
LECTURE I. THE BASIC APPROACH

In this first lecture I shall describe the abstract approach and one way

to specialize it to the normal approximation problem. The latter will be

illustrated by a very superficial treatment of the familiar problem of sums of

independent random variables. Some of the technical details will be postponed

until the next two lectures.

Let (Ω,β,P) be a probability space and H a real-valued random variable on

this space with E|H| < ~, where E is the operation of expectation under P.

My aim is to discuss the problem of approximating EH, which often arises in

the following way. We are given a real-valued random variable W on (Ω,β,P)

and want to approximate the cumulative distribution function of W. If we

choose H = h (W) where
w
0

(1)

then

(2)

1 if W £ WQ

0 if W > W Q ,

£ W Q } = EH.

The approach will be based on the following easy lemma together with a bit of

linear algebra.

Lemma 1: Let ( Ω ^ β ^ P ^ be a probability space with associated expecta-

tion operation E-j, and let (X,X*) be an exchangeable pair of mappings of
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(Ω-. ,β-j ,P-|) into another probability space (Ω,β,P) in the sense that

(3) P^X ε B} = P(B)

for all B ε β and

(4) P-jίX ε B & X
1
 ε B

1
} = P^ίX ε B

1
 & X

1
 ε B}

2
for all B, B

1
 ε β. Then, for all measurable functions F: Ω + R that are

antisymmetric in the sense that, for all x, x
1
 ε Ω

(5) F(x,x') = -F(x\x)

we have

(6) E^jFίX.X
1
) = 0,

provided, of course,that

(7) E-, |F(X
9
X') I < co.

V

In (6), E-j denotes conditional expectation given X.

Proof. We have

(8) E^ίX.X
1
) = E

1
F(X',X) = E^-FtX.X

1
)) = - E ^ X . X

1
) .

The first equality uses the exchangeability of X and X
1
 and the second uses

the antisymmetry of F. It follows that

(9) 0 = E-,F(X,X') = E
Ί
E^F(X,X'),

which is (6).

This result is useful in that it gives us, ordinarily, a large class of

random variables, the E-,F(X,X'), whose expectations are 0. In fact, under

appropriate conditions these are all of the random variables on (Ω,β,P) whose

expectation is 0. This is stated in the following lemma, the proof of which

will be postponed until the second lecture.

Lemma 2: With Ω-j finite, let (Ω-J ,β-j ,P-j), (Ω,β,P), and (X,X') be as in

Lemma 1. Suppose also that, for eyery x,x* ε Ω there exists a finite sequence

x |,...,x^ of elements of Ω such that
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(10) x = x1 and x* = x.

and, f o r a l l i ε { l , . . . , k - l }

( Π ) PjίX = x. & X1 = x i + ] } > 0.

Then for every function g: Ω -> R such that

(12) Eg(X) = 0

p
there exists an antisymmetric function F: Ω -* R such that

(13) g(X) = E}F(X,X').

It may be useful to say a few words about notation. First there is very

little conceptual loss in considering only the case of finite Ω, although many

applications will require the more general results. Second, I shall often

ignore the distinction between P and P-, and between E and E-. and use P(or E)

for P-j(or E-j). I shall often suppress the reference to (Ω^β^P^) except

when verifying the correctness of one or two examples of a type of construction

that will be used repeatedly. In more formal notation (3) and (4) could be

written

-1
(14) P ,(X(B)) = P(B)

and

-1 -1 -1 -1
(15) P-,(X(B) Π X

1
 (B

1
)) = P-,( X (B') Π X

1
 (B)).

It will be convenient to summarize the results of Lemmas 1 and 2 by

introducing the diagram

(16) 3 ί+%^+ R

Here R is the linear space of real numbers, X the space of all measurable

h: Ω •* R such that

(17) E|h(X)| < «,

2
and 3 the space of all antisymmetric F: Ω -> R such that

(18) E|F(X,X')| < -.

The linear mapping E: X •+ R is the expectation operator, with a slight confu-

sion of notation in that
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(19) Eh = Eh(X).

The linear mapping T: 3 -> % is defined by the condition that

(20) (TF)(X) = E
X
F(X,X').

Then Lemma 1 asserts that, if (X,X') is an exchangeable pair, then

(21) E o T = 0,

where E ° T is the composition, defined by

(22) (E o
 T
)F = E(TF).

The i d e n t i t y (21) can be expressed in terms of kernels and images. I f X

are l inear spaces and T: % +y a l inear mapping, the l inear spaces ker l a x

and im T c ^ are defined by

(23) ker T = { x : Tx = 0}

and

(24) im T = {Tx: x ε %}.

Then (21) can be restated as

(25) ker E z> imT.

Also, Lemma 2 asserts t h a t , under the addit ional connectedness condition stated

there,

(26) ker E = imT.

Next I shal l introduce an approximation

(27) *0 XχQ A R

to the diagram (16), leading to the larger diagram

3 1 > X E

(28)

Here χ0 is a linear subspace of χ9 3Q a linear space, and χi XQ + X and

\Q: R-^Zn t h e appropriate inclusion mappings. Thus, for c ε R, iQc is the
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random variable taking the constant value c, and %
Q
 is required to contain this

random variable. Also

(29) ιh = h

for h ε XQ. The linear mapping EQ: χ~ -> R is intended as an approximation to

E ° \9 and i t is also intended that \ o TQ be an approximation to T o α but of

course these are not formal conditions. In addition to (21) i t is assumed that

<
30
> V

u
o " V

ι
° °

E
° '

where I is the identity mapping of χ
n
. Then for h ε χ

nX
o
 ϋ ϋ

(31) 0 = E((ToαoU
0
)h)

E((To
α
-ioT

0
)oU

0
)h

The first equality uses (21) and the third uses (30). The final equality uses

the fact that for c ε R

(32) Ec = c.

The identity (31) can be rewritten as

(33) Eh = E
0
h+E((To

α
-ioT

0
)oU

0
)h.

This can be thought of as asserting that Eh is approximated by E
Q
h with an error

given by the second term on the right hand side. If the choices have been made

appropriately it may not be too difficult to bound the remainder term.

Now let us specialize these considerations to a method of treating the

normal approximation problem. This will then be specialized to the case of a

sum of independent random variables.

Lemma 3: Let (W.W
1
) be an exchangeable pair of real random variables

such that

(34) E
W
W = (l-λ)W

and
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(35) E ( W - W ) 2 = 2λ

with

(36) 0 < λ < 1.

Then f o r every piecewise continuous function f : R •> R f o r which there exists

C > 0 such t h a t , f o r a l l w ε R,

(37) | f ( w ) | < C ( l + | w | ) ,

we have

(38) E[Wf(W) - ^ ( W ' - W ) ( f ( W ' ) - f ( W ) ) ] = 0.

o
Proof: Since the function F: R -> R defined by

(39) F(w,w') = (w'-w)(f(w)

is antisymmetric in the sense of (5), we have

(40) 0 = EίW-WKfM+fίW1)]

= E(W
l
-W){2f(W)+[f(W)-f(W)]}

= 2E(EV4Of(W)+E(W'-W)[f(W')-f(W)]

= -2λEWf(W)+E(W -W)[f(W')-f(W)].

which is essentially the same as (38).

Lemma 4: With W, W and λ as in Lemma 3, let h: R •* R be a piecewise

continuous function for which there exists C > 0 such that, for all w ε R

(41) |h(w)| < C'(l+w2).

Let

(42) Nh = — / h(x)e"^ x dx,

/7

and let f be the unique solution of the differential equation

(43) f'(w)-wf(w) = h(w)-Nh

satisfying (37), that is
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(44) f(w) = e*
w
 / [h(x)-Nh]e~*

x
 dx

—oo

^w
2
 ? i

Y
2

= -e
2 W
 J[h(x)-Nh]e~

2X
 dx.

w

Then

(45) Eh(W) = Nh+E[f'(W) - ̂  E
W
(W'-W)(f(W )-f(W))].

Proof: The equality of the two alternative expressions in (44) follows from

i2

(46) / [h(x)-Nh]e~
2
 dx = 0,

—00

which is a consequence of (42). Differentiating f defined by (44) we see that

it satisfies (43). From the fact that, for w > 1

(47) |f(w)| i e
2 W
 / £|h(x)-Nh|e~

2X
 dx < $ — /C"(l+x

2
)xe~*

x
 dx ± ^ (1+w

2
),

w w
 w

for appropriate C" and C, together with a similar result for w < -1 and a

trivial bound for -1 <_ w £ 1, it follows that f satisfies (37). The uniqueness

of the solution of (43) satisfying (37) follows from the fact that the solutions
?

w /2
of the homogeneous equation corresponding to (43) are C

//y
e ' .

Substituting this f in (38) we obtain

(48) 0 = E[Wf(W) - 2γ (W-W)(f(W)-f(W))]

= E[Wf(W)-f(W)] + E[f'(W) - 2γ (W-W)(f(W')-f(W)]

= E[Nh-h(W)] + E[f'(W) - 2χ E
W
(W'-W)(f(W

I
)-f(W))]

which is (45).

In order to derive a normal approximation theorem from Lemma 4 we need to

bound the second term on the right hand side of (45). Here I shall give only a

rough indication of the argument, postponing the details until the third lec-

ture. If h is continuous then f, defined by (44) is continuously differenti-

ate and we can approximate the expectation of the second term in brackets on
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the right hand side of (45) by

(49) 21 EE
W
(W -W)(f(W )-f(W)) « ^ EE

W
(W'-W)

2
f'(W) » Ef'(W).

The first approximate equality uses the first term of a Taylor series approxima-

tion to f(W')-f(W) and the second approximation assumes that

If the left hand side of (50) is approximately constant it must be approximately

1 by (35). Actually (35) was not required in either Lemma 3 or Lemma 4 but it

will ordinarily hold in the applications.

Now let us specialize the considerations of Lemma 3 and Lemma 4 to the

case of a sum of independent random variables. Let X,,...,X be independent

real random variables and

(51) W = j X..

In order to apply Lemmas 3 and 4 we introduce additional random variables I,

X-|,...,X and W defined in the following way. The random variables I,
* *

X, ,...,X , X j,...,X are independent, I is uniformly distributed over the index

set {!,...,n}, each X̂  has the same distribution as the corresponding X., and

(52) W = W + ( X J - X J ) ,

that is, W
1
 is obtained by replacing X. in the sum (51) by Xr. It is easy to

see that (W,W ) is an exchangeable pair since we can first choose I, then the

X.j for j φ I and the unordered pair {Xτ,Xτ}. Finally we choose one element of

this pair to make up W and the other to make up W , each of the two possible

choices being assigned probability one-half.

Now suppose that, for each i ε {l,...,n},

(53) EX. = 0

and also

(54) I EX
2
 = 1.

i = l
 1
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Then

( 5 5 ) EWW = W+EWX*-EWXj = W+O - 1 I X. = (1 - l ) w

and

(56) E(W-W)2 = E(X*-Xj)2 = 1 . h ί X * ^ . ) 2 = I ϊ EX2 = i

Thus (34) and (35) are satisfied with

(57) X = 1.

For the approximate equality (50), we have

(58) E
X
(W'-W)

2
 = E

X
(X*-Xj)

2
 = 1 I E

X
(X*-X

η
.)

2
 = 1 I [EX*

2

+
X

2
] = 1 (l

+
j? X

2
)

2
and under appropriate conditions, by the law of large numbers, ΣX. is, with

high probability, close to its expected value 1.

The details of this special case will also be postponed to the third

lecture. There I shall also apply Lemmas 3 and 4 to the distribution of the

sum of a random diagonal, which includes the case of the mean of a sample from

a finite population and some other random variables that arise in statistical

problems.

This lecture begins with the theoretical framework that will be applied

in all the lectures in this series. Our aim is to evaluate expectations of

certain functions of a random point X. In Lemma 1 we introduce an exchangeable

pair (X,X') and observe that the conditional expectation given X of an anti-

symmetric function of X and X
1
 has expectation 0. Following the technical

Lemma 2, we examine a way of using this simple fact in the diagram (28). In

this way the problem of computing expectations, usually approximately, is

divided into a number of steps:

(i) Choose an exchangeable pair, thereby constructing the top row of

(28), satisfying (21).

(ii) Construct the bottom row of (28), satisfying (30), in such a way

that, roughly speaking, T°α-\°T
0
 is small.
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(iii) Study the boundedness properties of the linear mapping UQ.

(iv) Use these to bound the remainder in (31).

A more abstract and more elegant version of diagram (28) is given in the

latter part of Lecture XIV.

The second part of this lecture describes a first specialization of this

formalism to the study of normal approximation problems. Lemma 3 corresponds

to the top row and left column of diagram (28), and Lemma 4 to the rest of the

diagram. A rough indication of the way this can be applied to study the normal

approximation for a sum of independent random variables starts with (51).

However, no real proof or even precise statement is given for this result until

the third lecture, after the study of the boundedness properties of the appro-

priate specialization of UQ in Lecture II.




