
LECTURE VII. COUNTING LATIN RECTANGLES

The problem of determining an asymptotic expression for the number N. of
K j Π

k x n Latin rectangles as n approaches infinity was first solved by Erdδs and

Kaplansky (1946) for the case

(1) k = o((log n)
Γ
).

They proved that, subject to (1),

N k(k-l)

κ,n
 ( n ! )

κ

This result was extended to

(3) k = o(n
V3
)

by Yamamoto (1951). The case k = 2 is the familiar "probleme des rencontres,"

where the exact solution,

(4) p2,n = ΪQ^ΊΓ

shows that, in this case, the approximation

(5) P
2 j n

 Λ. e"
1

given by (2) is extremely good if n is at all large. In this lecture I shall

prove Yamamoto's result that, for k = o(n
2
),

(
β
) Pk,n =

 e 2

In a later lecture I shall derive a more accurate approximation than (6).

These two lectures are based on my 1978 paper in the Journal of Combinatorial

Theory, Series A.

69



70 APPROXIMATE COMPUTATION OF EXPECTATIONS

A k x n Latin rectangle s£ is a k x n rectangular array in which the

entries are elements of {l,...,n} and there are no repetitions in any row or

column. If we choose a k x n rectangular array by taking as the rows indepen-

dent random permutations of l,...,n, then p. defined in (2) is the probabil-

ity that the resulting array is a Latin rectangle. I shall follow Erdδs and

Kaplansky and Yamamoto in imagining that we are already given a k x n Latin

rectangle =£ and choose as (k+l)st row a random permutation π of {l,...,n}.

We shall see that for k = o(n^) the probability p£
 n
 _, that the resulting

configuration is a (k+1) x n Latin rectangle is given by

which implies (6). This is intuitively plausible since the expected number

of coincidences of the new row with the k original rows is k and coincidences

in the different columns are nearly independent rare events, so that (7) is the

appropriate Poisson approximation. We can express W, the number of coinci-

dences of the (k+l)st row with earlier rows, as

(8) W = I Λπ(i) € S(i)},

where S(i) is the set of numbers occurring in the i column of the given k x n

rectangle.

As in earlier lectures, the principal tool will be auxiliary randomiza-

tion. Let I be uniformly distributed over {l,...,n} and let the conditional

distribution of J given I be uniform over the complement of {1} in {l,...,n}.

Also let

(9) π' = Πo(I,J),

where (I,J) is the designated random transposition, so that

π(i) if 1 ί {I,J}

(10) π (i) = π(J) if i = I

π(I) if i = J.

The ordered pair (π,π') of random permutations is an exchangeable pair in the
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sense that the joint distribution of (π,π ) is the same as that of (n\n).

This can be seen by imagining that we first choose I and J, then n(i) = n'(i)

for i i {I,J} and finally we choose one of the two remaining possibilities for

π and the other for n
1
. We define

(11) W = I Λ{π'(1) <E S(i)}

i=l

and observe that (W,W) is also an exchangeable pair. It follows by the

usual antisymmetry argument that, for any f: {0,...,n} -> R,

(12) 0 = E[f(W)j?{W=W+l} - f(W)j?{W=W'+l}]

= E[f(W)P
Π
{W'=W+l} - f(W-l)P

n
{W=W-l}].

From this it will follow that

(13) Eh(W) = β -h + (n-l)E(V ,h(f]))(j?{CD*} - J>{DD*})

for arbitrary h: {0,...,n} •* R, where

(14) %,^-i

and the other symbols will be defined in the course of the argument. A crude

bound for the remainder on the right-hand side of (13) with h the indicator

function of zero will yield (7).

In order to approximate the conditional probabilities occurring on the

right-hand side of (12) it will be necessary to introduce four events, C, D,

C*, and D*. The even C is the creation of a coincidence at I and the event D

the destruction of a coincidence at I when π is replaced by π
1
, and C* and D*

are the corresponding events at J. More precisely

(15) C = {Π(I) ί S(I) & π(J) € S(I)},

(16) D = {π(I) e S(I) & Π(J) I S(I)},

(17) C* = {π(J) t S(J) & Π(I) € S(J)},

and

(18) D* = {π(J) € S(J) & π(I) ί S(J)}.

Then
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(19) {W'=W+1} = C(C* U D* )
C
 U C*(C U D )

C
,

and consequently

(20) P
Π
{W=W+1} = P

π
(C)-P

Π
(CC*)-P

π
(CD*)+P

π
(C*)-P

π
(CC*)-P

π
(C*D)

= 2[P
Π
(C)-P

Π
(CC*)-P

Π
(CD*)].

Similarly

(21) P
Π
{W

!
=W-1} = 2[P

Π
(D)-P

π
(CD*)-P

Π
(DD*)].

It is not difficult to evaluate P
Π
(C) and P

Π
(D) and to obtain reasonable

upper bounds for P
Π
(CD*) and P

Π
(DD*). No satisfactory upper bound for P

Π
(CC*)

can be obtained, but fortunately we shall not need it. We have

(22) P
Π
(C) = P

Π
{Π(I) t S(I)}P

Π
{Π(J) € S(I)|Π(I) t S(I)}

n-W k
n * rΓT'

since there are n-W possible values i of I for which n(i) g S(i) and for any

such i there are k of the n(j) with j t i for which n(j) € S(i). Similarly

(23) P
Π
(D) = P

Π
{Π(I) € S(I)}PΠ

{Π(J) I S(I)|n(I) € S(I)}

= W . n-k
n * n-1#

By the definition of C and D* in (15) and (18) we have

(24) Pπ(CD*) <_ P Π {π(J) € S(J) & π(J) € S ( I ) }

= P π {π(J) € S ( J ) } P n { n ( J ) e S ( I ) | π ( J ) € S (J ) }

= W . J i l l
n # n - 1 "

S i m i l a r l y

(25) PΠ(DD*) < P Π { Π ( I ) € S ( I ) & n ( J ) € S (J ) }

- WfW-1
t

Now we can derive (13). Substituting (20) and (21) and then (22) and (23)

in (12), we obtain
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(26) 0 = \ E[f(W)P
π
{W

1
=W+l}-f(W-l)P

Π
{W'=W-l}]

= E[f(W)(P
Π
(C)-P

Π
(CC*)-P

Π
(CD*))

-f(W-l)(P
Π
(D)-P

Π
(CD*)-P

Π
(DD*))]

^ = ! f j - -P
Π
(CC*)-P

Π
(CD*))

Letting

(27) p - i .

we obtain, after multiplying (26) by n-1,

(28) E[p(n-W)f(W) - (l-p)Wf(W-T)]

= (n-l)E[f(W)U{CC*}+J{CD*})

-f(W-l)(.f{DD*}+ji{CD*})]

= (n-l)E[(f(W)-f(W-l))jKCD*}

-(f(W-l)-f(W-2)WDD*}].

I have used the fact that

(29) Ef(W)j{CC*} = Ef(W')j!{DD*}

= Ef(W-2)Λ{DD*}.

With 15 defined by

(30) W = I JCΠ(1) 6 S(1)}

we can rewrite (28) in the form

(31) E[p(n-w)f(W)-(l-p)Wf(W-l)]

= (n-l)E[f(R+l)-f(β)](j<CD*}- JίΌΌ*}).

In order to express this in a more directly useful form we introduce the

diagram

T
n,p

 β
n,p

(32) 3
0
 , X

Q
 , R,

Vp 0̂

associated with the binomial distribution for n trials with probability p.

Here Z
Q
 is the linear space of all h: {0,...,n} -* R, 3Q the linear space of all
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f: {O,...,n-1} -> R, β is defined by (14), i
Q
 is the appropriate inclusion

mapping, and T
n
 : 3

Q
 -*• %

Q
 is defined by

(33) (T f)(w) = p(n-w)f(w) - (l-p)wf(w-l).
Π,μ

The linear mapping U
 n
: X

n
 •*• 3

n
 is defined implicitly by the condition

n ,p u u

that, for all w € {0,...,n},

(34) p(n-w)(U h)(w) - (l-p)w(U h
ri, μ Π , μ

= h(w) - β
n > p

h.

See the second paragraph below for details. Finally we define V
n n
:

π, p

where Q
Q
 is the space of all functions on {0,...,n-2} -> R by

(35)

Then we can rewrite (31) as

<
V

n
,p

h ) ( w ) =
 (

U
n,p

h ) ( w + 1 )
 '

 ( U
n , p

h ) ( w )

(36) Eh(W) = (n-l)E(V
n

- JίϋΌ*})

for arbitrary h: X
Q
 •> R, which is (13).

Now it will be possible, using (36), to prove (7), which is equivalent

to

(37)

2

P{W=0) = (1 - £)"(! + 0(£-)) for k = o(n*).

For large w the t r i v i a l bound

k k

will be useful. Let

(39) h
w
 (w) =

w
0

1 if w = w
Q

0 if w f w
0
.

An upper bound for V
n n
h will be obtained from an explicit expression for

nJP WQ

u
« Λ ,

 T h i s w i 1 1 l e a d t 0 a
 P^oof, using (36), that, for w

n
 of the order of

n,p WQ U

k, E. (W) is of the order of β
n n
h , after which it will be easy to prove

π n,p WΛ

W UQ

that the second term on the right hand side of (36) is of the order of
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k
2
— B

n n
h when h is replaced by h with w

n
 of the order of k. Specializing

II II , \J W Q WQ U

to WQ = 0 we obtain (37). Undoubtedly this part of the proof is more complica-

ted than is necessary.

In order to write down the explicit expression for U h, first let us
n»p

write C for the subset {Q,...,n} consisting of all w' < w. Then we can solvew
(34) explicitly for U

M n
h, expressing the result in several different formsn,p

(40) (u
nip
h)(w) • j

o
 # i

The first form of (40) is readily verified, by induction on w, to be the unique

solution of (34). The equivalence of the first two forms reduces, after

multiplication by an appropriate factor, to the fact that

(41) I (>*O-p)
n
'*[hU) -B

n j p
h] = 0.

The third form follows from the first by applying the definition (14) of &
n
 h

and interchanging the order of summation. Similar arguments for the Poisson

distribution are given in greater detail in Lecture VIII.

The basic identity (36) can be applied to h = h
4i
 to obtain

w
0

w
0

(42) Eh (W) -
W

(W) B
n
 h

WQ Π,P WQ

= (n-l)E[(V
n
 h )(W-1)P

Π
(CD*) - (V

 p
h )(W-2)P

Π
(DD*)]

ΠίP WQ Π,μ Wg

< Ef (W)
w
0

by (24) and (25), where

(43
) up, ,
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We shall see that

(44) B
n j p

Ψ
W Q
 =

for w
Q
 of the order of k. With the aid of the trivial bound (38) and (36), it

will follow that, for such w
Q

for k = o(n
2
), which is the desired result.

In order to write down explicit expressions for V h and ψ it will be
n,P

convenient to define

(46) A(w) =

-A, (w) if w <_ WQ-2

A
2
(w) if w = WQ-1

-A
3
(w) if w ^ w

Q
,

where

(47) V w ) = (w+l)β
njp
h

c

(48) A,(w) = (w+l)β
n
 h . + (n-w-1) -

L Π,p QC Π

and

(49) A
o
(w) = -(w+l)β

M
 h „ + (n-w-

ό n,p
 r
c

L
w+1

From the final form of (40) it follows that
( U
n,p

h
w

0
Hw) =

»P
 w

From this and the definition of V
M n
 in (35) it follows that

n ,p

(51)
- w! (n-(w+2))! n

 (
Jc_

}
 V

1
^

(-w
n
)ί V

J(V h )(w) - w!
t V
n , p V

) l W j
 w

n
! (n-w

n
)ί k

It is not difficult to verify that A,,A
2
, and A, are positive-valued. In fact
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(52) A-j(w) =

w+1 nj(n-w-Ί
)(

The positivity of A
2
 is obvious and the argument for A^ is similar to (52).

Consequently, with Ψ defined by (43),
w
0

V w ! ( n - w ) ! 1 / k \WO ~w« # ~\ n f — ^ W Π _k\n~w
w o ! ( n - w o ) ! k \ n - k / M

3 vw-^; w i ( n - w ) ! κn} u n ;/

But it follows from the definitions (47) and (49) of A, and A
3
 that

w
0 "

2
 w

2

(54) I A,(w) < - |
w=0 '

 ί

I
w=0

and

(55) I A (w) £ ί A (w)
w=w

0

 J
 w=0 ''. .

It follows that

(56) n,pw
Q
 n-k L 2 n-w

Q
 n-kj *

Let us restrict ourselves to k < εn with ε to be specified later.
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Then (56) shows that for every positive constant C, there exists a positive

constant C
2
 such that, if WQ <_ CΛ then

(57) β n y w <C2 V β

n , p h w

Now suppose that for a particular positive constant C*, possibly depending on

n,

k
2

(58) Eh
w
 (W) <_ (1 + C* -^-)β

n D
h

for all WQ <_ C,k. Our aim is to show that then a similar result holds with

C* replaced by a smaller number unless it is already fairly small. This will

imply (45) for w
Q
 i ^ k . By (42),

(59) Eh (W) < β h + I Ψ (w)Eh (W)
w
0
 n

'
p w
0 w=0

 w
0

 w

- β n Dhw + Σ ψ

w ( w ) ( l + C* M β h + I Ψ (w) X -
'" Π vι<C k W Π n,μ w « k W Π

iβn,phw0

 + ^ + C ί T>C2 Tβn,phw0

 + J k \ ^ £•

1

The second inequality uses (58) and (38), and the final equality uses (57).

The principal task remaining is to bound the final sum in (58). Let C-j

be a constant greater than 1, to be specified later, and let w* = [C-,k]. We

need an upper bound for A
3
(w-2) defined by (49). Then for w >_ w*+l

(60) A
3
(w-2) < k β

n > p
h
 c

Then it follows from (43), (46)-(49), and (51) that, for w
Q
 <_ w*
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< f i u v n" (n-w)! , C l n! /k N w-l, Ί kxn-w+1
n ' P WO w V ( n - k ) n - w + 1 n ! C Γ 1 w ! ( n - , - - « ( 1 " ^

< βn,p WQ C,-l W ^ W + n(n-w+l) w!

Ci \2 , ,

i f we take Ĉ  = 3. Substituting in (59), for wQ <_ C,k,

(62) EhWβ(W) < (1 + 1 + C 2 (l + ε C*) £ - ) β n > p h w

< (1 + i + (C9 + i C*) £-)βn nh ,n 2 2 n n n,p w0

provided we choose ε £ of— Recall that this was proved under the assumption

that (58) holds. Iterating this, starting with (58) but with C* replaced by

\
 C
n

 +
 (

c
?

+3
)»

 w e o b t a i n
 by induction that

(63) Eh
Wo
(W) < (1

 +
 2(C

2+
3) i-K,v\

Once we have this upper bound, a similar argument, but much simpler, yields

an analogous lower bound. This completes the proof of (45).

In Lecture XI I shall try to present a corrected version of my 1978

paper in the Journal of Combinatorial Theory, Series A. Here I have proved

only Yamamoto's result (6). Following Erdδs and Kaplansky (1946) and also

Yamamoto (1951, 1969), I first studied the probability that W = 0, where VI is

the number of coincidences of a random permutation of {!,...,n} with the
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columns of a given k x n Latin rectangle =£. The event {W = 0} can be thought

of as the event that the result of placing the random permutation below the

k x n Latin rectangle =£ is a (k+1) x n Latin rectangle. To a first approxima-

tion which would be adequate for this lecture, W has a Poisson distribution

with parameter k. However, the more accurate binomial approximation is

introduced for use in Lecture XI.

It may be helpful to sketch the basic argument in the form that I used in

my paper, which has the same structure as the argument used in the first part

of Lecture XII on random allocations. In addition to the basic random

permutation Π from which W is computed, we introduce another random permutation

π' related to π by (9), which means that the values of π at two randomly

selected positions, I and J, are interchanged. Then using the fact that

(W,W) is an exchangeable pair, where W is related to π
1
 as W is to π, we have

, f i d x P{W=w+l} P{W'=w+llW=w>

^ ' P{W=w} " P{W=w|W=w+lΓ

Intuitively it is not hard to convince oneself, as in (15)-(25), that

(65) P{W'=w+l|W=w> ̂
 2
 ^ 7PΓ

and

(66) P{W'=w|W=w+l} ~ 2 ̂  ^

leading to an approximate evaluation of the left-hand side of (64) and thus of

the distribution of W. The details of a rigorous proof are fairly complicated

but can undoubtedly be kept simpler than the details of the present proof,

based on bounding the remainder in (13). Of course the identity (13) is the

result of routine application of the basic formalism to the basic problem.

The remainder of this lecture, starting below (36), is devoted to the

problem of bounding the remainder in that formula. This requires a careful

study of the auxiliary functions and mappings associated with the binomial

distribution by the formalism of the bottom row of diagram (1.28).




