
C H A P T Έ R Ί . APPLICATIONS

This chapter describes three different general applications of

the theory developed so far. The f i r s t part of the chapter contains a proof

of the information inequality and a proof based on this inequality of Karl in 1

theorem on admissibility of linear estimators.

The second part of the chapter describes Stein's unbiased estimat

of the risk and proves the minimaxity of the James-Stein estimator as a

specific application of this unbiased estimate.

The third part of the chapter describes generalized Bayes estimat

and contains two principle theorems describing situations in which a l l admiss

ble estimators are generalized Bayes -- or at least have a representation

similar to that of a generalized Bayes procedure. This part of the chapter

deals with two basic situations. The f i r s t is estimation of the natural

parameter under squared error loss, and the second is estimation of the

expectation parameter under squared error loss. The so-called conjugate pric

play a natural role in this second situation.

The exercises at the end of the chapter contain a non-systematic

selection of some of the specific results derivable from the more general

development in the body of the chapter.

INFORMATION INEQUALITY

The information inequality -- also known as the Cramer-Rao

inequality -- is an easy consequence of Corollary 2.6.

The version to be proved below applies to vector-valued as well a

real-valued stat ist ics. For vector-valued statistics one needs the multi-

90
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variate Cauchy-Schwarz inequality, as described in the following theorem.

If A,B are symmetric (mxm) matrices, write A :> B to mean that

A - B is positive semi-definite.

4.1 Theorem
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Remarks. If I = m = 1 this is the usual Cauchy-Schwarz inequality:

(2) E(T*)E(T*) > E
2
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χ
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If B
2 2
 is singular the inequality (1) remains true with generalized

inverses in place of true inverses. See Exercise 4.1.1.

If 4.1(1) is applied to the random vectors Tj - E(T ), T
2
 - E(T

2
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it yields the covariance form of the inequality:
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One further preparatory lemma is needed for the form of the

information inequality which appears below.

4.2 Proposition

Let {p
Q
} be a standard k-parameter exponential family. Let T be

Ό

Q

a statistic taking values in R . Suppose Θ
Q
 € N° and the covariance matrix

£
β
 (T) of T exists at θ

n
. Then E

Q
(T) exists on a neighborhood of θ

n
.

0 g U 0 U

(θ eW°(11T11) in the notation of 2.6.)

Proof. For some ε > 0, | |θ - θ J | < ε implies θ € N. Let

I|θ - θ o || < ε/2 . Then, by the ordinary Cauchy-Schwarz inequality,

(1) E
Θ
(||T||) = /||T(x)|| exp(θ x - φ(θ))v(dx)

= /||T(x)|| exp((θ -ΘQ) x - ψ(θ) + ψ(θ0)) exp(θ0 x - ψ(θQ))v(dx)

1 [/||T(x)||2 exp(θ0 x - ψ(θQ)) v(dx)

/ exp(2(θ - θ
0
) x - 2ψ(θ) + 2ψ(θ

o
))exp(θ

o
 x - ψ(θ

Q
))v(dx)]

h

= Eg
2
 (I |T(x) I |

2
)[exp ψ(2(θ - θ

Q
) + Θ

Q
) - 2ψ(θ) + ψ(θ

Q
)]^

2
since Eθ (||T(x)|| ) < °° by assumption and since 2(θ - ΘQ) + ΘQ 6 W. ||

4.3 Setting

The following version of the information inequality applies to

d i f f e r e n t i a t e exponential subfamilies, as defined at the end of Chapter 3.
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Let {p 0 : θ € 0} be such a family with Θ m-dimensional. Let θQ G 0. For

N a neighborhood in Rm let θ : N + 0 c Rk, with θ(ρQ) = ΘQ be a parametrization

of 0 in a neighborhood of ΘQ. By definit ion Vθ(p) is the mxk matrix with

elements

(1) ^ 3J7

The parametrization can always be chosen so that Vθ(p) is of rank m, and

we assume this is so.

Define the information matrix J(p) at p = PQ by

(2) J(pQ) = (Vθ(po))(2(θo)(Vθ(po))

I f {p_} is a minimal exponential family then 2(θn) is non-singular, and so
u U

J(PQ) is then a positive definite mxm symmetric matrix. The chain rule and

the basic differentiation formula 2.3(2) yield two alternate expressions for

J; namely

/3 log p
θ
,

p
 v(X) d log p

θ
,

(3) (JίPnίίn = E
fl
( ^

 Θ
^°

 1J θΛ

The f i r s t expression of (3) i s , of course, the usual definit ion of

J in contexts more general than d i f f e r e n t i a t e subfamilies.

I f T is a stat ist ic taking values in R let

(4) e(p) = eτ(p) = Eθ ( p )(T) .

Suppose Θ
Q
 e N°(||T||). Then E

Θ
(T) and its derivatives exists at Θ

Q
 by

Corollary 2.6. The chain rule then yields
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(5) Ve(p
Q
) = (Vθ(p

Q
))(vE

θo
(T))

(The preceding formulation of course includes the case where

{p
θ
> is a full exponential family. Simply set p = θ so that θ(p) Ξ θ.

In that case J(p
Q
) = Z(θ

Q
) and Ve(p

Q
) = VE

Q
 (T) .)

4.4 Theorem (Information inequality)

Let {p.: θ e 0} be a differentiate subfamily of a canonical
Ό

exponential family with θ
Q
 = θ(p

Q
), as above. Let T be an ^-dimensional

statistic. Suppose 2 (T) exists. Then e(ρ) = E , JT) exists and is

differentiable on a neighborhood of ρ
Q
, and the covariance matrix of T

satisfies

(1) Z
θ
 (T) > (ve(p

0
))' J"

1
(p

0
)(ve(p

0
)) .

Proof. θ Q £ W°(||T||) by Proposit ion 4 . 2 . Now apply the Cauchy-Schwarz

i n e q u a l i t y 4 . 1 ( 1 ) w i t h T, = T - EΩ (T) and
1 θ o

( 2 ) T 2 ( X ) = V I n p θ ( p } ( X ) = ( V θ ( p 0 ) ) (X - ξ ( θ Q ) ) .

Then B n = ^ ( T ) ,

( 3 ) B 2 2 = E ( T 2 T p = ( V θ ( p 0 ) ) 2 ( θ o ) ( V θ ( p o ) ) ' = J ( p Q ) ,

and

( 4 ) B 1 2 = E ( T 1 T£) = ( V θ ( p o ) ) ( v E ( T ) ) = V e ( p Q )

by 2 . 6 ( 3 ) and 4 . 3 ( 5 ) . The Cauchy-Schwarz i n e q u a l i t y says B ^ >_ B 1 2 B 2 2 B 2 1

which i s the same as ( 1 ) . ||

A useful f e a t u r e of the form of Theorem 4.4 is the absence of

any r e g u l a r i t y c o n d i t i o n on T other than the existence of la ( T ) . Many other
θ
o

versions of the information inequality contain further assumptions about T (See

e.g. Lehmann (1983, Theorem 7.3).) but these are superfluous here.
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An information inequal i ty l i k e Theorem 4.4 is needed for applications of the

fol lowing type.

4.5 Appl ication (Kar l in 's Theorem on Admiss ib i l i ty of Linear Estimates)

The information inequal i ty can sometimes be used to prove

a d m i s s i b i l i t y . In these s i tuat ions other, more f l e x i b l e , proofs can also

be used, but the information inequal i ty proof is nevertheless easy and

revealing. The fol lowing resul t is due to Karl in (1958). The information

inequal i ty proof, due to Ping (1964), is a general ization of the f i r s t

proof of th is sort in Hodges and Lehmann (1951). See Lehmann (1983, p.271) for

fur ther references and deta i ls of the proof.

Theorem. Let { p Λ } be a f u l l regular one-dimensional exponential family with
u

N = (θ, θ ) , -°° <_ θ < θ <_ °°. Consider the problem of estimating ξ(θ) = EQ(X)

under squared error loss. The r i s k of any (non-randomized) estimator δ is

thus R(θ, δ) = E θ ((δ(x) - ξ ( θ ) ) 2 ) . Then the l inear estimator

( 1 ) δ ( x ) = αx + p

α,p

is admissible if 0 < α <_ 1 and if

(2) / exp(-γθ + λψ(θ)) dθ

diverges at both θ and θ, where γ,λ are defined by

(3)
 α

 = ΓTT'
 β

 = Γ^T

Proof. We consider here only the case p = 0 = γ . (See Exercise 4.5.1.)

Fix α. Let δ be any estimator with finite risk. Let b(θ) = E
θ
(δ(X)) - αξ(θ).

The information inequality yields

( 4 ) R ( θ , δ ) > [ ( α ζ ( θ ) + b W y f + ( ξ ( θ ) ( l - α ) - b ( θ ) ) 2

ξ ' ( θ )

> α 2 ξ ' ( θ ) + 2 α b ' ( θ ) + ( ξ ( θ ) ( l - α ) - b ( θ ) ) 2
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since ξ(θ) = E
Θ
(X) and ξ'(θ) = J(θ) = Var

θ
 X . For δ^

Q

(5) R(θ, δ
α > 0

) = Λ ' ( θ ) + (1 - α )
2
 ξ

2
(θ) .

Hence, if

(6) R(θ, δ) < R(θ, 6
 n
)

then

(7) 2b'(θ) - 2λξ(θ) b(θ) + (1 + λ) b
2
(θ) < 0

Let

K(θ) = e
λ ψ ( θ )

 b(θ) .

Then (7) becomes

(8) 2K'(Θ) + (1 + λ) K
2
(θ)e

λ ψ ( θ )
 < 0

Now, let ΘQ € (a, b) and make the change of variables

t(θ) =
 Θ
J exp(λψ(t))dt.

Correspondingly, define k(t) by k(t(θ)) = K(θ), so that (8) becomes

(9) 2k'(t) + (1 + λ) k
2
(t) £ 0

where -°° < t < °° by ( 2 ) . The only solut ion of (9) for t € (-°°, °°) is k = 0

since integrat ion of (9) shows that for t > t k is non-increasing and

k ' ^ t ) - k" 1 ( t 1 ) >. (1 + λ ) ( t - t χ ) / 2

and hence k(tj) < 0 is impossible. A similar inequality for t < t- shows

that k(t
χ
) > 0 is also impossible. It follows that (6) implies b Ξ 0 , which

in turn implies 6 = 6
 Q
 (a.e.(v)) by completeness. This proves admissibility

O f δ
α , 0

It is generally conjectured that the condition 4.5(2) is necessary



APPLICATIONS 97

as well as sufficient for admissibility of 6
 o

. However only partial results

are known in this connection. See Joshi (1969) and also Exercises 4.5.4,

4.5.5.

4.6 Further Developments

It is useful in considering asymptotic theory to have

available a few further results concerning the information inequality.

These results are sketched below; the proofs are left for exercises. These

results have nothing to do specifically with exponential families but only

require a setting in which the information inequality is valid. Nevertheless,

for precision assume below the setting of Theorem 4.4, and let S c R
m
 denote

a (possibly large) open set on which
 Σ

Θ
(

O
)(T) exists. For convenience we

consider below only estimation of p under the quadratic type loss function

(1) L(p, δ) = (6 - p)' J(p)(ό - p) ,

and under a truncated version of this loss. (See (3) below.) For proof of the

following assertions see Exercises 4.6.1 - 4.6.7 and Brown (1986).

Let h be an absolutely continuous probability density on S ,

supported on a compact subset H c S , Then the expected risk satisfies

(2) / R(p, δ)h(
P
)dp > m -/

Note that the right side of this inequality is independent of 6, and thus

provides a lower bound for the Bayes risk under the prior density h.

A natural truncation of the loss (1) is the function

min(L(p, ό), K). Generalizations of the information inequality and of (2),

like those to be described below, can be stated for this natural truncation;

however the statements and proofs are easier under a different truncation which

is equally useful in asymptotics. This truncation will now be described.

Let K > 0. For v e R define
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-K v < -K

v
κ
 = Ivl v £ K

K v > K .

For v € R de f i ne v u to be the vec to r w i t h coord ina tes (v J . = ( v . ) „ ,
i\ i\ i l ι\

i = l , . . . . k . Now l e t

(3) L
κ
(p, δ) = (6 - p)£ J~

l
(p)(δ - p )

κ
 .

Let R
κ
 denote the risk function corresponding to this truncated loss function.

If δ is an estimator of p, let

(4)
 ό

(K)(
χ ;
 P )

 =
 P κ

and

(5)
 b

( κ ) ^
 = E

θ ^
6
( K ) ^

X
' P ) ) " P

 = e
( K ) ^

p
^ "

 p

Let λ,(p) >: ... >_ λ (p) > 0 denote the ordered eigenvalues of J(p). Let

α be any number satisfying 0 < α < 1. Then

fl + 2 ) R (p,
 ό
)

^ (1 - α)λ
m
K

2
^
 K

(6)

> α T r ( J ( p ) ( v e ( κ ) ( p ) ) ' J ^ ί p J ί V e ^ j ί p ) ) ) + T r ( J ( p ) b ( κ ) ( p ) b | κ ) ( p ) )

(Note: Ve/^x exists except possibly for a countable number of

values of p. At these values i n t e r p r e t the r i g h t side of (6) as i t s l im sup;

or use r i g h t (or l e f t ) p a r t i a l derivat ives i n place of Ve/^x, for these

always e x i s t . )

This inequal i ty becomes more in terest ing as K gets large r e l a t i v e

to 1/λ , for then α can be chosen near 1 but so that T\—?ΓΊ72 is small,m ^l-α;λ m κ

The inequal i ty (6) leads to an inequal i ty concerning the Bayes

r isk j u s t as the usual information inequal i ty leads to ( 2 ) . With h as in (2)
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(7) ( l + 2 \ j R ( p , 6)h(p)dp
^ ( 1 - α ) λ K2/ H K

H

The above bound, unlike ( 6 ) , does not involve 6 (through e / ^ J .

UNBIASED ESTIMATES OF THE RISK

An unbiased estimate of the r isk as a tool for proving inadmissi-

b i ϋ t y of estimators f i r s t appears in Stein (1973), and has been widely

exploited since then. The basic technique is embarassingly simple. I t

involves merely an integration by parts which succeeds because of the term

θ x
e appearing in the exponential density. Here we describe the method and a

few of the easier applications. For further (more complex) applications, see,

for example, Berger (1980b), Berger and Haff (1981), and Haff (1983). Here

is the heart of the method.

A function t : R •> R is called absolutely continuous i f

t ( x , , . . , x j , is absolutely continuous in x.., i = l , . . . , k , when a l l Xj, j ^ i are

R •> R be absolutely continuous. Assume

/ |s(x)|e θ # x dx < - , and

/ | s ' ( x ) | e θ ' x dx < » f i = 1 k.

ΘΊ / s ( x ) e θ ' x dx = -/ s ! ( x ) e θ ' x dx

Proof. Set i = 1 for convenience. For almost every (

(4) / |s(κ1 x 2 , . . . , x k ) | e θ # x dxχ < -

and

\ ι ft X
Pi J l s Λ x i > x?» »Λi/ / l e U Λ i ^

held

4.7

(1)

(2)

Then

(3)

f ixed.

Theorem

Let t !

Let s :
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because of (1), (2). For any such (x
2 5
...,x

k
) integration by parts yields

(6) θjj s(x
l s
 x

2
,...,x

k
)e

θ # x
 dx

1

= lim θ / s(x ,x
9
,...,x. )e dx

Ί

{ R fl y Γ fl x 1 1

-/ s^(x
ls
x

2
,...,x

k
)e dx

1
 + s(x

1
,x

2J
...,x

|<
)e >

-/ s (x
1
, x

2
, . . . , x

k
) e

θ
"

x
d x

1
 + lim inf [ s ( x

r
x

2
, . . . , x

k
) e

θ
*

x
j.χl
B

f |s(
Xi
,x

9
,...,xJe

v

B-χ»

= -/ s^(x
1
,x

2
,...,x

k
)e

θ # X
 dx

by (2) and then (1). Integration over Xp»...,x
k
 then yields (3). ||

The assumptions (1) and (2) are slightly more stringent than

necessary, and also can be given alternate forms. For example the assumption

(5) together with

(7) lim s(x
Ί
, x

?
,...,x.)e

θ
'

x
 = 0

, X £ Is,

for almost eyery x 2 , . . . , x k implies ( 4 ) , and hence (3) when i = 1. Or, for

example, when k = 1 a p o t e n t i a l l y useful r e s u l t is the equal i ty

(8) J°°θs(x)eθx dx = -f°s'(x)e θ x -s(0 + )

f o r a b s o l u t e l y cont inuous f u n c t i o n s s hav ing / | s ' ( x ) | e dx < °° and

A y

lim s(x)e = 0. However, the version of the theorem given above suffices

for the usual applications.

Theorem 4.6 can be expressed in other forms which are more

suggestive of its applications, as in the following two corollaries.
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4.8 Corollary

Let pθ(x) be a p r o b a b i l i t y density on R ( r e l a t i v e to Lebesgue

measure) of the form

(1) Pθ(x) = h(x) exp(θ x - ψ(θ))

where h >̂  0 is absolutely continuous. Let t : R -> R be absolutely

continuous. Let t.1 = - 3 1 . Then
i 9χ

h!
(2) θ. E

θ
(t) = -E

θ
((t!

 +
^"

provided both expectations in (2) exist.

k k
Let t : R •* R be absolutely continuous. Then

+ 2JL. t )(3)

where V

(4)

and

t =
k
Σ

EΘ

8x.j

(Θ

s

• t ) = -EΘ(V

, provided that

i

E
θ
(| ̂  t |) < - , 1 = 1 k.

(In expressions (2), (3), (4) and similar expressions below

define ~ = 0 if h = 0 .)

Proof. For (2) note that ~ (th) = (tj + jp t)h and apply Theorem 4.7.

For (3) apply (2) with i=l,...,k and sum. ||

Remarks. Expression (2) immediately yields

(5) ΘE
Q
(t) = -E

θ
(Vt + t ̂ )

provided the expectations e x i s t . (3) can also be derived d i r e c t l y from Green's

theorem which implies (under suitable conditions) that

(6) /s(x)(Ve
θ#x
)dx = - /(V s(x))e

θ
'

x
 dx
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It can also be worthwhile to apply Theorem 4.7 repeatedly, as in

the next proposition which is needed for Theorem 4.10.

4.9 Proposition

Let p be as in Corollary 4.8. Assume that h! is also absolutely

continous, and that

and

(2)

(where h
1
.
1
. = -¥- h). Then11
 8x?

(3)

2
 k

(where V h = Σ h
1
.
1
. ).

Ί1

Proof. Apply Theorem 4.6 twice for each i=l,...,k and sum over i. ||

Combining the preceding results yields the following unbiased

estimator of risk for squared error loss.

4.10 Theorem

Let {p
Ω
} be an exponential family whose densities are of the formu

4.8(1) with h satisfying 4.9(1), (2). Let 6: R
k
 -> R

k
 be any absolutely

continuous estimator of θ. Suppose

(1) E
θ
(||δ||

2
) < oo

and
h!

(2) E
θ
(|δ!

 +
 ίpδl) < - , 1 = 1,....k .

Then

(3) E
θ
(||δ-Θ||

2
) = E

θ
(||δ||

2
 - 2(V δ + ^ δ) + ̂  )
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Proof. Note t h a t

E θ ( | | δ - θ | | 2 ) = E θ ( | | δ | | 2 - 2Θ δ +

Now u s e 4 . 8 ( 3 ) a n d 4 . 9 ( 3 ) t o a r r i v e a t ( 3 ) . ||

Remarks. The l e f t s i d e o f (3) i s the r i s k f u n c t i o n f o r squared e r r o r l o s s .

As p r e v i o u s l y , we f r e q u e n t l y use t h e n o t a t i o n R(θ, δ) f o r a r i s k f u n c t i o n

when the loss f u n c t i o n (here ||δ - θ|| ) i s c l e a r from the c o n t e x t . The

i n t e g r a n d o f the r i g h t s i d e o f (3) i s f r e e o f θ; hence t h i s i n t e g r a n d i s an

unbiased e s t i m a t e o f R(θ, δ ) . For most a p p l i c a t i o n s o f (3) one a c t u a l l y needs

o n l y an unbiased e s t i m a t e o f R(θ, δ j - R(θ, δp) where δ. and 6? are two g iven

e s t i m a t o r s . In t h a t case, the term | | θ | | , l e a d i n g t o - r — i n ( 3 ) , c a n c e l s .

Assumption 4 . 9 ( 2 ) i s t h e r e f o r e not needed t o a r r i v e a t an unbiased e s t i m a t e o f

the form

(4) R(θ, δ χ ) - R(θ, δ 2 ) = E ^ M δ J I 2 - | | δ 2 | | 2 + 2(V ( δ χ - ό 2 )

4.11 Application (James-Stein estimator)

The neatest application of Theorem 4.10 is to prove the mini-

maxity of the James-Stein estimator for a multivariate normal mean. (The

original result in James and Stein (1961) uses a different method of proof.)

Let X be k-variate normal, k >̂  3, with mean ξ(θ) = θ and covariance I .

Consider the problem of estimating ζ under squared error loss. The usual

estimator δQ(x) = x is minimax. However, when k :> 3 i t is not admissible. Let

(1) δ(x) = ( l ί ϋ M l i )
l l x l l 2

where r is absolutely continuous, non-decreasing, and

(2) 0 < r( ) < 2(k - 2)
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Then

(3) R(θ, 6) £ R(θ, ό
0
) = k

Strict inequality holds in (3) except when r Ξ 0 or when r Ξ 2(k - 2), as

can be seen from (5) below.

The normal density is of the form 4.8(1) and -r- = -x. With ό as

in (1)

so that 4.10(4) yields

(4) R(θ, 6
0
) - R(θ. 6) = E

Θ
(2V

I I X I Γ IIXI I

(It remains to check the regularity conditions needed for 4.10(4), and these

will be discussed below.)

Observe that V —-—~ =
 k

"
2

 ?
 . Hence (4) yields

llxll llxll

(5) R(θ, δ
n
) - R(θ, δ) = E ^ " *

1
' ) (2(k-2) - r(llXll)) + 2

 Γ
' ( "

x
" ) )

υ ϋ
 iixir iixii

The unbiased estimator of the risk which appears on the right of (5) is non-

negative because of (2); hence (3) follows. The first estimator of James

and Stein was of the form (1) with r = k - 2, which is the best possible

constant value of r. However, a better estimator (as also noted by James and

Stein) is

(6) δ
+
(x) = (1 - ^ ^ )

+
x

llxll

which corresponds to the choice

r(t) = min(t
2
, k-2)

See Exercise 4.11.1. See also Exercises 4.11.5, 4.17.5, and 4.17.6 for

generalizations.

(It is also of interest to note that in general if
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δ i = δ Oi + Ύ i ' i = 1 " ->k> t h e n 4 1 0 ( 4 ) y i e l d s

k
(7) R(θ, δ0) - R(θ, δ) = E θ [ Π ^ γ Γ γ { ]

The integrand is formally the same as the Cramer-Rao lower bound ( in which

b( ) replaces γ( )) See 4.5(7) (with λ = 0) and Exercise 4.5.6. Hence the

fact that the inequality

(8) Σ 2 -£- γ. - γ? > 0
i = l a x i Ί Ί "

has a non-trivial solution i f and only i f k _> 3 leads to the proof of the

fact that 6Q(X) = x is inadmissible i f and only i f k _> 3.)

The regularity conditions stated in Theorem 4.10 are not always

satisf ied by an estimator of the form (1). ( I f , for example, r(x) = k-2 then

δ is not continuous at ||x|| = 0.) Just i f icat ion of (4) therefore requires

a supplementary argument: suppose 6 is an estimator of the form (1) with a

specified r( ) Let 6 be the estimator with r( ) replaced by

(9) re(||x||) = min(||x||2/ε , r(||x||)) .

Then δ satisfieds the conditions of Theorem 4.10 so that (4) holds for 6 .

Passing to the l i m i t as ε Ψ 0 yields that (4) also holds for 6.

There is a yjery extensive l i terature concerning the problem of

estimating a multivariate normal mean. For an introduction and some references

consult Lehmann (1983, Chapter 4).

4.12 Remark

For discrete exponential families there is an analog of the

unbiased estimates in 4.8 and 4.10 which involves difference operators instead

of partial derivatives. These results are based on the deceptively simple

equality

oo oo

( 1 ) Σ λ h ( x ) λ X = Σ h ( x - l ) λ X

x=0 x = l
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They have been particularly useful for certain problems involving Poisson or

negative binomial variables. See Hudson (1978), Hwang (1982), and Ghosh,

Hwang, and Tsui (1983) for some theory and applications.

GENERALIZED BAYES ESTIMATORS OF CANONICAL PARAMETERS

We first define the concept of a generalized Bayes estimator in the

current context and state some foundational results. Then we discuss estimation

of the canonical parameter of an exponential family. Later in this chapter we

discuss estimation of the expectation parameter, including the topic of

conjugate priors for exponential families.

4.13 Definition

Let {p
Q
: θ € 0} be an exponential family of densities. Let

Ό

ζ: Θ -> R be measurable. Let G be a non-negative (σ-finite) measure on Θ,

locally finite at every θ € Θ. G is called a prior measure on Θ. Let S c R .

Then 6: S -> R is generalized Bayes on S (for estimating ζ under squared error

loss) if
/ ζ(θ)p

ft
(x)G(dθ)

(1) ό(x) = , x € S ,
/ P

θ
(x)G(dθ)

where both numerator and denominator exist for all x € S. We say δ is

generalized Bayes if it is generalized Bayes on S where v(S
C
) = 0. We will

use the symbol δ
β
 to denote the generalized Bayes procedure for G, when this

exists.

If the loss is squared error loss --

(2) L(θ, a) = 11 a - ζ(θ)||
2

for estimating ζ(θ) and if the Bayes risk,

(3) B(G) = inf B(G, 6') = inf / R(θ, δ
1
 )G(dθ)

δ ό
1

= inf/E
fl
(L(θ, δ'(X))G(dθ),

δ
1 θ
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satisfies B(G) < ». Then by Fubini's theorem any Bayes estimator for G (i.e.

one which minimizes B(G, 6)) must also be generalized Bayes for G. One

of the topics in which we shall be interested below is that of characterizing

complete classes of procedures under squared error loss (2). Since L is

strictly convex the nonrandomized procedures are a complete class. The

following theorem is our main tool for proving complete class theorems.

(In the current context a complete class is a set of procedures which contains

all admissible procedures.)

4.14 Theorem

With {p
Q
} and L as above ewery admissible procedure must be a

limit of Bayes estimators for priors with finite support. More precisely, to

eyery admissible procedure corresponds a sequence G. of prior distributions

supported on a finite set (and hence having finite Bayes risk) such that

(1) 6
G β
(x) - 6(x) a.e.(v)

where (as above) δn denotes the Bayes estimator for G..

Proof. This theorem is apparently "well known". Its proof is outside the

intended scope of our manuscript. However, I do not know any adequate

published reference for it, so a proof is given in the appendix to the mono-

graph. See Theorem A12. Theorems 3.18 and 3.19 of Wald (1950) come close

to the above theorem as do some comments in Sacks (1963) and in Le Cam (1955).

II

We now concentrate on estimation of the canonical parameter. In

this case generalized Bayes estimators have a particularly convenient form,

as described in the next theorem.

4.15 Theorem

Let {p f l} be a canonical exponential family and let G be a prior

measure on Θ for which the generalized Bayes procedure, δG for estimating θ
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exists. Define the measure H by

(1) H(dθ) = e "
ψ ( θ )

 G(dθ)

θ x
and (as usual) l e t λ..(x) = / e H(dθ) denote its Laplace transform. Then δfi

satisfies

(2) δG(x) = V In λ H (x) = VψH(x) , x e Γ .

( I f v(8K) = 0 then, of course, (2) completely defines δQ since

v((K°)Cmp) = v(3fC) = 0.)

Proof. By d e f i n i t i o n the general ized Bayes procedure is

/ θ e θ ' x H(dθ)
(3) δ G ( x ) = g - a.e. (v)

G / e θ x H(dθ)

By assumption the i n t e g r a l s on the r i g h t of ( 3 ) e x i s t a . e . ( v ) ; hence

NH 3 K° . The denominator exists on WH, by d e f i n i t i o n , and by Theorem 2 . 2 ,

the numerator exists on N° and is given by V λ u ( x ) . This proves ( 2 ) . I I

π π

If δ is only generalized Bayes on S c K relative to G one clearly

has an analogous representation of δ on S°, namely

(4) δ(x) = Vψ
H
(x) , x € S° .

An interesting special consequence of the above is that if k = 1,

and |δ(x) - x| is bounded, and λδ(x) is generalized Bayes on K° for 0 < λ £ 1

then δ(x) = x + b. See Meeden (1976).

The foundation for the following major theorem has been laid

above and in Section 2.17. The first theorem of this type was proved by

J. Sacks (1963) for dimension k = 1. Indeed Sacks claimed, but did not prove,

validity of the result for arbitrary dimension. Brown (1971) proved the

result for arbitrary dimensions when {p
Q
} is a normal location family; and that
Ό

proof was extended to arbitrary exponential families by Berger and Srinivasan
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(1978). The proof below follows Brown and Berger-Srinivasan. The proof of

Theorem 4.24 is somewhat more l ike Sacks' original proof.

4.16 Theorem

Let {p
Q
} be a canonical k parameter exponential family. Then 6 is

admissible under squared error loss for estimating θ only if there is a

measure H on θ c W such that

/ θ e
θ # x
 H(dθ)

(1) 6(x) = Q-^ = Vψ
H
(x) , for x e K° a.e.(v) .

/ e H(dθ)

Remarks. The expression (1) i m p l i c i t l y includes the condition N,, 3 K°, so

that both numerator and denominator in (1) are well defined for a l l x € K°.

I f H(Θ - Θ) = 0 so that 0 = § c W 5 then

one may define

(2) G(dθ) = e ψ ( θ ) H(dθ)

and rewrite (1) as

/ θp f l(x)G(dθ)

(3) 6(x) = 9 , x € K° .
/ Pθ(x)G(dθ)

Thus 6 is generalized Bayes on K° relative to G. This observation leads to

Corollary 4.17 and to further remarks which appear after the corollary.

Proof. Let 6 be admissible. By Theorem 4.14 there is a sequence of prior

measures G., having finite support, such that $
G
 (x) -> δ

G
(x)

a.e.(v). Let x
Q
 € K° such that 6Q (xQ) •+ ό(x Q

). Since G
1
 has finite support

; e
θ Xo"Ψ(θ)

(2) fi.(dθ) =

This is a normalized version of 4 . 1 5 ( 1 ) , so, l e t t i n g ψ. = ψr; ,
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(3) δ
G
 (x) = Vψ^x)

Since / e H.(dθ) = 1 we assume w i t h o u t loss o f g e n e r a l i t y the ex istence o f a

l i m i t i n g measure H, f o r which H. -> H weak*. (Apply 2 . 1 6 ( i v ) to the measure

e X o # θ H i t o get e X o ' θ ί^ -> H*, say, and l e t H = e " X o # θ H* .) Let x1 € K°

such t h a t 4.14(1) holds a t x 1 . Then thbre i s a f i n i t e set S c K ° such tha t

4.14(1) holds on S and such tha t B = conhul l S s a t i s f i e s xQ € B° ,

x1 e B° . Let x e S. Then

(4) ΨΊ (x) - ψ . ( x 0 ) = J 1 (x - x 0 ) V Φ ^ X Q + p(x - x o ) ) d p

<. ( x - x Q ) V ψ ^ x ) i ||x - XQ11 M δ ^ x ) ! !

by C o r o l l a r y 2 . 5 . ( N o t e t h a t Ψ ^ X Q ) Ξ 0 . ) I t f o l l o w s t h a t

( 5 ) Ί i m s u p s u p ψ . ( x ) = s u p | | ό ( x ) | | | | x - x n | | < °°
i-**> x€S Ί x€S u

This is the principle assumption of Theorem 2.17, which now implies the

existence of a subsequence H., and a limiting measure, which must be H, such

that ψ
Ί
.(x) + Ψ

H
(x), x € B°, and also Vψ

Ί
 (x) ̂  Vψ

H
(x), x € B°, by 2.17(5).

Since vψ.(x') = ό.(x') ->• ό(x') we have

(4) δ(x') = Vψ
H
(x')

This proves (1) since x1 is an arbitrary point of K° satisfying 4.14(1),

and since 4.14(1) is satisfied a.e.(v). ||

4.17 Corollary

Suppose Θ is closed in R and

(1) v(3K) = 0

Then the generalized Bayes procedures form a complete class.
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Proof. As noted the admissible procedures are a (minimal) complete class.

If 6 is admissible then for some prior measure H on Θ = Θ

(2) δ(x) = '
 θ e

Π
 H

W a.e.(v)
/ e

θ # x
 H(dθ)

by 4.16(1) and (1), above. Let G(dθ) = e
ψ ( θ )

 H(dθ) as in 4.16(2) to get the

desired representation,

θp
A
(x)G(dθ)
2 ((3) δ(x) =
P

θ
(x)G(dθ)

Remarks. If v is dominated by Lebesgue measure then (1) holds since the

Lebesgue measure of the boundary of any convex subset of R is zero. (To

see this note that if C is bounded and convex with 0 € intC then

9C = n [(1 + |)C - (1 - j)C] = Π C. , say, where (as usual)
i=l

 Ί Ί
 i=l

 Ί

aC = {x: By € C, x = ay}. See e.g. Rockafeller (1970). Then / dx = a/dx
aC C

so that / dx = lim rf dx = lim(^j-)/ dx = 0. If C is unbounded apply the
8C S" άΛ

 C

result for bounded C to C n {x: llxll < b} and let b -> «>.)

If v{dK) f 0 then there are, in general, admissible procedures

which are not generalized Bayes. See Exercise 4.17.1. Similarly, if Θ is

not closed in R there will again be admissible procedures which are not

generalized Bayes, even when v(9K) = 0. See Exercise 4.17.2. When Θ = W and

the exponential family is regular then Θ is closed if and only if H = R .

Hence when Θ + R one cannot assert that all admissible procedures are

generalized Bayes. However, the representation 4.16(1) remains valid. This

representation is qualitatively similar to a generalized Bayes representation

and is generally as useful as one.

Not all estimators which can be represented in the form 4.17(3)

or 4.16(1) are admissible. In fact, many are not. Nevertheless, representa-

tions of this form are valuable stepping-off points for general admissibility



112 STATISTICAL EXPONENTIAL FAMILIES

proofs. See Brown (1971, 1979).

The most conspicuous example of an inadmissible generalized Bayes

estimator occurs in the problem of estimating a multivariate normal mean

already discussed in 4.11. The usual estimator ό(x) = x is generalized Bayes,

but when k >̂  3 it is not admissible. When k >_ 3 the positive part James-

Stein estimator, defined in 4.11(6), dominates δ(x) = x. However, the positive

part James-Stein estimator cannot be generalized Bayes (see Example 2.9);

hence is itself inadmissible. So far as I know the problem of finding an

(admissible) estimator which dominates 4.11(6) remains open. However,

theoretical and numerical evidence indicates that such an estimator cannot

have a much smaller risk at any parameter point; hence 4.11(6) remains one of

the many reasonable alternatives to ό(x) = x when k >_ 3. (See e.g. Berger

(1982).)

GENERALIZED BAYES ESTIMATORS OF EXPECTATION PARAMETERS CONJUGATE PRIORS

The statistical problem of estimating the expectation parameter

ξ(θ), is more often of interest than that considered previously, of estimating

the natural parameter. (Of course for normal location families the two problems

are identical.) In this case, too, there is a representation theorem for

generalized Bayes procedures and a complete class theorem based on a repre-

sentation similar to that of generalized Bayes. (In some (not fully

developed) sense the generalized Bayes representation available here is dual to

that in the preceding section -- the differentiation operator is with respect

to θ and appears inside the integral sign instead of being with respect to x

and appearing outside it.) Both these main results are somewhat more limited

than those for estimating θ; but are nevertheless useful.

A new feature of considerable statistical interest appears here.

The linear estimators are (generalized) Bayes for the conjugate (generalized)

priors. This result is presented first; the conjugate priors are defined in
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4.18 and the existence and linearity of their (generalized) Bayes procedures

is proved in Theorem 4.19.

4.18 Definition

Prior measures having densities relative to Lebesgue measure of

the form

(1) g(θ) = C e
θ
'

Ύ
-

λ ψ ( θ )
 γ € Rk , λ > 0

are called conjugate prior measures. Note that if the prior is of the

form (1) then the posterior distribution, calculating formally, has the same

general form, with new parameters γ + x and λ + 1. For a sample of size n the

n
parameters become γ + s

n
 = γ + Σ x and λ + n. (Note in (1) that g = 0 if

n 1 = 1 Ί

θ ί W since then ψ(θ) = °° .)

Arguments resembling those in the following proof show that the

conjugate prior measure is f i n i t e , and hence can be normalized to be a prior

probability distribution i f and only i f

(2) λ > 0 and γ/λ € K°

See Exercise 4.18.1.

For estimating ζ(θ) = E_(X), under squared error loss, the Bayes
u

procedures for conjugate priors are linear in x. This fact (often under

extraneous regularity conditions) has been known for decades. See, for

example, De Groot (1970, Chapter 9) and Raiffa and Schlaiffer (1961). The

following precise statement and its converse first appeared in Diaconis and

Ylvisaker (1979). (See Exercise 4.19.1 for a statement of the converse.)

4.19 Theorem

Let {p
Q
} be a regular canonical exponential family and let g(θ) be
θ

a conjugate prior density as defined by 4.18(1). Then the generalized Bayes

procedure for estimating ξ(θ) exists on the set
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(1) S = {x : δ(x) = ^ ^ €
λ + 1

and has the l inear form

(2) δ(x) = J-J-J + γ?Γϊ = α x + P > x € S

Remarks. I f v(SC) = 0 then δ is generalized Bayes. I f 0 € K th is always

occurs for γ = 0, λ > 0. I t occurs for γ = 0, λ = 0 i f (and only i f )

v(8K) = 0. I t can occur for other values of γ,λ as w e l l .

I f x ί S then the generalized Bayes procedure does not ex is t at x

since / e

θ * x ~ ψ ^ g(θ)dθ = °°. See Exercise 4 . 1 9 . 1 .

For the r e l a t i o n between the condit ion that v(Sc) = 0, so that 6

is generalized Bayes, and Kar l in 's condi t ion, 4 . 5 ( 2 ) , see Exercise 4.19.2.

Proof. Let x € S. The generalized Bayes procedure at x, i f i t ex is ts ,

has the form

( 3 ) δ ( χ ) = / (Vφ(θ)) exp((x+γ) - θ - (λ+l)ψ(θ))dθ

/ exp((x+γ) θ - (λ+l)ψ(θ))dθ

because of the form of g and of p Q , and because ξ(θ) = Vψ(θ) on W and g(θ) = 0

for θ (. hi.

I f the integrals in the numerator and denominator of (3) ex ist

then Green's theorem i n the form of 4.7(3) y ie lds

(4) (x + γ ) / exp((x + γ) θ - (λ + l)ψ(θ))dθ

= (λ + 1) / (Vψ(θ)) exp((x + γ) θ - (λ + l)ψ(θ))dθ

Rearranging terms in (4) y ie lds ( 2 ) . I t remains only to v e r i f y that the

numerator and denominator of (3) e x i s t .

L e t z = £J2. . z £ K ° s i n c e x € S.

Hence
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(5) l i m i n f ^ θ > - θ ' z > 0
IIΘMHOO l l θ l l

by 3.5.2(1) (or by 3.6(3) and t rans lat ion of the o r i g i n ) . I t follows that

for some ε > 0

(6) exp ((x + γ) θ - (λ + l )ψ(θ)) = 0 ( e " ε | | θ | 1 )

This proves existence of the integral in the denominator of ( 3 ) .

Now consider ξ, = -r^- on hi. For s i m p l i c i t y of notation below,
1 du -j

l e t ξ 1 (θ) = 0 i f θ f. M. Fix Θ 2 , . . . , θ k . ξ j t θ ^ θ g . . . . »θk) is monotone

in θ 1 for θ € W. Thus for some q = q ( θ 2 , . . . , θ k ) € R , ξJθyθ^,... , θ k ) <_ 0

for θ 1 < q and ξ j ( θ j , θ 2 , . . . ,θ k ) ^ 0 for θ^ > q. Hence

(7) / | ξ 1 ( θ r θ 2 , . . . , θ | < ) | exp((x+γ) θ - (λ+l)ψ(θ))dθ1

q
l im / - ξ 1 ( θ 1 , θ ? , . . . , θ j exp((x+γ) θ - (λ+l)ψ(θ))dθ 1

B*x> B

B
+ l im / ξ 1 ( θ 1 , θ ? , . . . , θ | f ) exp((x+γ) . θ - (λ+l)ψ(θ))dθ Ί

B-̂ > q l d κ L

The function e x p ( - ( λ + l ) ψ ( θ i s θ 2 , . . . , θ k ) ) is absolutely continuous i n θ,

since {pθ> is regular. ( I f { p 0 } were not regular there could be a discon-

t i n u i t y at the boundary of W.) Let θ = ( q ( θ 2 . . . . , θ k ) , Θ 2 , . . . , θ k ) . Ordinary

integrat ion by parts y ie lds

q
(8) l im / - ξ 1 ( θ 1 , θ 2 . . . . . θ k ) exp((x+ γ) . θ - (λ+l)ψ(θ))dθ 1

Bκ B

= l im j - t X i + γ j ) / exp((x+γ) θ - (λ+l)ψ(θ))dθ 1
B-χ» I -B

q Ί

+ [exp((x+γ) θ - (λ+l)ψ(θ))] >

q
= - ( X I + Ύ J / exp((x+γ) * θ - (λ+l)ψ(θ))dθ, + exp((x+γ) θ - (λ+l)ψ(θ ))

l i ' *• q q



116 STATISTICAL EXPONENTIAL FAMILIES

by (6). Note that (again by (6))

k
 ?

(9) exp((x+γ) Θ
Q
 - (λ+l)ψ(θ )) = 0(exp(-ε Σ θί))

M
 q

 3=2
 J

Reasoning similarly for the second integral on the right of (7), integrating

both integrals over θp»...,θ. , and using (9) yields

(10) /. |ζΊ(θ) I exp((x+γ) θ - (λ+l)φ(θ))dθ < -
Rκ i

Finally, the identical reasoning on ζ., i = l , 2 , . . . , k , shows that

) exp((x+γ) θ - (λ+l)ψ(θ))dθ < -

which verifies that the numerator of (3) exists. As noted previously, this

completes the proof. ||

4.20 Application

For a given k-parameter exponential family {p
Q
} the conjugate

prior distributions, {g } , say, form a (k+1)-parameter exponential family

with canonical statistics Θ
1S
...,Θ., -ψ(θ). This (k+1)-parameter family is

minimal except when ψ(θ) is a linear function of θ. This linearity occurs

when p
n
 is the Γ(α, σ) family with known σ, and in certain multivariate

u

generalizations of this univariate example.

Many familiar exponential families are the conjugate families of

prior distributions for other familiar exponential families of distributions.

(Conjugate prior measures which are not finite then appear as limits of these

distributions.) For example, the N(γ, λ I) distributions are conjugate to

the N(μ, I) family. The proper conjugate prior distributions for the

Γ(α, TZQJ) family (α known, θ < 0) are those of -Θ where Θ ̂  Γ(λα, -γ),
γ < 0, λ > 0. The proper conjugate priors for the P(e ) family have density

(i) g
Y λ
(θ) = e

γ θ
-

λ e
 , γ < o, λ > o

with respect to Lebesgue measure on (-«>, °°). Thus the density of ξ = e is
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Γ(-γ, 1/λ). See also Exercise 5.6.3.

The basic representation theorem for generalized Bayes procedures

is a simple consequence of Green's Theorem 4.7(3), and is an obvious extension

of 4.19(4) in the proof of Theorem 4.19. The regularity conditions in the

following statement may be modified as noted in the remark following the

theorem,

4.21 Theorem

Let {p
θ
> be a regular canonical exponential family and let G be a

prior measure on Θ. Suppose G has a density, g, with respect to Lebesgue

measure. Suppose g(θ)e~^ ' is absolutely continuous on R . Assume for x e S

(1) / e
θ χ
-Ψ(

θ
> g(θ)dθ

(2) / ||vg(θ)|| e
θ
'

χ
-

ψ ( θ )
 dθ <

and

(3) / ||Vψ(θ)|| g(θ)e
θ
*

χ
-

ψ ( θ )
 dθ

Then the generalized Bayes procedure, 6, for estimating ξ(θ)

under squared error loss, exists on S and is given by the formula

(9()) de

Remarks. If v(S
c
) = 0 then, of course, the unrestricted generalized Bayes

procedure exists and is given by (4).

Conditions (1) and (2) are of course necessary for the represen-

tation (4) to make sense. Condition (3) is necessary in order that the

generalized Bayes estimator be well defined. However it can often be deduced

as a consequence of (2) and so then need not be checked directly. Suppose

(5)

for some function h(θ) satisfying
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t
k
~

l
 h(t)dt

Then (1) is satisfied, and condition (2) implies condition (3). See Exercise

4.21.1.

The representation (4) is exploited in Brown and Hwang (1982) as

the starting point for a proof of admissibility of generalized Bayes estimators

under certain (important) extra regularity conditions.

Proof. Conditions (1), (2), and (3) justify use of the integration by

parts formula 4.7(3), which yields

(6) / x(g(θ)e"
ψ ( θ )

)e
θ
'

x
 dθ = / (-Vg(θ) + g(θ)Vψ(θ))e

θ
'

x
"

ψ ( θ )
 dθ

Rearranging terms (each of which exists by (1), (2), (3)) yields (4). ||

We now turn to the complete class theorem comparable to Theorem

4.16. The result proved below applies only to one parameter exponential

families. It appears to us that there exists a satisfactory multiparameter

analog of this result which, however, is somewhat more complex to state (and to

prove). We hope to present this multiparameter extension in a future

manuscript.

As with Theorem 4.16 the representation of admissible procedures

involves a ratio of integral expressions similar to the formula for a

generalized Bayes estimator. Again, under certain additional conditions, this

representation reduces to precisely that of a generalized Bayes procedure. A

new complication appears in the integral representation below. It applies

only on an interval I. whose definition involves ό( ) itself. (See 4.24(1).)

However, as explained in the remarks following the theorem, the values of δ(x)

for x ί ί are uniquely specified by monotonicity considerations. Hence the

theorem actually describes exactly the values of ό(x) except for at most two

points -- the endpoints of I. . In this sense the complication presented by

the presence of I. is just a minor nuisance.
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We begin with a technical lemmά.

4.22 Lemma

Let v be a sequence of probability measures on R . Suppose for

some ζ > 0

(1) lim i n f v n ( { x > K}) > ζ > 0
n+ o°

f o r a l l K < oo. L e t ε > 0 . Suppose λ ( ε ) < °° , n = l , . . . . Then
v

(2) lim

ί e ε x vn(dx)

n-**> λ ( ε )
n

for all K < «>.

Remarks. The negation of (1) is the condition

( 3 ) l i m l i m i n f v n ( { | x | > K}) = 0
K**> n*»

 n

This is the usual necessary and s u f f i c i e n t condition for there to exist a

subsequence n1 and a non-zero l imit ing measure v such that v , •> v.

The conclusion (2) can be paraphrased by saying that the sequence

of probability measures e ε x v (dx)/λ (ε) sends a l l i t s mass out to -κ».
n

Proof. Let K < oo, 1 < m < «. Then

/ " e ε x v ( d x ) / " e ε x v ( d x )

(4) I 2 f
/ e ε x vn(dx) / e e x vn(dx)

—oo —oo

> e e ( m " 1 ) κ v n ( { x > mK}) .

Now l e t n •»• » and m -»• °° t o f i n d
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/ e
ε x
 v

n
(dx)

(5) lim inf
 K

f eε xvn(dx)

which proves ( 2 ) . ||

4 . 2 3 Theorem

Let {p
Q
 : θ € Θ} be a regular exponential family on R . Consider

u

the problem of estimating the expectation parameter, ξ ( θ ) , under squared e r r o r

loss. Let 6 be an admissible estimator. Then, 6( ) must be a non-decreasing

function. Let

( 1 ) I 6 = {x: v ( { y : y >x, ό(y) € K°}) > 0 and v ( {y : y < x, ό(y) € K°}) > 0 } .

Then there exists a f i n i t e measure V on Θ such t h a t for a l l x G I

r ζ(θ) θx
J i + \ r U ) \ e

(2) δ ( x ) = l * l ζ ( θ ) l

Remarks. In (2) the functions .. |1 / Q \ , and
 Λ
 ,

Γ
/
Q
\. have the obvious

i n t e r p r e t a t i o n on the boundary of M. ( I n other words, i f N = ( a , b) then

= -1 , etc., since lim ξ(θ) = », lim ξ(θ) = — . )

By monotonicity of 6, I must be an open i n t e r v a l . Say I = ( i , T ) ,

-oo £ i < T £ oo. Suppose K° = ( k , E ) , -» £ k < k <_ ». Then k £ i ( ΐ <̂  k,

r e s p e c t i v e l y ) and, by monotonicity and the d e f i n i t i o n of I , ό(x) = k for

k <_ x < i (ό(x) = R for T < x <_ k ) . For i < x < ϊ , ό(x) i s defined by ( 2 ) .

Thus, the theorem f a i l s to define 6(x) only for x = i i f -°° < k < i or for

x = k i f - o o < k = i , and, i f k < «>, for x = T or k depending on whether T < R

or T = k. I f v, the dominating measure for { p A } , is continuous then these
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two points have measure 0 and the theorem completely describes δ. Similarly,

if K = (-», <*>) then irrespective of v the theorem completely describes 6

If V(N - N) = V(ίa, b}) = 0 then (2) can be rewritten as

Jξ(θ) P
fl
(x)G(dθ)

(3) δ(x) = § , x € Γ ,
ί P

θ
(x)G(dθ)

where

β
ψ(θ)

Thus, δ is then generalized Bayes on T in the ordinary sense. (This must,

of course, occur i f W = R .) When W f R there may exist admissible procedures

having representation (2) but not (3). See Exercise 4.24

Finally, note as with Theorem 4.16 that there are many inadmissible

procedures satisfying (2). See for example Exercise 4.5.4.

Proof. I f G is a prior density then the Bayes procedure (assuming i t is

well defined for x € K) is given by the formula

m * t^ - f ζ ( θ ) e θ x ' ψ ( θ ) G(dθ) _ / ζ ( θ ) e θ x H(dθ)

/ e
θ x
H ( d θ )

where H(dθ) = ce"ψ^θ^ G(dθ). ζ(θ) is monotone on W. The family of densities

e x//eθxH(dθ) is an exponential family (with parameter x) relative to the

dominating measure H. In particular, i t has monotone likelihood rat io.

Hence, ό r is monotone non-decreasing by Corollary 2.22. (6^ is actually

s t r i c t l y increasing unless G is concentrated on a single point.) All admissi-

ble procedures are (a.e.(v)) l imits of Bayes procedures by Theorem 4.14,

and l imits of monotone functions are monotone. Hence al l admissible procedures

must be monotone non-decreasing. (A different proof of a better result is

contained in Brown, Cohen and Strawderman (1976).)

Let 6 be admissible and let όp be the sequence promised in
i

Theorem 4.14 having δp + 6 a.e.(v). Since al l δp are monotone non-
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decreasing there is no loss of g e n e r a l i t y in assuming δg (x) -*• 6 ( x ) f o r a l l
n

x f Γ , and we do so below.

Assume 0 e l c Γ , Define the p r o b a b i l i t y measures,

( 1 + | ξ ( θ ) l ) e " ψ ( θ ) G ( d θ )
( 5 ) V (dθ) = ^ ^

n / ( I + I ξ ( θ ) l ) e " ψ ( θ ) 6 n ( d θ )

Let ε > 0 such t h a t ε € K°. Then

e

ε θ V (dθ)
( 6 ) δ G ( ε ) - J 1 +

i Λ ^ Vn ( d θ )

Suppose for some ζ > 0

(7) Tim inf V ({θ > K}) > ζ > 0 for all K <

Let ΘQ be the unique value such t h a t ξ ( θ Q ) = 0 , and l e t K > ΘQ. The function

1 + i ε ( θ ) 1 1<s i n c r e a s i n 9 f o r θ > θ o APP"ly Lemma 4.23 to get

J e ε θ V n ( d θ )

ξ(K)

Similarly, ,
 +
 tela) ι

 1S
 decreasing for θ > Θ

Q
 so that

J e ^ V
n
(d

θ
)

1 + ξ ( K ) •

S u b s t i t u t e ( 8 ) and ( 9 ) i n t o t h e f o r m u l a , ( 6 ) , f o r or ( ε ) and l e t K -*• °° t o f i n d
n
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(10) δ(ε) = lim δ
Q
 (ε) >_ lim ξ(K) .

n-*»
 n

 κ-χ»

This holds for all e > 0 with ε e K°. It follows from (10) that O i l ,

contrary to assumption. Hence (7) must be false. A symmetric argument shows

that lim inf V ({θ < -K}) > ζ > 0 is also impossible. Hence
n-*»

(11) lim lim inf V ({|θl > K}) = 0 .

By translating the origin the same argument can be applied at any

x € I c K°. The conclusion is that x e I implies

e
θ x
 V

n
(dθ)

(12) lim lim inf

This is s l i g h t l y more than is needed to apply the c o r o l l a r y of Theorem 2.17

stated in Exercise 2 . 1 7 . 2 . ( ( 1 2 ) implies 2 . 1 7 . 2 ( 2 ) with the roles of θ and

x interchanged so t h a t P n v ( d θ ) = e θ x V n ( d θ ) / e θ x V n ( d θ ) . ) The conclusion of
Π j X f I Π

this exercise is that there exists a subsequence {n
1
} and a limiting measure V

on Θ such that

(13) e
θ x
V

n
,(d

θ
) + e

θ x
V(dθ) and λ

v §
(x) - λ

γ
( x ) , x € 1° .

Note that V(Rk) = λ v (0) = lim λy (0) = 1. Since both χ + ^ ( 3 ) ) and
n

1 + lξ(θjl

that for x e 7

are bounded continuous functions on §, (13) and (6) yield directly

δ(x) = lim δG (x)

This verifies ( 2 ) , and completes the proof. ||

e v ( d θ )
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EXERCISES

4.1.1

( i ) Prove the Cauchy-Schwarz inequality (4.1(1)) with B^ in place

of Bpo when Bpo is singular.( i i ) Show the inequality remains valid when T,, T̂

are respectively Uxs) and (mxs) matrix valued random variables, [ ( i ) Reproduce

the proof of Theorem 4.1 with Bio in place of BZi; or rotate coordinates so

that B2o is diagonal with diagonal entries d. > 0, 1 < i < r, and d = 0,

r+1 £ i <_ m, and apply 4.1(1) for the f i r s t r coordinates of T2J

4 . 2 . 1

Let v be a measure on R and l e t T be a real valued s t a t i s t i c .
2

Suppose 0 € W° and E(T ) < °°. Show fo r every ε > 0 there i s a polynomial

2 2
p(x) such t h a t E((T - p) ) < ε . ( I n other words, the monomials x - , . . . , x . , x , ,

Xj x 2 , . . . form a complete basis f o r L 2 ( v ) . ) [For k = 1 ( f o r s i m p l i c i t y ) l e t

2
^0 = *' ^1 = a l l x + a 1 0 ' ^2 = a 2 2 x + a 2 1 x + a 2 0 ' # * # ^ e o^thonormal f u n c t i o n s

i n L 9 ( v ) . Let α. = E ( T f . ) . Then Σα? < ET2 so t h a t g = Σ α . f . € L 9 ( v ) .

T - g € L 2 ( v ) , 0 e W°(T - g) and λ ^ ( 0 ) = 0, j = 0 , l , . . . . ]

4.3.1

V e r i f y formulae 4.3(3) and 4 . 3 ( 5 ) .

4.3.2

Let pQ be a f u l l canonical exponential f a m i l y and l e t ξ = ξ ( θ )

denote the expectat ion parameter. Show t h a t r e l a t i v e to t h i s parameter the

i n f o r m a t i o n matr ix i s J ( ζ ) = Σ - 1 ( θ ( ζ ) ) .

4.4.1

Let M be a f i x e d £χ£ p o s i t i v e s e m i - d e f i n i t e symmetric m a t r i x .

Wri te the i n f o r m a t i o n i n e q u a l i t y f o r EQ ( (T - μ ) 1 M(T - μ)) where T i s an

Jl-dimensional s t a t i s t i c w i t h mean μ and f i n i t e covariance a t ΘQ. [This i s

immediate from Theorem 4.4 and (T - μ ) 1 M(T - μ) = Tr(M(T - μ)(T - μ ) 1 ) . ]



APPLICATIONS 125

4.4.2

Show that the information inequality 4.4(1) is an equality i f and

only i f for some matrix A and vector b

(a) T(x) = A(Vθ(pQ))X + b .

[Show the Cauchy-Schwarz inequality is an equality i f and only i f Tp is an

affine transformation of T-.]

4.4.3

Let {p
θ
: θ e 0} be a different!able subfamily and T an £-

dimensional statistic. Suppose %
a
 (T) exists for some θ

n
 € 0. Then the

w0 u

information inequality is an equality for a l l θ € 0 i f and only i f 0 is an

affine subspace of W and T is an affine function of the canonical minimal

sufficient stat ist ic for the exponential family {pQ: θ e 0 } . (That such a

characterization holds under mild regularity conditions for a general

family {p0} was proved in Wijsman (1973) and Joshi (1976).) [Use

Exercise 4 . 4 . 2 . ]

4.4.4

Suppose {pQ} is a canonical one-parameter exponential family. Show

that when the information inequality is not an equality i t can be improved to

an inequality of the form:

(1) Var
0
 T > ε'(θ

o
)M(θ

o
)ε(θ

o
)

where ε(θ) is the jχl vector with

J
(2) ε(θ), = - ^ e f θ ) 1 = 1 J

3Θ3Θ

and M(θ) is an appropriate j x j symmetric matrix, not depending on T. In
-1

fact, M(θ) is the covariance matrix at θ of the vector with coordinates

(3)
3Θ.

(The inequality (1) with M as in (3) is called a Bhattacharya inequality.
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Such inequalities are valid also for full k parameter exponential families

and for ̂ -dimensional statistics, as well as for differentiate subfamilies

(p replaces θ in (1) - (3)). See e.g. Lehmann (1983, p.129). [A direct proof

is possible which also yields the formula (3). An alternate proof assumes

ΘQ = 0, ψ(θ
0
) = 1 (w.l.o.g.) and uses Exercise 4.2.1 to write

/ (T(x) - o u )
2
 v(dx) >_ Σ α? = Σ /T(x)f. (x)v(dx). ]

υ
 1=1

 Ί
 1=1

 Ί

4.4.5

Suppose X...... are i . i . d . observations from a d i f f e r e n t i a t e

exponential subfamily. Let N be a stopping time with PQ (N < °°) = 1 and

(1) Eθ (exp(ε N)) < » for some ε > 0

n
Let Sn = Σ X. and l e t T(SM, N) be a stat ist ic for which la (T) < «. Then

(2) Z Θ Q ( T ) > (Eθ ( N ) ) " 1 (Ve(p 0 )) ' yHpQ)(Mp0))

where e(ρ) = E
Θ (

D
) (

T
(

S
N >

 N
) ) [Prove directly or use Exercise 3.12.2 (iii)

and Theorem 4.4. The regularity condition (1) can be considerably relaxed

or modified, but some condition on N is needed in general. See Simons (1980).]

4.4.6

( i ) When {pQ} is a f u l l canonical exponential family and

p
EQ (T ) < «>, the Bhattacharya i n e q u a l i t i e s 4 . 4 . 4 ( 1 ) tend to e q u a l i t y in the

l i m i t as j + °°. ( i i ) I f {ΌA is an m-dimensional d i f f e r e n t i a t e subfamily

with m < k then there are s t a t i s t i c s T for which the appropriate Bhattacharya

i n e q u a l i t i e s do not tend to e q u a l i t y as j + «. [ ( i ) Use Exercise 4 . 2 . 1 and

proceed from the proof sketched in the h i n t i n Exercise 4 . 4 . 4 . ( i i ) Consider

a curved exponential family in the canonical version 3 . 1 1 ( 1 ) , and l e t

T(x) = x 2 - x 2 . ]

4.5.1

Prove the assertion in 4.5 when 3 ^ 0 . [Let Y = X - γ. Apply 4.5
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to yield αY as an admissible estimator of ξ(θ) - γ. Hence αY + γ is

admissible for ξ(θ).]

4.5.2

Show the condition 4.5(2) implies 6 Jx) = (αx + β) € K a.e.(v).
α,p

[The theorem would be false otherwise! But a d i r e c t proof not involv ing the

theorem is also of i n t e r e s t . Use Lemma 3.5.]

4.5.3

Suppose (λ, γ) satisfies condition 4.5(2), λ
1
 < λ, and either

γ € K° or v is a discrete measure. Then (λ1
, γ) satisfies condition 4.5(2).

If γ € 8K = K - K°, and (λy γ ) , (λ
2
, γ) both satisfy 4.5(2), and λ

χ
 < λ < λ

2

then (λ, γ) satisfies 4.5(2).

4.5.4

Let X ~ Γ(a, σ) , a known, and consider the problem of estimating

σ = E(X) under squared error loss, ( i ) Using Kar l in 's theorem v e r i f y that

δ o ( x ) =αx + β is admissible i f α = -^γ , 3 = 0 or i f α < - ~ , β > 0.
Ot, p α" f Ί — a + l

(ii) Show that if α,β do not satisfy these conditions then 6
 Q
 is inadmissible

Ot>P

since there i s an admissible l inear estimator which is bet ter .

4.5.5

Consider the one-parameter exponential family defined by 3.4(1)

with θo = -1 and θ = θi € (-°°> 0) . Consider the problem of estimating ξ(θ)

under squared error loss. Let δ o be a l inear estimator as in 4.5(1) .
Oί»p

Observe that condit ion 4.5(2) of Kar l in 's theorem is not s a t i s f i e d at θ = 0.

Sh.ow that 6 o is inadmissible. [For the case α = 1, β = 0 l e t
OUp

X X £ C

(1) δ ' (x ) =

L
 c + (x-c)/2 x > c

Then R(θ, δ
1
) < R(θ, δ

Ί n
) for ξ(θ) £ c and, for ξ(θ) >_ c, a crude bound yields
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(2) R(θ, δ') < [h) Var
θ
(X) + (*)(ς(θ) - c )

2
 + ξ

2
(θ)

= ξ 3 ( θ ) / 8 + (ξ(θ) - c ) 2 / 4 + ξ 2 ( θ )

Hence for c s u f f i c i e n t l y large R(θ, 61) < R(θ, δQ ^ = ξ 3 ( θ ) / 2 also when

ξ(θ) > c ]

4.5.6

Let {p
θ
> be as in 4.5. Suppose it is desired to estimate

g(θ) = ξ(θ) + W'(θ) under squared error loss. Show the estimator δ
 Q
 is

Otjp

admissible if

(1) / exp(λψ(θ) + (1 + λ)W(θ) - γλ(θ)dθ

diverges at both θ and θ. [Define b( ) as in 4.5. 4.5(7) becomes

(2) 2b'(θ) - 2(λξ(θ) + (1 + λ)W(θ))b(θ) + (1 + λ)b
2
(θ) ± 0 .]

(See Ghosh and Meeden (1977). Although an estimator δ
 o
 may be admissible

α,p

here, it is not clear that it is desirable, whereas for the case W = 0 of

4.5 these estimators are yery natural.)

4.5.7

Let {p
Q
} be a canonical two dimensional exponential family with
Ό

o

W = R . Consider the problem of estimating ξ(θ) with squared error loss (so

that R(θ, δ) = E
0
(||δ(X) - ξ(θ)||

2
)). Show that the estimator δ(x) = x

is admissible. Apply this result when (X-, X«) are independent normal,

independent Poisson, independent binomial, or the sample means from Von-Mises

variables. [Using the bivariate information inequality leads to replacement

of 4.5(7) by

(1) 2v b(θ) +
 2

2 ab.(θ)
where V b(θ) = Σ — \ τ — . If b satisfies (1) so does

1=1
 9 θ

i
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(2) B(θ) = (2π)"
1
 /

2π
 Q"

1
 b(Q.Θ)dφ

0 Φ Φ

where

/cos φ -sin φχ

* ^sin φ cos φ'

b is spherically symmetric; hence can be written as b(θ) = β(||θ||)θ . Let

t = I |θ| |. (1) becomes

(3) 2kβ(t) + 2t3'(t) + t V ( t ) < 0 .

Now let K(t) = t
2
β(t) to get

(4) 2K'(t) + K
2
(t)/t £ 0

in place of 4.5(8). (Note how the argument fails if k > 2!)] (Stein (1956),

Brown and Hwang (1982, Corollary 4.1).)

4.5.8

Let X ~ Γ(α, σ), α > 0 a specified constant. Consider the

problem of estimating σ = -r under the loss function

(1) L(σ, a) = i - l n φ - 1 .

(See Chapter 5 for a natural interpretation of this loss. See also Exercises

4.11.3 and 4.11.4.) Let 6Q(x) = £ and l e t 6(x) = (1 + Φ(x))όQ(x) be any

estimator. Let

(2) e(θ) = Eβ(φ) and W(t) = t - l n ( l + t ) , t > -1 .

( i ) Show that

(3) R(θ, 6) - R(θ, δ0) > - M i M + W(e(θ))

( i i ) Use (3) to show that <5Q is admissible among al l estimators having

e(θ) £ B for a l l θ € (-°°, 0 ) . (6Q is actually admissible with no restriction

on δ. See Brown (1966).)
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[(i) R(θ, δ) - R(θ, δ
Q
) = E

θ
(-ΘXφ(X) -

= -θe'(θ)/α + E
θ
(φ(X) - ln(l + φ(X))). For (ii) follow the pattern of the

proof of Theorem 4.5. (It is also possible to use (3) to prove δg is admissi-

ble with no restriction on δ.)]

4.6.1

Prove 4.6(2). [Use the information inequality to write

/ h(p)R(p, δ) dp >_ m + /{2h(p) Tr(Vb(p)) + h(p)Tr(J(p)b(p)b' (p))}dp .

Integrate by parts the f i r s t term in the integrand in order to get an integral

whose integrand is a quadratic in b(p) for each fixed p. Minimize this inte-

grand for each p to get 4.5(2).] See Exercise 5.8.1 for a stat ist ical

application of 4.5(2).

4.6.2

In preparation for the proof of 4.6(6) prove the following facts:

(i) For each K, V
e
(κ)(p) exists for all but at most a countable number of

points, p.

Fix PQ, K for which Ve,
K
)(p

0
) exists. Let δ*(x) = <5/

K
N(X; ρ

Q
) ,

e*(p) =
 E

θ
(p)(<5*(

χ
)K and D = (d..) = Ve*(p

Q
) - V e

( κ )
( p

Q
) . Show

(ii) d.. = 0 , i f j , and

ί 1 " ) l d ϋ l ± p θ ( p 0 ) ( l χ i - θ i l > κ )

Let |D| = ( | d . . | ) w i t h d . . as above and l e t J = J ( p Q ) be symmetric

p o s i t i v e d e f i n i t e w i t h e igenvalues λ , >. . . . >_ λ > 0. Show

( i v ) T r ( J D J " D) < τ - ^ T r | D | < — — ^ - ^
" λm λ m K 2

- 1
[Since |d. | <_ 1 the e igenvalues - - and hence diagonal elements - - o f JDJ

a l l have magnitude a t most -r^ . Then Rv = T r ( J E) > T— Tr E where
λm K " λ l
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4.6.3

Also in preparation for the proof of 4.6(6) prove the following

matrix inequalities

( i ) TrίJA'J^A) _> 0 for any (kxk) positive definite symmetric J

and any (kx k) matrix A.

( i i ) Tr(J(A' + B'JJ'^A + B)) > α TrίJA'J^A) - - j ^

[ ( i ) Diagonalize J (and J" ) and then w r i t e out Tr( ) as a sum of indiv idual

terms, ( i i ) follows from ( i ) . ]

4.6.4

Now prove 4.6(6). [Write the information inequality for δ*.

Substitute Ve*(p
Q
) = Ve,

κ
x(p

Q
) + D and use 4.6.2(iv) and 4.6.3(ii). (Note

that both these inequalities are nearly trivial when k = 1, so in that case

the overall proof is much simpler to follow.)]

4.6.5

The inequality 4.6(6) is never sharp (except sometimes in the

limit as K •+ °°). To examine how far from sharp the inequality is compare R
κ

and the best lower bound from 4.6(6) in the case where k = 1, L is ordinary

squared error loss, X N(θ, 1), p = θ, and δ(x) = ax (0 < a <_ 1).

[For a = 1, K = 1, I get R
κ
 = .516 >_ .250 = best lower bound. For a = 1,

K = 3 I get R
κ
 = .991 >_ .5625 and for a = 1, K = 10 R

κ
 = .999+^ .891 .]

4.6.6

Prove 4.6(7). [See 4.6.1.]

4.6.7

Investigate the sharpness of (7) by comparing the Bayes risk for

L^ and the bound on the right of 4.6(7) when k = 1, L is ordinary squared

error loss, X ~ N(θ, 1), p = θ, and h is a normal (0, σ
2
) density. (Note:

h does not have compact support, but it can be shown (Exercise !) that the

tails of h decrease fast enough so that 4.6(7) is still valid.) [When K = «
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2 2
so t h a t 4 . 6 ( 7 ) reduces to 4 . 6 ( 2 ) the Bayes r i s k is σ / ( I + σ ) and the lower

2 2
bound is (σ - l ) / σ . Thus even when K = °° the bound is not sharp, although

2
i t is asymptotical ly sharp as σ ->• °° a l s o . ]

4.11.1

Let δ denote the James-Stein estimator 4 . 1 1 ( 1 ) with r Ξ k - 2 and

l e t 6 denote the corresponding " p o s i t i v e p a r t " estimator 4 . 1 1 ( 6 ) . Show t h a t

R(θ, δ + ) < R(θ, δ ) . [Write R(θ, δ) - R(θ, δ + ) = E Q (g( | |X| | 2 ) ) . Note S"(g) = 1

and I S " ( g ) = - 1 , and ( t r i v i a l l y ) E g ( g ( | | x | | 2 ) ) > 0 . Use Exercise 2 . 2 1 . 1 . ]

4.11.2

Suppose X - N(μ, σ 2 l ) (X € Rk) and, independently, V/σ2 - x^. I t

2
is desired to estimate μ with squared error loss — σ is unknown. Let

k :> 3. Let σ2 = V/m and

6(x, . Λ .
ι i χ i ι 2 / δ 2

where 0 £ s( ) <_ 2(k-2)m/(m + 2) and s( , σ ) is d i f f e r e n t i a t e and non-

decreasing f o r each value of σ . Show t h a t δ(x) is b e t t e r than δ Q ( x ) = x.

[Assume ( w . l . o . g . ) t h a t σ = 1. Condition on σ apply 4 . 1 1 ( 5 ) with

r ( ) = σ s( , σ ) ; and take the expectation over σ . (A frequently recommend-

2 Λ 2 2 Λ 2
ed choice f o r s is s ( | | x | | , σ ) = m i n ( | | x | | / σ , (k-2)m/(m + 2 ) ) corresponding

to 4 . 1 1 ( 6 ) . ]

4.11.3

Let . be independent r ( α . , σ.) variables with α. known,

i = l , . . . , k . Consider the problem of estimating σ = ( σ - , . . . , σ k ) with loss

2
function L(σ, a) = Σ σ . ( l - a./σ.) . The best l i n e a r estimator f o r this problem

is δQ with 6 Q i ( x ) = x^/(a. + 1 ) . ( i ) When k = 1 t h i s estimator is admissible.

[Use Theorem 4 . 5 . ] ( i i ) for k > 2 define δ by

k q

(1) δ.(x) = χ./(αΊ. + 1) + (k-l)α. + 1/ Σ (oj + IΓ/XJ .
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Show that R(σ, 6), < R(θ, δ
Q
). (This is the easiest of several interesting

related results in Berger (1980b).) [Let φ^x) = (^ +

Using Corollary 4.7 show

(2) R(σ, 6
0
) - R(σ, δ) =

-EtΣ ( L ^L-2 ^ φίX) + —LJ φ (
(α. + 1 Γ X i α1 * (α. + 1)Z 3 x i 1

2 —̂—— 2
since σ..(l - a/σ^ = (a/ -θ. - 1// -θ..) . Then show the expectand on the

right of (2) is negative. (Use the fact that -^r"Φ Ί ( χ ) < 0 to eliminate the
σX 1

terms involv ing φ. -r— φ. . ) ]
I σX 1

4.11.4

Let X. ~ Γ(α., σ ^ , α^ > 0 specified constants, i = l,...,k, as

in Exercise 4.11.3. Consider the loss function

(1) L(σ, a) = Σ (a /σ. - ln(a./σ.) - 1) .
i = l

 1 Ί Ί Ί

Define 6 n by 6 .(x) = x/α. . (See Exercise 4.5.7.) Let k >_ 3 and define 6 by

M x ) = (1 + Φ i ( χ ) ) δ

Λ 1 ( χ ) where

cα. In x.
(2) φ.(x) = ]

 ?
1 1 + Σ ( α . I n x^Γ

with 0 < c <_ 1. Show that R(σ, 6) < R(σ, 6
Q
) , σ > 0. [The unbiased estimator

of R(σ, ό) - R(σ, δ
Q
) is

x. 3φ
i

(The following algebra can be simplified by changing variables in (3) to

y. = α In x , i = l , . . . , k . ) Then show this is always positive, using the

facts that |Φi | ± c/2 and t - In (1 + t) <_ 2t2/3 for |t| <_h. (You wi l l see
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that values of c somewhat larger than 1 can also be used in (2).)] See Dey,

Ghosh, and Srinivasan (1983).

(Change variables in Exercise 4.5.7(3) to σ = -| = ξ(θ), and

compare with the i -th term in brackets in (3), above. This identity of

expressions is analogous to that which occurs in the estimation of normal

means with squared error loss. See 4.11(8).)

4.11.5

Let X ~N(θ, I). Consider the problem of estimating θ € R

under squared error loss. Suppose for some C < «>, ε > 0

(1) (δjU) - x) x > 2 - k + ε for llxll > C .

Then δΛx) is inadmissible.

[Let 6 9 ( x ) = ό Ί ( x ) - ε [ ( | | x | | - C ) + Λ 1] *-*-
ι
 llxll

and use 4.10(4).] (Note that this generalizes Example 4.11 since δΛx) = x

satisfies (1) when k >_ 3.)

4.15.1

( i ) Show t h a t f o r estimating the natural parameter the corres-

pondence between p r i o r measures and t h e i r generalized Bayes procedures is one-

one i f Supp v has a non-empty i n t e r i o r ( i . e . show 6 G = 6 H a . e . ( v ) implies

G = H ) . [Use Theorem 4.15 and Corol lary 2 . 1 3 . ] ( i i ) Give an example to

show t h a t t h i s u n i c i t y may f a i l i f (Supp v ) ° = φ.

4.15.2

Show that every admissible estimator of θ under squared error

loss satisfies the monotonicity condition

(1) (x
2
 - x

χ
) (ό(x

2
) - 6(

X l
)) i 0 a.e.(v * v) .

[Use 4 . 1 4 , 4 . 1 5 , and 2.5. (Do not use 4 . 1 6 ( 1 ) f o r t h i s would not y i e l d ( 1 )

f o r xΊ e 9/C.)]
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4.16.1

Let X - P(λ). Let c
Q
 ± 0. Show that the estimator 6(0) = c

Q
,

ό(x) = In x, x=l,2,... , is not an admissible estimator of the natural

parameter θ = In λ under squared error loss, (ό is the "maximum likelihood

estimate" of θ; see Chapter 5. Also, the squared error loss function

L(θ, a) = (a - θ) can be justified in its own right, or one can transform

to λ = e
θ
 and let b = e

a
. The loss then takes the form (In b - In λ )

2

2
= (In (b/λ)) = L*(λ, b). The inadmissibility result, above, then says

also that ό*(x) = x is an inadmissible estimator of λ under loss L*. Losses

of the form L* appear naturally in scale invariant problems; see Brown (1968).)

[Use Theorem 4.16. If 6 is of the form 4.16(1) then, by monoto-

nicity,

λi(x)

(1) In [x] <
 χ

^ < In ([x] + 1) , x > 1 .
H

Hence λ
H
(x) -»«as x -> <» but λ..(x) = o(e

ε x
) as x -* <», v ε > 0. This is

impossible by Lemma 3.5 and Exercise 3.5.1.]

4.17.1

Let X ~ Bin(n, p), n >_ 3, and consider the problem of estimating

the natural parameter θ = In (p/(l - p)) under squared error loss. Show that

the procedure

-1 x = 0

ό(x) = 0 1 £ x <_ n-1

1 x = n

is admissible. But, 6 is not generalized Bayes. (Note that Corollary 4.17

is not valid here because 4.17(1) is not satisfied. Of course, Theorem 4.16

is satisfied with H giving unit mass to the point θ = 0.)

[Let ό
1
 be another estimator. Suppose ό'(0) = -1 + α, α > 0. Then

lim IθΓ^Rίθ, ό
1
) - R(θ, 6)) = α > 0 .
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Hence R(θ, δ
1
) ± R(θ, δ), V θ, implies (i) δ'(0) <_ -1. Similarly (ii)

ό'(n) >_ 1. Among all procedures satisfying (i), (ii) 6 uniquely minimizes

R(0, 6). Hence δ is admissible. If 6 were generalized Bayes the prior G

would have to have support {0} by 2.5; but this would imply 6(0) = 0 = ό(n).]

4.17.2

Let Z ̂  r(α,σ) as in 4.17.3, below, (i) Show that the estimator

δ
Q
(x) = 0 cannot be represented as a generalized Bayes estimator of θ = 1/σ.

(ii) For α < 2 show δ
Q
 is admissible, (iii) For α > 2 show δ

Q
 is inadmissible,

[(ii) If δ M
o
 then, for some € > 0, R(θ,<5) > £θ α

 as θ + 0. (iii) Let

δ(x) = (α-2)/x.]

4.17.3

Let Z ~ r(α, σ), α known. Then the distributions of X = -Z form

an exponential family with natural parameter θ = 1/σ. Consider the problem

of estimating θ with squared error loss. Show that

(1) δ(x) = be
x
 (= be"

z
)

can be represented in the form 4 . 1 6 ( 1 ) . [Let H be a Poisson d i s t r i b u t i o n !

I t can f u r t h e r be shown t h a t δ is admissible when α <_ 2 since i t uniquely

minimizes m

(2) H ( { 0 } ) l i m s u p R(θ, ό ) e ψ ( θ ) + Σ H ( { i } ) R ( i , δ ) e ψ ( i ) . ]
0 i

p
θ+0 i=l

4.17.4

Let {p_} be any exponential family with K compact (Binomial,

Multinomial, Fisher, Von Mises, etc.). Show that δ(x) = x is an admissible

estimator of θ under squared error loss. [Show that δ is Bayes for the prior

distribution, G, with density c exp(ψ(θ) - ||θ||
2
/2) and that B(G) < «> .

Admissibility then follows from basic decision theoretic results. See, e.g.

Lehmann (1983, Theorem 3.1). Use Exercise 3.4.1 to verify that B(G) is
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finite (and also that G is finite).] Caution! δ(x) = x is not a very natural

estimator of θ, in spite of its admissibility. Hence its use in this problem

is not necessarily recommended (unless the prior G is indeed as above).

If Supp v is finite then <5(x) = x is a natural estimator of ξ(θ), and is

admissible under squared error loss for estimating ξ(θ). See Exercise 4.5.5

and also Brown (1981b).

4.17.5

Let X ~ P(λ). Consider the problem of estimating λ under loss

function

(1) L(λ, a) = (ln(a/λ))
2
 .

Show that estimator δ^x) = e
x
 is generalized Bayes, but not admissible. [The

question is equivalent to asking whether the estimator 6(x) = x is generalized

Bayes, or admissible for estimating the canonical parameter, θ, under squared

error loss. Reason as in Exercise 4.17.4 to show 6(x) = x is generalized

fiayes. However, for estimating θ, direct calculation shows that δ'(x) = bx,

e"~ <_ b < 1 is better than δ(x). This inadmissibility result shows that the

general result of Exercise 4.17.4 does not extend to problems with K not

compact, even when k = 1. (All estimators of the form 6(x) = bx, 0 < b <_ 1,

are generalized Bayes for estimating θ. We conjecture that none of them are

admissible.)]

4.17.6
1/

Let X ~ N(θ, I). Consider the problem of estimating θ€ R under

squared error loss, (i) Let G be a generalized prior density. Show that

the generalized Bayes estimator (if it exists) can be written in the form

CD 6G(x) = x

where

(2) g*(x) = / pfl(x) G(dθ)
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( i i ) Consider the l inear p a r t i a l d i f f e r e n t i a l inequal i ty

(3) V (g*(x) vu(x)) < 0 ||x|| > 1

subject to the condit ion that u is continuous on ||x|| _> 1, and

(4) u(x) = 1 for ||x|| = 1, u(x) £ 1 for | | x | | > l .

Show that i f ( 3 ) , (4) have a non-constant solut ion which also s a t i s f i e s

(5) M l l l j l l 2 ) < °° » θ € Rk ,

then όg is inadmissible.

[ ( i i ) Let 6(x) = όg(x) + η j . Use (5) and Green's theorem to

j u s t i f y an expression l i k e 4.10(4) for R(θ, όg) - R(θ, 6) but with an extra

term involv ing a surface integral over {x: ||x|| = 1). This extra term is

non-negative because of ( 4 ) , and the remainder of the expression is non-

negative because of ( 3 ) . (Note that Exercise 4.11.5 is a special case of

the above. Brown (1971) proves that s o l u b i l i t y of (3) , (4) implies inadmissi-

b i l i t y of 6Q (condit ion (5) is not required), and conversely i f

is bounded -- and somewhat more generally -- then i n s o l u b i l i t y of ( 3 ) , (4)

implies a d m i s s i b i l i t y of 6Q. See also Srinivasan (1981).]

4.17.7 (Berger and Srinivasan (1978).)

( i ) Again l e t X ~ N(θ, I ) and consider the problem of estimating

θ € R under squared error loss. Suppose

CD 6(χ) = x + i + o(—ί-Λ

for two constant kxk matrices B and M. Show that ό is inadmissible unless

B = cM for some c € R.

[Theorem 4.17 and the representation 4.17.5(1) imply

V(ln g*(x)) = ^ l

By considering l ine integrals over closed paths show th is is impossible
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unless B = cM. The calculations are easier i f B and M are simultaneously

diagonalized ( w . l . o . g . ) . Then when k = 2 the only paths that need be considered

are those bounding sets of the form {x: x 1 >_ 0, χ« _> 0, r <_ | |x| | <_ r + ε } . ]

( i i ) Suppose, instead, that X ~ N(θ, I) with % known (posi t ive

d e f i n i t e ) ; and 6 is given by ( 1 ) . Now w r i t e a necessary condit ion on B and

M for admissibl i ty of 6. Does the condit ion involve %Ί What i f the loss

function is L(θ, a) = (a - θ ) 1 D(a - θ) for some (known posi t ive d e f i n i t e

matrix D?

4.18.1

Verify the assertion in 4.18(2). [Use Lemma 3.5 and Exercise

3.5.1(2).]

4.20.1

If x ί S as defined in 4.20(1) then / P
θ
(x)g(θ)dθ = °°, so that the

generalized Bayes procedure for the conjugate prior does not exist at x.

[See Exercise 4.19.1.]

4.20.2

Show that Kar l in 's condit ion 4.5(2) implies that S => K°. (Hence,

i f v(3K) = 0 i t implies that the estimator 4.20(2) = 4.5(1) is generalized

Bayes.) ( i i ) Give an example where 4.5(2) is s a t i s f i e d but 4.20(2) = 4.5(1)

is not generalized Bayes.

4.20.3

Let { p Q : θ € 0} be a stratum of an exponential fami ly , as

ϋ

defined in Exercise 3.12.1. Suppose it is desired to estimate

r ( θ )

η ( θ ) = d ) . . u nder squared error loss. (Note that in the sequential
ζ ( 2 ) ( θ )

setting of 3.12.2(i i i) and 3.12.3, η(θ) = EΘ(Y) is a \jery natural quantity

to estimate.) State general conditions to just i fy the formal manipulation —
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(1)
χ m / η(θ)eθ*X dθ

(2) / e θ * x d θ
( 1 )

which says that <5(x) = -^- is generalized Bayes on (K/ ,\)° relative to the
x
(2)

 ( 1 )

prior measure dθ,-v on 0* = {(θ/.j,
 θ
( 2 ) ^

θ
( l ) ^ € θ : θ(l) € ^ ( 1 ) ^ *

(The conclusion is justified in the situation of 3.12.2(ii) and in that of

3.12.2(iii) if pQ(N <_ NQ) = 1, and somewhat more generally.)

4.2Q.4

Generalize 4.20.3(1) to obtain a representation for certain estimators
x m + a

of the form u ; . • .
x(2) + b

4.21 .1

Show that 4.21(5) and 4.21(2) imply 4.21(1) and 4.21(3).

[4.21(1) is trivial from 4.21(5'). For 4.21(3) reason as in the proof of

Theorem 4.19. The key fact is that, with q as defined there,

-B x x u x -B 9 Θ
1

, etc.
-B

Now integrate over Θ
2
>...»θ

k
 and let B -» «>. The first part of the expression

is bounded because of 4.21(1), (2), and the second part because of 4.21(5').]

4.21.2 (Converse to Theorem 4.19.)

Let G be a prior measure whose Bayes procedure for estimating ξ(θ)

exists on S and satisfies δ(x) = αx + β. Suppose S° f φ. Assume further

that G possesses a density g satisfying 4.21(1), (2), (3). Then G is a

conjugate prior measure, and its conjugate prior density, 4.18(1), has

α = l/(λ + 1) and 3 = γ/(λ + 1).) Apply 4.7(3) to the last integral of the
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equality

(1) (λ
+
l)/(Vψ(θ))g(θ)e

θ χ
-Ψ

( θ )
dθ = γ/g(θ)e

θ χ
-ψ(

θ
)dθ + x/g(θ)e

θ
*

x
"*<

θ
>dθ ,

rearrange terms and invoke completeness to find

(2) vg(θ) = (γ - λVψ(θ))g(θ) .]

(Diaconis and Ylvisaker (1979) show that this statement is true

without this "further" assumption that G possess a density.)

(A question of interest is whether this unicity result extends

to non-linear generalized Bayes estimators. To be more precise suppose the

generalized Bayes procedures for estimating ξ(θ) under priors G and H exist

and are equal everywhere on S with S° t φ. Does this imply G = H? In the

case of the normal distributions or the Poisson distribution the answer is

yes. See 4.15.1 for the normal distribution and Johnstone (1982) for the

Poisson distribution.)

4.24.1

Suppose δ( ) is admissible for estimating ξ under squared error

loss. Then v{χ : 6(x) (. K} = 0.

[Define δ'(x) as the projection of 6(x) on K. If

v{x : 6(x) t ό'(x)} t 0 then R(θ, ό') < R(θ, δ) whenever R(θ, δ) < «> .

(If δ is admissible there must exist some θ for which R(θ, δ) < «>.)]

4.24.2

(i) Verify that the conclusion of Theorem 4.24 remains valid when

{p
Q
} is a steep exponential family and Θ c W°. (ii) Even more generally, it

Ό

is valid for any one-parameter exponential family i f

(1) Θ c {θ : EΘ(X) = ξ(θ) € R}

and i f the definition 4.24(1) is modified to
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(2) I' = {x : v({y: y > x, δ(y) € ξ(N°)°}) > 0

and ξ({y: y < x, δ(y) e ζ(W°)°}) > 0}

( i i i ) Extend Theorem 4.24 to the problem of estimating ρ(θ) under squared

error loss where p: N° -> R is a non-decreasing funct ion. [The formulation

and proof are ident ical to ( i i ) , above.]

4.24.3

Let v = v̂ . + Vp where v, is Lebesgue measure on (0, 3) and v^ gives

mass 1 to each of the points x = 1,2. Consider the estimator 6 of ζ (under

squared error loss) given by

0 x < 1

(1) δ(x) h x = 1

\h 1 < x < 2

7h x = 2

3 x > 2

(i) Show that δ has the representation 4.24(2) on I = (1,2), but (ii) this

representation cannot be extended to the points x = 1,2 even though

δ(x) e K° for these points. (iii) Show that δ is a pointwise limit of a

sequence of Bayes procedures, (δ is also admissible. See Exercise 7.9.1.)

4.24.4

Let X have the geometr ic d i s t r i b u t i o n w i t h parameter p ( G e ( p ) ) ,

under which

(1) PKX = x} = p ( l - p ) x x = 0 , l , . . .

( i ) Show t h a t δ ( x ) = x/2 i s an a d m i s s i b l e e s t i m a t o r o f E (X) = ( l - p ) / p under

squared e r r o r l o s s . [Use K a r l i n ' s Theorem 4 . 5 . Note a l s o t h a t the e s t i m a t o r s

δ ( x ) = ex w i t h c > h f a i l to s a t i s f y 4 . 5 ( 2 ) and are not a d m i s s i b l e . ] ( i i )

Suppose i t i s known i n a d d i t i o n t h a t p <_ ̂ , so t h a t E (X) >̂  1 . , Using Theorem

4.24 show t h a t the t r u n c a t e d v e r s i o n o f δ-- namely δ ' ( x ) = m a x ( δ ( x ) , 1) —
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is inadmissible. , ( i i i ) Can you find an (admissible) estimator better

than ό1 ??)




