. This

proves Theorem 6.5. The proof of Theorem 6.6 is obtained in a similar manner

by using w instead of u .

6.4. Some typical examples: nuisance exponential family

The following family of distributions,

p(x;θ,ξ) = exp{s(x,θ)ξ + r(x,θ) - ψ(θ,ξ)} (6.5)

is used frequently in the literature treating the present problem. When θ

is fixed, it is an exponential family with the natural parameter ξ, admitting

a minimal sufficient statistic s(x,θ) for ξ. We call this an n-exponential

family. We can elucidate the geometrical structures of the present theory by

applying it to this family. The tangent vectors are given by

u = ξa
ft
s + a r - a ψ , v = s - 3 ψ .

The m-parallel shift of a(x) from (θ,ξ') to (θ,ξ) is
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( m
^ . a(x) = a(x)exp{(ξ - ξ')s - ψ(ζ) + ψ(ξ')} .

From this follows a useful Lemma.

Lemma. The nuisance subspace H. _ is composed of random variables

of the following form,

H
θ,ξ

 = { f
C

s
(

χ
'

θ
) "

 c
(

θ
>ξ)]} .

where f is an arbitrary function and c(θ,ξ) = E
 Γ
[f(s)]. The I-part a of

a(x) is explicitly given as

a
!
(x) = a(x) - E. [a(x) | s(x,θ)] , (6.6)

by the use of the conditional expectation E[a|s]. The information subspace

H^ is given by

for any f, where h = 3 f + ζf.

We first show the existence of consistent estimators in C, by

applying Theorem 6.3.

Theorem 6.7. The class C-. of consistent estimators is nonempty in

an n-exponential family, unless both s and r are functionally dependent on s,

i.e., unless

(a^)
1
 = O ^ )

1
 = 0 .

On the other hand, a consistent estimator does not necessarily exist

in general. We give a simple example: Let x = (x-^Xp) be a pair of random

variables taking on two values 0 and 1 with probabilities

P(x! = 0) = 1/(1 + expίθ + ξ}) ,

P(x
2
 = 0) = 1/(1 + exp{k(ξ)}) ,

where k is a known nonlinear function. The family M is of n-exponential type

only when k is a linear function. We can prove that H = {0}, unless k is

linear. This proves that there are no consistent estimators in this problem.

Now we can obtain the best estimator when it exists for

n-exponential family. The I-part of the θ-score u is given by
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It is e-invariant, when and only when (3.s) = 0.

Theorem 6.8. The optimal estimator exists in C-j when and only when

(3
Q
s) = 0, i.e., 3

0
s(x,e) is functionally dependent on s. The optimal

estimating function is given in this case by the conditional score u
1
 = (3 r )

1
 =

θ

3
Q
r - E[3 r I s], and moreover the optimal estimator is information unbiased in
ϋ D

this case.

According to Theorem 6.4, in order to guarantee the existence of

uniformly informative estimators, it is sufficient to show the coplanarity of

ΰ (x;θ,ξ;ξ'), which guarantees the existence of the information vector

w(x;θ,ξ)εH*
 r
. By putting w = hίsMs.s)

1
 + f(s)(3 r )

1
, this reduces to the

integral-differential equation in f,

<w,ξ'(3
θ
s)

1
 + (3

θ
r)

I
>

ς I
 = g

θ θ
(ξ') . (6.7)

When the above equation has a solution f(s;θ,ξ), ΰ are coplanar and the inform-

ation vector w exists. Moreover, we can prove that when (3
Q
r) = 0, the

information vector w is e-invariant.

Theorem 6.9. The best uniformly informative estimator exists when

(3 r) = 0. The best estimating function is given by solving
θ

E
fl
 .,[h(s)V[3 s I s]] = g

flfl
(ς')/ξ' , (6.8)

where h(s θ) does not depend on ξ
1
 and V[a s | s] is the conditional covariance.

We give another example to help understanding. Let x = (x-^Xp) be

a pair of independent normal random variables, x-,^N(ξ,l), X2^N(θζ,l). Then,

the logarithm of their joint density is

A(x θ.ξ) = - \ [(x
1
 - ξ )

2
 + (x

2
 - θξ)

2
 - log(2π)]

= ξs(x,θ) + r(x,θ) - ψ(θ,ξ) ,

2
, r(x,θ) = - (x

2
 +

log(2π). From 3
Ω
s = x

0
, dr = 0, we have

where s(x,θ) = x , + ΘX
2
, r(x,θ) = - (x

2
 + x

2
)/2, ψ(θ,ξ) = ξ

2
(l + θ

2
)/2 +

= (x
2
 - βx^/d + Θ

2
) , (SgΓ)

1
 = 0.
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Hence, from Theorems 6.7 and 6.8, the class C, is nonempty, but the best

estimator does not exist in C-.. Indeed, we have

u
J
(x;θ,ξ) = ξ(x

2
 - ΘX-, )/(Ί + θ

2
) ,

which depends on ξ so that it is not e-invariant. Since any vector w in H
Λ

can be written as

w = h(s)(3
θ
s)

1

for some h(s;θ,ξ), the information vector w (x;θ,ξ)εH
 r
 can be obtained by

solving (6.4) or (6.7), which reduces in the present case to

Hence, we have

E
θ > ξ
[h(s)(x

2
 - θ

X l
)] = ξ(l + θ

2
) .

h(s) = s/(l + θ
2
) ,

which does not depend on ξ. Therefore, there exists a best uniformly informa-

tive estimator whose estimating function is given by

y(x,θ) = w
J
(x,θ) = h(s)(8

θ
s)

T
 = (x

2
 - Θ X

1
) ( X

1
 + Θ X

2
) / ( 1 + θ

2
)

2

or equivalently by (x« - θx,)(x, + Θ X
2
) . This is the m.l.e. estimator. This is

not information unbiased.



7. PARAMETRIC MODELS OF STATIONARY GAUSSIAN TIME SERIES

α-representation of spectrum

Let M be the set of all the power spectrum functions S(ω) of

zero-mean discrete-time stationary regular Gaussian time series, S(ω) satisfy-

ing the Paley-Wiener condition,

Nog S(ω)dω > - oo .

Stochastic properties of a stationary Gaussian time series ίx
t
h t = ..., -1, 0,

1, 2, ..., are indeed specified by its power spectrum S(ω), which is connected

with the autocovariance coefficients c. by

C. = 27 f S(ω) COSωtdω , (7.1)

where

S(ω) = CQ + 2
 t
l
Q
 C

t
 COSωt , (7.2)

c
t
 = E [ x

r V t
]

for any r. A power spectrum S(ω) specifies a probability measure on the

sample space X = {x
t
} of the stochastic processes. We study the geometrical

structure of the manifold M of the probability measures given by S(ω). A

ARspecific parametric model, such as the AR model M of order n, is treated as a

submanifold imbedded in M.

Let us define the α-representation jr
α
'(ω) of the power spectrum

{S()Γ
α

S(ω) by

r- ± {S(ω)Γ
α
,

(7.3)

log S(ω) , α = 0 .

83
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(Remark: It is better to define the α-representation by - (l/α)[S(ω)"
α
- 1].

However, calculations are easier in the former definition, although the follow-

ing discussions are the same for both representations.) We impose the regular-

ity condition on the members of M that J T
0
^ can be expanded into the Fourier

series for any α as

ft (ω)
 =
ζη

 +
 2 .Ση ξi COSωt , (7.4)

where

ξ. = Λ— \SL (ω)cθSωtdω , t = 0 1, 2, ....

We may denote the £
( α )

(ω) specified by ξ
α
 = {ξ[

α )
} by ί,

( α )
(ω;ξ

( α
^. An

infinite number of parameters U i } together specify a power function by

α=|0

S(ω;ξ
(α)
) = J (7.5)

α = 0 .

Therefore, they are regarded as defining an infinite-dimensional coordinate

system in M. We call ξ£
α
' the α-coordinate system of M. Obviously, the -1-

coordinates are given by the autocovariances, ξ}~ ' = c... The negative of the

1-coordinates ξ| , which are the Fourier coefficients of S" (ω), are denoted

by c. and are called the inverse autocovariances, ξ}
 =
 - c+

7.2. Geometry of parametric and non-parametric tine-series models

Let M be a set of the power spectra S(ω u) which are smoothly

specified by an n-dimensional parameter u = (u
a
), a = 1, 2, ..., n, such that

M becomes a submanifold of M., e.g., M could be an autoregressive process.

This M is called a parametric time-series model. However, any member of M can

be specified by an infinite-dimensional parameter u, e.g., by the α-coordinates

ξ
(α)

 =
 {ξ|

α
)}, t = 0, 1, ... in the form S ( ω , ξ ^ ) . The following discussions

are hence common to both the parametric and non-parametric models, irrespective

of the dimension n of the parameter space.

We can introduce a geometrical structure in M or M in the same

manner as we introduced before in a family of probability distributions on
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sample space X, except that X = {χt> is infinite-dimensional in the present

time-series case (see Amari, 1983 c). Let p τ (x , , . . . ,x , u) be the jo int prob-

abi l i ty density of the T consecutive observations x,,...,x_ of a time series

specified by u. Let

* τ ( x 1 , . . . , x τ ; u ) = log p ( x ] , . . . s x τ ; u ) .

Then, we can introduce in M or M the following geometrical structures as

before,

9ab
(u)=

l
im
 T

 E [ 3
a W τ

]

τ-*»

Ull- j™τE[{Wτ-τWbVVτ]

However, the limiting process is tedious, and we define the geo-

metrical structure in terms of the spectral density S(ω) in the following.

Let us consider the tangent space T at u of M or M , which is

spanned by a finite or infinite number of basis vectors 3 = a/3u associated
a

with the coordinate system u. The α-representation of 9 is the following func-
a

tion in ω,
Hence, in M, the basis d[

a
' associated with the α-coordinates ξ^ is

1 , t = 0

2C0Sωt , t =f 0 .

Let us introduce the inner product g . of 9 and 3. in T by

where E is the operator defined at u by

E
α
[a(

ω
)] = |{S(w;u)}

2α
a(ω)dω .

The above inner product does not depend on α, and is written as

We next define the α-covariant derivative Vg 3
b

 o f a
b
 Ίn t h e
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direction of 3
a
 by the projection of 3 3, jr

α
' to T . Then, the components ofa a D u

the α-connection are given by

auc d u e j a D c

If we use O-representation, it is given by

i 3.log S - 3 log S3.log S)3 log S dω .a u a o c

From (7.4) and (7.7), we easily see that the α-connection vanishes in M

identically, if the α-coordinate system ξ^
α
' is used. Hence, we have

Theorem 7.1. The non-parametric M is α-flat for any α. The

α-affine coordinate system is given by ξ^
α
'. The two-coordinate systems ξ^

α
'

and ξ^~
α
' are mutually dual.

Since M is α-flat, we can define the α-divergence from S.(ω) to

S
2
(ω) in M. It is calculated as follows.

Theorem 7.2. The α-divergence from S, to Sp is given by

/α
2
) f {[S

9
(ω)/S

Ί
(ω)]

α
 - 1 - αlθg[S

9
/S

Ί
]}d

ω
 , α j 0J I I 2 1

(1/2) f [log S
Ί
(ω) - log S

9
(ω)]

2
dω , α = 0 .

7.3. α-flat models

An α-model M
α
 of order n is a parametric model such that the

α-representation of the power spectrum of a member in M°| is specified by n + 1

parameters u = (u ), k = 0, 1,... ,n, as

r
α
)(ω;u) = u

n
 + 2 . ϊ, u. cos kω .

U K"~ I K

Obviously, M
α
 is α-flat (and hence -α-flat), and u is its α-affine coordinate

system.
AR

The AR-model M of order n consists of the stochastic processes
n

defined recursively by

Jo Vt-k
= ε
t

where {ε.} is a white noise Gaussian process with unit variance and a = (a
Q
,

a.,...,a ) is the (n+1)-dimensional parameter specifying the members of M
n
 .
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Hence, i t is an (n+1)-dimensional submanifold of M. The power spectrum S(ω a)

of t u e process specified by a is given by

r/ ^ I V ^ Λ i kωi-2

S(ω a) = | k ^ 0 ake |
ARWe can calculate the geometric quantities of M in terms of the AR-coordinate

system a the above expression.

Similarly, the MA-model M of order n is defined by the pro-

cesses
n

x
t
 =
 k=0

 b
k

ε
t-k

where b = (b
n
, b, ,...,b ) is the MA-parameter. The power spectrum S(ω b) of

the process specified by b is

S(ω b) = |£ b
k
e | .

FX P

The exponential model M of order n introduced by Bloomfield (1973) is com-

posed of the following power spectra S(ω e) parameterized by e = (e
Q
, e,,...,

n
S(ω e) = exp{e

Q
 + 2 ^

Q
 e

k
cos kω} .

It is easy to show that the 1-representation of S(ω a) in M is

given by
n

c. = Σ. a.a. . , k = 0, l,...,n

c. = 0 , k > n

where

This shows that M
n
 is a submanifold specified by c

k
 = 0, (k > n) in M. Hence,

it coincides exactly with a one-model Nr ', although the coordinate system a is

MAnot 1-affine but curved. Similar discussions hold for M .

Theorem 7.3. The AR-model M
n
 coincides with M^', and hence is

±l-flat. The MA-model M
n
 coincides with M^~ ', and hence is also ±l-flat.

FXP (0)

The exponential model M^ coincides with M^
 ;
, and is 0-flat. Since it is

self-dual, it is an (n+1)-dimensional Euclidean space with an orthogonal

Cartesian coordinate system e.
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7.4. α-approximation and α-projection

Given a parametric model M = {S(ω u)}, it is sometimes necessary

to approximate a spectrum S(ω) by one belonging to M . For example, given a

finite observations x,, ..., x
τ
 of {x

t
)> one tries to estimate u in the paramet-

ric model M by obtaining first a non-parametric estimate S(ω) based on x,, ...,

Xγ and then approximating it by S(ω;u)εM . The α-approximation of S is the one

that minimizes the α-divergence D
α
[S(ω), S(ω,u)], uεM

n
 It is well known that

the -1-approximation is related to the maximum likelihood principle. As we

have shown in §2, the α-approximation is given by the α-projection of S(ω) to

M . We now discuss the accuracy of the α-approximation. To this end, we con-

sider a family of nested models {M
n
} such that M

Q
I D M

1
 ID M

2
 => .. .M^ = M. The

{ M
n

R }
'

{ M
n

A } a n d { M
n

X P } a r e n e s t e d
 models, in which M

Q
 is composed of the white

noises of various powers.

Let {M
α
} be a family of the α-flat nested models, and let S (ω u )ε

M be the -α-approximation of S(ω), where u is the (n+1)-dimensional parameter

given by

S
n

ε M
n

The error of the approximation by S εM is measured by the -α-divergence

D_
α
(S,S

n
). We define

= D.
β
(S.S

n
) . (7.8)

S
n

ε M
n

I t is an interest ing problem to f i n d out how E (S) decreases as n increases.

We can prove the fol lowing Pythagorean r e l a t i o n (Fig. 10).

The following theorem is a direct consequence of this relation.

Theorem 7.4. The approximation error EL(S) of S is decomposed as

E n ^ = Jn D - A + A > (7 9)
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Figure 10

Hence,

= J o D-c
The theorem is proved by the Pythagorean relation for the right

triangle ΔSS S
Q
 composed of the α-geodesic S S

Q
 included in M°J and -α-geodesic

SS intersecting at S perpendicularly. The theorem shows that the approxima-

tion error E (S) is decomposed into the sum of the -α-divergences of the

successive approximations S. , k = n+Ί ,...,«>, where S^ = S is assumed. More-

over, we can prove that the -α-approximation of S. in M
α
 (n < k) is S . In

K n n
other words, the sequence {S } of the approximations of S has the following

property that S is the best approximation of S. (k > n) and that the approxima-π K

tion error E (S) is decomposed into the sum of the -α-divergences between the

further successive approximations. This is proved from the fact that the α-

geodesic in M connecting two points S and S
1
 belonging to M" is completely in-

cluded in M°J for an α-model M
α
.

Let us consider the family {M } of the AR-models. It coincides

with M . Let S be the -1-approximation of S. Let c.(S) and c.(S) be, res-

pectively, the autocovariances and inverse autocovariances. Since c. and c^

are the mutually dual -1-affine and 1-affine coordinate systems, the -1-approx-
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imation S of S is determined by the fol lowing relat ions

1) c t ( S n ) = c t ( S ) , t = 0, 1, . . . , n

2) c t ( S n ) = 0 , t = n+1, n+2, . . . .

This implies that the autocovariances of S are the same as those of S up to

t = n, and that the inverse autocovariances c. of S vanish for t > n. Similar

relations hold for any other α-flat nested models, where c. and c. are replaced

FXP
by the dual pair of α- and -α-affine coordinates. Especially, since {M }

are the nested Euclidean submanifolds with the self-dual coordinates ξ^ , their

properties are extremely simple.

We have derived some fundamental properties of α-flat nested para-

metric models. These properties seem to be useful for constructing the theory

of estimation and approximation of time series. Although we have not discussed

about them here, the ARMA-modes, which are not α-flat for any α, also have in-

teresting global and local geometrical properties.
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