
LECTURE II. CONTINUATION OF THE BASIC IDEA

I shall first study the specialization of the lower row of the diagram in

(1.28) to the case of approximation by a standard normal distribution as

treated in Lemmas 1.3 and 1.4 and the comments below these lemmas. Then I

shall return to the proof of Lemma 1.2 in the general abstract formulation.

As I have already indicated briefly in the comments below Lemmas 1.3 and

1.4, the lower row

τ
o
 E

o

of Diagram (1.28) is specialized in the following way for the treatment of the

standard normal approximation problem. (In order to emphasize this specializa-

tion I shall write N, T
N
, and U

N
 instead of E

Q
, T

Q
, and U

Q
.) Let

00
 1 2

(2) Nh = — J h(x)e~*
X
 dx,

(3) (T
N
f)(w) = f(w) - wf(w)

and

i 2 w i 2
 w

 _

(4) (U
N
h)(w) = e

5 W
 / [h(x)-Nh]e'

2X
 dx = - e

s W
 J [h(x)-Nh]e

 s X
 dx.

2 w i 2 i
w
2 <*> _i 2W X W
 J

 sX

W

The equality of the two alternative forms given in (4) follows from

o

(5) / [h(x)-Nh]e~*
x
 dx = 0,
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20 APPROXIMATE COMPUTATION OF EXPECTATIONS

which is a consequence of (2). I shall also write Φ for the standard normal

c.d.f.:

(6) Φ(w) = — / " e"*
x
 dx.

•2ΪF -«

It remains to specify the linear spaces z~ and 3
Q
 in diagram (1). Choose

%
0
 to be the linear space of all piecewise continuous h: R -> R such that,

for all k > 0

(7) f |x|
k
|h(x)|e~*

x
 dx < ~,

and 3
Q
 to be the linear space of all continuous and piecewise continuously

different!able f: R -> R with f • ε %
Q
. We must verify that

(i) for all f ε 3
Q f
 ψ ε χ

Q9

and

(ii) for all h ε %
Q
, U

N
h ε 3

Q
.

In order to verify (i) we observe that, for all f ε 3̂
n
 and all k > 0

(8) / w
k+1
|f(w)-f(0)|e"*

w
 dw = /w

k + 1
| Jf(x)dx|e"*

w
 dw

J | | / + 1 e ^ w d w ) d x 1 / | f ' ( x ) | C ( l + | x | k ) e " έ x dx
O x 0

for some positive constant C, and similarly

0 2
(9) / |w|k + Ί|f(w)-f(0)|e-έ w dw < -.

It follows that the function w h> wf(w) ε %
Q
 and thus, by (3), T^f ε %

Q
. In

order to verify (ii) we observe that, for all k > 0,
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(10) Jwk|w(UNh)(w)|e-2X d w £ / wk+1(/|h(x)-Nh|e"*x dx)dw
0 0 w

x
k + 2

 A*
2

|h(x)-Nh| ΠTΓO e"
2 X
 dx

and similarly

(11) / |w|
k
|w(U

N
h)(w)|e"^

W
 dw < -.

-oo

Thus the function w H-w(U
N
h)(w) ε %

Q
. But, differentiating (4) we easily

verify that

(12) (U
N
h)'(w) - w(U

N
h)(w) = h(w) - Nh.

It follows that (U^h)
1
 ε %

Q
 and thus ILh ε 3

Q
. Observe that (12) could be

rewritten as

(13)
 V

U
N
 = I

% o
-

l o
oN,

that is, condition (1.30) holds in this case.

Lemma 1: In order that the real random variable W have a standard normal

distribution it is necessary and sufficient that, for all continuous and

piecewise continuously differentiate functions f: R + R with N|f'| < «, we

have

(14) Ef'(W) = EWf(W).

Proof of necessity: I f W has a standard normal distribution and

N|f'| < -,

(15) Ef'(W) = — / f ( w ) e " * w dw
/2ϊτ" -«>

= — { / f ' ( w ) ( J ( - z ) e " * z dz)dw + / f ' ( w ) ( J z e ' * z dz)dw}
/ 2 π -oo -co 0 W
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{/ (/ f '(w)dw)(-z)e~* z dz + / (/ f (w)dw)ze"έ z dz}

-» z o o

1 - A,2

— / [f(z)-f(0)]ze' 2 Z dz = EWf(W).
/2Γ

Proof of sufficiency: Suppose (14) holds for all continuous and piecewise

continuously differentiate functions f with N|f'| < ». Then it holds, in

particular for the functions

(16)

with h defined by
W
O

(17)

Thus

1 if w <_ w
Q

0 if w > w
Q
.

(18) 0 = E[f' (W)-Wf (W)] = E[h
w
 (W)-Nh ] = P { W < w

n
> - Φ(wJ.

W
O
 W

O
 W

O
 W

O u u

Thus W has a standard normal distribution.

This lemma is also the starting point for an approach to the estimation

of the mean of a multivariate normal distribution. See, for example, Stein

(1981).

Before studying the boundedness properties of the linear mapping

UM
:
 2n -* 3

n
> I shall study the special functions f = U

N
h which are given

IN U U W
Q
 n W

Q

explicitly by

(19) (w) =

if

iw
2

Φ ( W
Q
) [ 1 - Φ ( W ) ] if W ^ W Q .

It would be desirable to have graphs of these functions for a reasonable range
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of values of w
n
, and also graphs of the f •

"o

Lemma 2: For the functions f defined by (19) we have
w
0

(20) 0 < f (w) < ψ ,
W Q <\

(21) |wf (w)| < 1
w
0

and

(22)

for all real w
Q
 and w.

V

Proof: Since

(23) f (w) = f (-w),
w
0 0

we need only consider the case

(24) w
Q
 >_ 0.

To prove (21) we start from the familiar fact that, for w > 0,

i °° l 2 , °° i 2 -i
(25) i-

φ(w
)=-L/e-*x dx<-L/Je-»

x
 dx = ^

/2ϊΓ w /2ΪΓ w w w/2ϊF

and analogously, for w < 0

(26) Φ(W)

|w|/2T

From (25) and the second case of (19) it follows that, for w >_ WQ,

(27) 0 < wf
w
 (w) < Φ(w

Q
) < 1.

It also follows from (25) and the first case of (19) that, for 0 <_ w <_ w
Q
,

p

(28) 0 < wf (w) < /27 we^
w
 Φ ( W ) [ 1 - Φ ( W ) ] < Φ(W) < 1.

w
0

Finally, for w < 0, we use (26) and the first half of (19) to obtain
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(29) |wf
Q
(w)| < 1-Φ(w

o
) < 1.

Now let us go on to (22). More precisely we shall see that, for w < w
Q J

(30) 0 < f' (w) < 1,
w
0

while, for w > w
Q
,

(31) 0 > f' (w) > -1.
w
0

First I shall verify (30) for w <_ 0. By the first half of (19),

p

(32) f 1 (w) = [l-Φ(wn)][l+/27 we*w Φ(W)]
w

Q
 U

and then (26) implies

(33) 0 < Γ (w) < 1-Φ(w
n
) < 1

w
0
 υ

for w < 0. Again using (32) in the range 0 < w < w
n
, we have— — — u

p

(34) 0 < Γ (w) i [l-Φ(w
o
)]+Φ(w

o
)/27we*

w
 Π - Φ ( W ) ] < [1-Φ(W

O
)]+Φ(W

O
) = 1,

by (25). Finally, for w > w
Q
 the second half of (19) yields

p

(35) f (w) = Φ(w
n
){-l+/2Ϊ'we*

w
 [l-φ(w)]},

w
0
 U

and then from (25) it follows that, for w > w
Q
,

(36) 0 > Γ (w) >-Φ(w
n
) > -1.

WQ U

In order to prove (20) we first observe that, by (30) and (31) f attainsw0

i t s maximum at wQ. Thus

where

i..2
(38) F(w) = /27
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We want to show that the even function F attains its maximum at 0 so that

(39) sup f (w) = sup F = F(0) = ψ- .
w 4

f
w

o
,w

 w
0

From the identity

(40) F
(k)
(w) = wF

(k
-

υ
(w) + (k-l)F

(k
-
2)
(w) + φ ^ D ^ M ]

for k >̂  1, which is readily proved by induction, we compute the coefficients

of the Taylor series for F about 0, obtaining

w
2

Since the coefficients c
k
 of this power series in —^ alternate in sign and

(42) IVlliϊKI

it follows that, for |w| £ 2,

(43) |F(w)| <F(0).

But, for |w| >_ 2, by (38) and (25)

(44)

This completes the proof of Lemma 2.

Lemma 3: For bounded absolutely continuous h: R + R;

(45) sup|UNh| < / | s u p | h - N h | ,

(46) s u p | ( U N h ) ' | £ 2 sup|h-Nh|,

and

(47) sup|(U N h)"| < 2 sup|h'|.

Proof: First let us verify (45). From the definition (4) of U
N
h, it

follows that, for w £ 0,

2 w 2
(48) |(U

N
h)(w)| i[sup|h(x)-Nh|]e*

w
 / e"** dx,

W
 X£θ

and, for w >_ 0,
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(49) |(U
M
h)(w)| i [sup|h(x)-Nh|]e*

w
 J e"*

x
 dx.

N
 x^O w

Then (45) follows from (48) and (49) since

A i 2 w ! 2 i
lf
2 w i

v
2

(50) ίi
e
^ !

 e
~**

 dx = 1+we
 /

 e dx y
 °

-oo -co

by (26), so that the right hand side of (48) and (49) attain their maxima

at 0.

In order to verify (46) for w ^ O we use

1 2 oo i 2

(51) (U
N
h)'(w) = h(w)-Nh-we

2W
 /[h(x)-Nh]e"

2X
 dx,

w

which follows from the differential equation (12) for ILh. Then

(52) sup|(U
N
h)'(w)|

w>0
 H

£ [sup|h-Nh|][l+sup we*
w
 / e"*

x
 dx £ 2 sup|h-Nh|

w>̂ 0 w

by (25). This implies (46) because, with

(53) h*(w) = h(-w),

we have

(54) (U
N
h*)(w) = (U

N
h)(-w).

A similar remark applies to (45) and (47).

Now let us prove (47). First we differentiate (12), obtaining

(55) (U
N
h)"(w) = (U

N
h)(w) + w(U

N
h)'(w) + h'(w)

= (l+w
2
)(U

N
h)(w) + w[h(w)-Nh] + h'(w).

Then we need to express (ILh)" explicitly in terms of h
1
. From
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(56) h(x)-Nh = — J [h(x)-h(y)]e~2y dy
/2Γ

i x x iJ » y x 2
* — { / ( / h'(z)dz)e"2 y dy - / ( / h'(z)dz)e"2 y dy}

/2τΓ -~ y x x

= - L { / X h ' ( z ) ( J Z e ' 2 y dy) - / h ' ( z ) ( J e - i y dy)dz}
/2τΓ -oo -co X Z

h'(z)Φ(z)dz - / h (z)[l-Φ(z)]dz,
X

i t follows that

i w 2 w
UNh)(w) = W

i w 2 w i 2
(57) (UNh)(w) = e2 W / [h(x)-Nh]e' 2 X dx

= e2W J W [jV (zMz)dz - Jh'tzJΠ-Φίzildzle^ dx
- o o - o o X

iu/2 w w i v 2 w z a. 2
= e 2 W {/ h ( z ) Φ ( z ) ( / e " 2 X dx)dz - / h' ( Z ) [ 1 - Φ ( Z ) ] ( / e " 2 X dx)dz

- Jh ( z ) [ l - Φ ( z ) ] ( / W e " | x dx)dz}
w

i 2 w
2 ί e 2 W { [ l - Φ ( w ) ] / h ' ( z ) Φ ( z ) d z + Φ ( W ) / h

- o o W

From (55) - (57) we o b t a i n

(58) ( U N h ) " ( w ) = ( l + w 2 ) ( U N h ) ( w ) + w[h(w)-Nh] + h ' (w)

o i 2 W
= h ' ( w ) + [ w - / 2 7 ( l + w ^ ) e 2 W ( 1 - Φ ( w ) ) ] / h ' ( z ) Φ ( z ) d z

o 1 2
[-w-/2ί ( l V ) e 2 W Φ ( W ) ] J h ' ( z ) [ l - Φ ( z ) ] d z .

w



28 APPROXIMATE COMPUTATION OF EXPECTATIONS

I shall need the fact that, for all w,

p

(59) w + /^ (l+w
2
)e*

w
 Φ(w) > 0

and also

2

(60) - w + /2π (l+w
2
)e*

w
 [l-Φ(w)] > 0.

See Gnedenko (1967), Ch. II, Ex. 13. Finally, using

(61) ί φ(z)dz = WΦ(W)

and

2
0 0 "•'δ'W

(62) / [1-Φ(z)]dz = -w[l-Φ(w)] + 5
w

and the fact that these are obviously both positive, we obtain from (58),

(63) s

2

(l+sup{[-w+/2:;Γ(l+w2)e*w
 (Ί-Φ(W))][WΦ(W) + ^—

W Jΐπ

p

*
w
 ( ) ] [ ( ( ) ) ^ ^

= 2 sup|h |,

which is (47). This completes the proof of Lemma 3, which will be used in the

third lecture to obtain bounds for the remainder in Lemma 1.4.

Now let us return to the proof of Lemma 1.2, which asserts that in the

abstract formalism introduced at the beginning of the first lecture, provided

the underlying sample space Ω, is finite and the connectedness condition of

that lemma is satisfied, every random variable g(X) determined by X whose

expectation is 0 can be expressed as

(64) g(X) = E
X
F(X,X')
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with F antisymmetric. I shall derive this from

Lemma 4: Let Ω be a finite set and j a non-empty set of two-element

subsets of Ω such that (Ω,J") is a connected graph, that is, for every

(x,x*) ε Ω there exists a sequence x j,...,x
k
 with x j = x and x, = x* such

that, for every j ε {l,...,k-l},
 ί x

j'
x
j+i

} ε
 *-

 A l s o
 let J

7
 be the set of all

p
ordered pairs (x,x') ε Ω such that {x,x'} εj

9
 and let Q be an additive

abelian group, z* the set of all functions h: Ω -> Q and 3* the set of all func-

tions ψ: J -> Q that are antisymmetric in the sense that, for all (x,x') ε j

(65) Φ(x.x') = -Φ(x',x).

Let T*: 3* -> χ* and E*: x* + Q be defined by

(66) (T*φ)(x) = t _Φ(x,x')

(X,x')ε^

and

(67) E*h = I h(x).

XεΩ

Then

(68) im T* = ker E*.

For completeness I shall give a proof of this lemma although it is the

well-known fact that the zeroth reduced homology group of a connected augmented

simplical complex is 0. See for example Hilton and Wylie (1965), pp. 62-3.

Clearly im T* c ker E* since

(69) E*(T*Φ) = I (T*φ)(x) = I I _φ(x,x')
XεΩ XεΩ (x,x')εX

= I [Φ(χ,χ )+Φ(χ\χ)] = I [ Φ U I X Ί - Φ U . X
1
) ] = o.

{x,x'}εj- {x,x'}ε^

I shall prove that im T* z> ker E* by induction on

(70) v = |Ω|

We want to prove that for any h ε %* such that E*h = 0 there exists Φ ε J*

such that T*ψ = h. This is obvious for v = 2 since, with Ω = {x-|,x
2
} and

J = {x . ^ } we need only take
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(71) Φ ( x
r
x

2
) = h(

X l
)

and

(72) Φ(x
2
,x

1
) = M^) =h(x

2
).

The first expression for Φ(x
2
,x-|) makes φ antisymmetric and the second

(equivalent because E*h = 0) gives (T*ψ)(x
2
) the value h(x«). Let us

assume the result true for v = v
n
 > 2 and suppose

u —
(73) = {x j jXpj >x

 +
]} with the x. distinct.

Choose k ε {!,...,v
Q
} so that ίx

k
>x

 +
i> ε J and, for given h ε X such that

E*h = 0 define h*: {x,,...,x } -> Q by
1 v

0

(74) h*(x) =

h(x) if x

h ( x k } + h ( x v 0 + l } i f x = x k

Let j* be the set of all (x,x') ε j with x ,, ί {x,x'} Then E*h* = 0 and
v
0

consequently, by the induction assumption, there exists Φ*: J"* -»• Q, anti-

symmetric, such that T*φ* = h*. Now define φ: J •> Q by

" Φ*(x
5
x') if {x.x

1
} c {x

l f
...,x

v
 }

( 7 5 ) Φ ( x . x ' ) =

h
\+V

-h(x

i f

v
o

0 Otherwise.

if x = x
k
, x

1
 = x^

Then ψ is antisymmetric and

(76) (T*φ)(x)

(T*φ*(x) = h*(x) = h(x) if x i ίx
k
,x

v

h(x
 +
-i) if x = x

 4v
0
 v

0
[if x = x

k

(T*Φ*)x-h(x
VQ+1

) =h*(x
k
) - h ( x

V Q + 1
) -h(x

k
)
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Thus T*φ =h and the proof by induction of Lemma 4 is completed.

Now let us prove Lemma 1.2 by applying Lemma 4 with Q = R. For

g: Ω -> R with Eg(X) = 0 define h: Ω -> R by

(77) h(x) = g(x)P{X=χ}

and, using the fact that

(78) 0 = Eg(X) = I h(x),

XεΩ

choose an antisymmetric Φ, in accordance with Lemma 4, such that, for all

X ε Ω

(79) h(x) = ί
t
 _Φ(x,x')

where j
1
 is the set of all ordered pairs (x,x') of elements of Ω such that

(80) P{X=x & X'=x'} > 0.

We can rewrite (79) as

= E{F(X,X')|X=x}

o
where F: Ω -> R is the antisymmetric function defined by

-ifψ \ A , A

P{X=x & X τ=x'}

(82) F(x.x ') =

0 otherwise.

Writ ing (81) in the form

(83) g(X) = E
X
F(X,X'),

we see that Lemma 1.2 has been proved.

In the first part of this lecture I have studied the auxiliary functions

and linear mappings that are useful for bounding the error in normal

approximation problems by this method. Lemma 1 provides the characterization

of a standard normal random variable W by the identity E[f'(W)-Wf(W)] = 0.

Lemma 2 provides bounds for the special function f and its derivative.
w
0
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Lemma 3 studies the boundedness properties of the linear mapping IL in supremum

norms for functions or their derivatives. This lemma is used in Lecture III,

and elsewhere, in obtaining crude bounds in normal approximation problems.

The last part of this lecture, beginning with Lemma 4, is devoted to

the proof of Lemma 1.2 which shows that> in the case of a finite sample space,

subject to the obviously necessary connectedness condition, any random

variable whose expectation is zero is obtained as conditional expectation,

given X, of an antisymmetric function of the exchangeable pair (X,X'), that is,

ker E = im T. Although this result is never needed when applying this method,

one may ask, for the sake of completeness, whether it also holds in the

countable case, and whether an appropriate analogue can be formulated for the

general case.




