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0. SUMMARY

The performance of the logrank statistic, computed after successive

fixed numbers of deaths and applied to group sequential boundaries, is eval-

uated using simulation studies. The group sequential boundaries investigated

include those proposed by Haybittle (1971), Pocock (1977), O
τ
Brien and Fleming

(1979) and the fixed sample boundary. The data indicate that a simple normal

model, based on the assumptions that the increments of the logrank score are

uncorrelated and homoscedastic with known variance, leads to reliable predic-

tions of size, power, and average number of groups examined, except when the

numbers at risk are very small, as in completely sequential entry. When there

is a trend in the lifetime distribution, either in location or dispersion, the

size of some group sequential boundaries exceeds nominal levels slightly, where-

as the fixed sample logrank test is robust to such trends. The assumptions that

the logrank increments are uncorrelated and homoscedastic with known variance

are also investigated.
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1. Introduction

Pocock (1977) proposed to monitor accumulating clinical trial data with

group sequential boundaries which are appropriate for repeated analyses after

successive groups of observations. After n groups of d observations each, the

n d
 2

 _1

standardized statistic T(nd) = ( ][ ][ Y..)((7 nd) 2 is computed and compared

1=1 j=l
 1 J

with symmetric, two-sided group sequential boundaries c for n=l,2,..,,N, The
n

null hypothesis is rejected at the smallest n < N for which |τ(nd)| > c . To com-

pute boundaries of appropriate size, it is assumed that the group increments

d

£ Y.. are normally distributed, uncorrelated, and homoscedastic with known
J
 2

variance σ d. Power is computed under the alternative that the group increments

have mean δd.

Recently Pocock (1980) suggested that such boundaries could be applied to

comparative survival studies by analyzing the standardized logrank statistic at

intervals defined by equal numbers of deaths. This idea is closely related to

suggestions by Armitage (1975, p. 143) and Jones and Whitehead (1979) for fully

sequential analyses. Rigorous asymptotic theory in support of this proposal is

available for two special cases, namely, progressive censorship, in which all

patients enter simultaneously at the beginning of the experiment, and completely

sequential entry, in which the lifetime of one patient is determined before the

next enters the study. By referring to the permutational distribution of the

linear rank statistic, Chatterjee and Sen (1973) showed that increments of the

logrank score (numerator) are uncorrelated under progressive censorship, even

for small samples. Asymptotically, their results imply that these increments

are normally distributed and homoscedastic with known variance. Sen and Ghosh

(1972) obtained these results for sequential entry.

The purpose of our simulations was to cover the intermediate case of stag-

gered entry, which is of practical concern. Even for progressive censorship

and sequential entry, simulations were useful to indicate the extent to which

asymptotic theory applied. For staggered entry, Tsiatis (1981) has shown the

increments to be asymptotically uncorrelated when the intervals are defined by

fixed calendar times rather than by fixed numbers of deaths.
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We report on the operating characteristics of group sequential boundaries

proposed by Haybittle (1971), Pocock (1977) and O'Brien and Fleming (1979). In

addition, we provide data on the correlation structure of the increments of

the logrank score and test the hypotheses HI that the increments are un-

correlated, H2 that the increments are uncorrelated and homoscedastic, and H3

that the increments are uncorrelated and homoscedastic with known variance d/4.

Some special studies were undertaken to determine whether group sequential

procedures are robust to trends in the life distribution.

2. Methods

2.1 Definition of the Statistics and Boundaries

The computation of the two-sample logrank statistic is particularly

simple in the case of continuous survival data (no ties) which we treat. As

in Mantel (1966) and Cox (1972), we order the death times t <t < ** # <t d to

compute the logrank statistic after d deaths. Let p, denote the proportion of

all those patients known to have survived for time t, or longer who are in

group 1, and let U =1 or 0 according as the death at t, is in group 1 or 2.

Then the logrank score after d deaths is

d
Z(d)= I (U -p ) .

k=l k k

The estimated variance of Z(d) is

d
V(d) = I p (1-p ) >

k=l k k

which is only slightly less than d/4 in most cases with equal allocation, pro-

vided treatment effects are not too large.

After n groups (nd deaths), the statistic

T(nd) =Z(nd) {V(nd)}
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is computed and compared to symmetric two-sided group sequential boundaries

c for n = l,2,...,N, where N is the maximum number of groups to be entered.

Tests proceed in the manner of Pocock (1977), with a rejection decision reached

for the smallest n such that

|τ(nd)| >c , n
n

We examined four symmetric two-sided size α= 0.05 boundaries and studied

the case N = 5 in detail. For N = 5, the Pocock (1977) boundary (P) is c =2.413

for n = l,2,...,5 . The Haybittle (1971) boundary (H) is c =3.0 for n =1,2,3,4

and c =1.96. This boundary is conservative and only detects extreme early

treatment differences. The 0
f
Brien-Fleming (1979) boundary (0), obtained from

1

their Table 1, is c = (4.149 x 5/n)2 for n = 1,2,...,5. For the fixed sample
n

boundary (F), c =100 for n= 1,2,3,4 and c =1.96. The value c =100 was

chosen for convenience and was never exceeded in our studies.

Suppose Z(nd) were the cumulative sum of nd independent Bernoulli variates

corresponding to factors in the partial likelihood of Cox (1972), and that these

factors were essentially unaffected by survival information obtained after death

nd. Then under the null hypothesis of equality of survival distributions, in-

crements such as Z(2d)-Z(d) would have expectation zero, and correlation zero.

With equal allocation, the variance of these increments is approximately d/4.

For proportional hazards alternatives with hazard ratio exp(θ), the expectation

of such an increment would be approximately dθ/4 for small θ. Thus, the power

can be expressed in terms of the group non-centrality parameter

_

(1) Δ = (dθ/4)(d/4)
 2
 = θ(d/4)

2

This quantity Δ is used for tabulations in Pocock (1977). Assuming the normal

model holds, the theoretical size, power, and average number of groups n may be

computed as in Armitage, McPherson and Rowe (1969), McPherson and Armitage

(1971), and DeMets and Ware (1980). The theoretical variance of the stopping
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number n may also be determined from the multinomial distribution of the stop-

ping points.

2.2 Description of the Simulation

The simulated clinical trials had a maximum of Nd =90 deaths. This

number of deaths was determined from equation (1) with N =1 group so as to

yield a power 0.90 for the two-sided 0.05 level logrank test with boundary F

against the alternative of a two-fold relative hazard. Lininger, et al, (1979)

confirm by simulations that equation (1) indeed yields the correct numbers of

deaths required to attain specified power with the boundary F. The simulation

proceeded by generating Poisson entry times for each patient up to a maximum

of M=90, 135 or 180 patients. The case M = 90 requires all patients to be

followed to death. The case M= 180 allows the trial to stop when 90 patients

are either still at risk or yet to be accrued, depending on the rate of entry.

Larger values of M were not considered because, in the presence of rapid acc-

rual, the decision would be reached on the basis of early deaths only, and in

the case of slow accrual, increasing M beyond 180 has little effect. Each

entered patient was then assigned a treatment using an independent Bernoulli

variate (usually with equal allocation) and a lifetime (usually exponential).

Exponential lifetimes and Poisson entry waiting intervals were generated with

the IMSL subroutine GGEXN, and Bernoulli variates were based on the uniform

IMSL pseudorandom numbers from GGUBFS. The IBM 370/OSVS was used. At the time

when nd deaths occurred, the logrank statistic was calculated by resorting the

follow-up times of all patients who had entered the trial to that time. The

case of progressive censoring was studied by letting the Poisson entry rate

get very large, and the case of sequential entry was studied by letting the

entry rate get very small. Each experimental design was studied using 1000

independent simulations of the clinical trial. The proportion of rejections

for the empirical estimates of size and power in Tables 2 and 3 are shown as

the number of rejections per 1000 trials. Results for each boundary studied

are correlated within each experimental design, but all statisitcs were in-
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dependent across designs.

For Poisson entry experiments with N = 5 , the uncorrelated increments assum-

ption (HI) is tested using the normal theory likelihood ratio statistic com-

puted from formula 7, page 239 in Anderson (1958), The test of H2, the assump-

tions of uncorrelated homoscedastic increments, is given by equation 7 on page

261 in Anderson. The assumption H3 of independent increments with common

variance d/4 is tested using equation 7, page 265 in Anderson.

3. Results

3.1 Theoretical Properties of the Group Sequential Boundaries Based on the

Normal Model

The results of Table 1 were computed under the normal model using the

numerical methods described by DeMets and Ware (1980). The noncentrality para-

meter Δ was computed from (1) with d = 18, N = 5 , and relative hazard exp(θ) =2.

The power of H exceeds that of F only because H has size 0.053, slightly in

excess of 0.05. The Pocock boundary offers the greatest average savings in n

but also has the least power.

TABLE 1. Theoretical properties of four group sequential

boundaries with N = 5

O'Brien-

Haybittle (H) Pocock (P) Fixed (F) Fleming (0)

Null case Δ = 0

size

n

SD(n)

0.053

4.977

0.268

Alternative Δ = 1.470

power 0.909

n 3.864

SD(n) 1.313

0.050 0.050 0.050

4.876 5.000 4.964

0.622 0.000 0.241

0.845 0.907 0.901

3.083 5.000 3.648

1.441 0.000 0.989
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3.2 Null Case Results with N = 5

The null case data in Table 2 are generated using unit exponential

lifetimes in both treatment groups. Most, but not all, experimental conditions

in Table 2 were studied in two independent simulations. These data give no

evidence against the uncorrelated increments assumption HI. Evidence against

homoscedasticity (H2) and/or known common variance equal to d/4 (H3) is seen

when patients enter sequentially (entry rate 0.001 per year) and when only M =90

patients are admitted. Both these cases require that observation continue until

the last patient dies. These are, of course, situations in which p. may deviate

K.

from 0.5 and in which incremental variances V(nd) -V{(n-l)d} may deviate mark-

edly from d/4. The smaller variance which results when p, deviates from 0.5

may account for the slight but consistent elevations in size above nominal

levels observed for sequential entry. This holds for all boundaries but is

especially pronounced for the Pocock boundary P which has average size 0.069

for sequential entry. The deviation δn of the average number of groups n from

predicted is shown for the Pocock boundary. The observed n for the Pocock

boundary is in good agreement with the predicted value 4.876 except for the

case of sequential entry where n is slightly smaller than predicted. To summ-

arize, these null experiments are consistent with the uncorrelated increments

assumption, and, except for cases when p, may deviate markedly from 0,5, the

homoscedasticity and known variance assumptions are also tenable. The size and

average sample number of these experiments are consistent with theory based on

the normal model except for minor discrepancies in the case of sequential entry.

3.3 Non-Null Results with N = 5

The siutation is different under the alternative hypothesis with ex^

ponential lifetime hazards 2.0 and 1.0 in the two treatment groups. The nested

hypotheses HI, H2 and H3 are often violated.

The non-null operating characteristics of the group sequential boundaries

are detectably different from predictions of the normal model, but the effects

are not gross and not of practical importance. The power of the Pocock
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TABLE 2. Simulations with N = 5 based on 1000 repetitions for each

experiment

NULL CASE

Progressive Censoring

100,000/Year

Fast Staggered Entry

100/Year

Total

Patients

M

90

90

135

135

180

180

HI

12

16

10

11

10

6

H2

36*

39*

14

16

14

6

H3

38*

46*

14

19

17

8

H

0

59
52
55
46

47
50

47
45
40

39
45
40

P

F

53
56
52

49
49
45
45
44
48
38

44
43

Pocock

δn**

-.003

-.023

.011

.006

-.008

.016

HI

7

7

15

9

6

8

H2

13

18

15

10

12

H3

13

30* 38*

21

21

17

14

H

0

58

59
59
57

53
46

37
37

51
49
54
51

P

F

53
54
53

58

49

49
42

33
55
47
43
52

Pocock

δn

.002

.008

.006

.005

-.028

.012

Total

Patients

M

90

90

135

135

180

180

Slow Staggered

10/Year

HI

4

9

7

2

3

6

H2

13

19

22

16

9

14

Entry

H3

23

32*

32*

31*

19

37*

H

0

51
51

57
57
49
48
49
51
46
39
53
56

NULL CASE

P I

F

57
47
63
52
48
42

51
46
60
42
52

47

3
ocock

δή

-.022

-.039

-.011

-.013

-.034

-.021

HI

14

10

11

7

4

7

Sequential I

0.001/Yeai

H2

20

29*

27*

36*

27*

18

H3

24

31*

32*

44*

35*

26*

]ntry

H

0

67

59
73
54
63
55
67
66
67
62
67

57

P

F

78

59
74

63
67
56
64
56

69
62

63
56

Pocock

δn

-.089

-.094

-.045

-.050

-.063

-.059
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Progressive Censoring

100,000/Year

Fast Staggered Entry

100/Year

Total

Patients HI

90

90

135

135

180

180

H

H2 H3

P Pocock

δn0 F

889 811

152* 441* 459* 875 889 .066

877 794

179* 531* 542* 863 875 .087

908 841

17 24* 29* 896 908 .010

909 851

13 25* 28* 895 906 .012

900 828

16 22 32* 891 900 .162

H

HI H2 H3 0 F

889 813

168* 382* 413* 891 889

884 811

73* 298* 316* 869 882

896 842

9 15 17 890 895

905 837

17 24* 26* 901 904

898 819

3 10 11 883 897

RELATIVE HAZARD 2

Pocock

δn

.038

.058

.088

.056

.102

Total

Patients

90

90

135

135

180

180

Slow

HI

38*

35*

49*

34*

40*

53*

Staggered Entry

10/Year

H2

63*

52*

50*

38*

44*

57*

H3

162*

144*

123*

80*

93*

168*

H

0

889
883
884

863
915
905
899
877
900
882

899
892

P

F

811
886
812

880
841

913
830
888
816
896
805

899

Pocock

δn

.177

.082

.016

.165

.099

.207

HI

12

27*

13

13

12

Sequential

0.(

H2

22

37*

16

15

21

Entry

)01/Year

H3

284*

264*

240*

247*

321*

H

0
892
876
892

887
891
883
882

875
892
882

P

F
800
890
825

891
818
888
822
881
835
889

Pocock

δή

.234

.163

.209

.114

.075

* Exceeds the 95th percentile of the corresponding chi-square distribution. The

degrees of freedom are 10 for HI, 14 for H2 and 15 for H3.

f Size and power estimates are given for each boundary as the number of

rejections per 1000 repetitions. _

**The quantity δn is the deviation of the average number of increments, n ,

from expectation. For the null case, δrϊ = rϊ - 4.876, and for the relative

hazard 2, δrϊ = n-3.083.
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boundary is less than the theoretical value 0.845 in every experiment but one

and tends to decrease as the entry rate decreases. Nonetheless, the observed

power is usually only about 3% less than predicted.

Under the two-fold hazard ratio alternative, the observed values of n for

the Pocock boundary tend to exceed the predicted value 3.083, especially for

entry rate 0.001 per year. These discrepancies range from 0.3 to 7.6% of pre-

dicted and are tolerable in practice. For the other boundaries, which have less

potential for early stopping, the discrepancies are even smaller.

3.4 Miscellaneous Experiments

A few staggered entry experiments were conducted with N = 10, d = 9.

These experiments conform to HI, H2 and H3 and to the normal model predictions

even better than results in Table 2. Some experiments were performed with

Weibull lifetimes. For shape parameter 3, null and non-null results were

similar to those in Table 2 (entry rate 10/year). With shape parameter 1/3,

null and non-null conformance to the normal model was better than indicated in

Table 2.

3.5 Robustness Studies When There are Trends in the Life Distribution

The first eight experiments in Table 3 reflect the performance of

group sequential boundaries with N = 5 and M = 135 when there is a time trend in

the mean exponential life. The mean lifetime varies linearly with the patient

entry index γ =i/135 for i=1,2,...,135. To obtain a simulated lifetime in

the first experiment, a simulated unit exponential lifetime £
Q
 is transformed

to £= (0.1 + 0.9γH
0
 Thus, the average exponential lifetime increases about

10 fold as i ranges from 1 to 135. Other trends are produced from £= (0.5 +

0.5γ)£
Q
, 1 = (1.0 - 0.5γ)£

Q
, and £= (1.0 - 0.9γ)£

Q
. Under the null hypothesis

of no treatment effect, the lifetimes being compared are from the same mixed

exponential population. With sequential entry, these null case experiments

demonstrate that the increments are negatively correlated for increasing mean

life trends and positively correlated for strongly decreasing mean life trends.
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TABLE 3. Null case robustness studies with trends in the life

distribution for N = 5, M = 135

Size

Description of the trend HI H2 H3 P 0 H

Linear trend in the mean exponential

life

Sequential entry (0.001/yr)

10
2

2
10

fold

fold

fold

fold

increase

increase

decrease

decrease

143*

51*
12
42*

370*

135*

33*
86*

896*

192*

112*

317*

82
71
67
78

68
48

55
57

69
53
58
65

55
40
51
56

Staggered entry (10/yr)

10
10

fold

fold

increase

decrease

122*

29*
291*

56*
690*

173*
86
52

64
48

69
55

56
50

Progressive censorship (10 /yr)

10 fold increase 6

10 fold decrease 5

Trend in dispersion with constant geometric mean

Sequential entry (0.001/yr)

9
9

50
38

54
47

51
52

48
52

Base

Base

Base

Base

10
2
1
2

increase

increase

decrease

69*
15
6
15

219*

42*

16
20

363*

44*
26*
82*

69
65

67
55

50
47

52
44

56
58

63
50

45
49

55
42

Base 10 decrease 100* 215* 554* 63 44 56 50

Progressive censorship (10 /yr)

Base

Base
10
10

increase

decrease
5
10

15
12

17
12

56
51

63
65

62
72

66
70

Trend in mean and dispersion of uniform lifetimes

Sequential entry (0.001/yr)

u
u

(12,

(12,

12+10γ)

12-10γ)

558*

258*

1033*

353*

3062*

990*

99
62

77
52

64
56

49
51

*Exceeds the 95th percentile of the corresponding chi-square distribution.
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The size of the Pocock boundary exceeds 0.05 in these cases. These effects are

still appreciable at staggered entry rate 10 per year, but they vanish for

rapid entry, which is to be anticpated from the theory of progressive censor-

ship applied to a mixed exponential population. Note that the fixed sample

test F, and the conservative boundaries 0 and H, are more robust to such

trends.

Seven experiments investigate the effects of a trend in dispersion with

constant geometric mean. For the first of these, a unit exponential lifetime

ί is changed to £=I x10
Ύ
 with probability 1/3, to I =I x10~

Y
 with pro-

bability 1/3 and to £=I otherwise. In this transformation, 10 is the "base"

and γ =i/135 as before. This yields increasing dispersion. For decreasing

dispersion, γ is replaced by 1-γ. The effects on size and correlation

structure are smaller than for a trend in the exponential mean.

Rather dramatic effects on size and correlation structure are seen for

trends in the lifetimes which are assumed to be uniform on the support interval

indicated. The size of the Pocock boundary is 0.099 in one instance. Again,

note the robustness of the fixed sample procedure F.

3.6 Some Null Case Experiments with Two Batches of Patients

We shall briefly mention the results of a number of null case experi-

ments in which a first batch of 100 patients entered at time zero and a second

batch of 100 patients entered at the time of death d= 20 in the first batch.

Group sequential analyses were performed at deaths d = 20 and d=40. In some

experiments, batches consisted of 50 patients. The principal conclusions of

these experiments were:

(1) Loss to follow-up, as might occur if a patient refuses further parti-

cipation, does not affect size. Loss to follow-up was studied by

assuming a constant hazard of withdrawal from the study after the

patient is entered. It was found that size is not affected by unequal

loss to follow-up in the two treatment groups. Again, size remains

near 0.05 even if the loss to follow-up is adaptive in the sense that
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the risk of loss to follow-up in the second batch is greater on the

treatment which appeared worse at the first analysis. This latter

situation could arise in practice if patients who enter learn which

treatment appears to be more successful and adhere preferentially to

the favored treatment.

(2) Adaptive allocation of 80% of the second batch to that treatment which

appreared better (or worse) at the time of the first analysis does

not affect size.

(3) Whether the second batch has longer or shorter mean lifetimes than the

first batch, size remains near 0.05. If the second batch has a mean

lifetime 10 fold greater than the first batch, the logrank score

increments are negatively correlated. Interestingly, even if the

second batch has a mean lifetime 1000 fold smaller than the first

batch, the increments appear uncorrelated. Thus, distortions are

more prominent when healthy patients enter later. This asymmetry

is also seen in the first six experiments of Table 3. There too, a

trend toward healthier patients induces stronger correlations among

increments of the logrank score than does a trend toward sicker

patients.

4. DISCUSSION

The correlation structure of the logrank score statistic conforms

rather well to the normal model (H3) under the null hypothesis except for

purely sequential entry. Departures from this simple correlation structure are

evident under the alternative of a two-fold hazard ratio and when there are

trends in the life distribution. It is not surprising, therefore, that theor-

etical calculations of operating characteristics work best under the null hypo-

thesis. What is noteworthy is that these calculations are sufficiently acc-

urate to plan experiments under the alternative. For any size α boundary {c },

one can calculate the non-centrality parameter required to obtain a desired

power as in DeMets and Ware (1980) or Pocock (1977). Then the required number
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of deaths per increment is obtained from (1).

Robustness studies demonstrate that the size of the Pocock boundary slightly

exceeds 0.05 when there are trends in the lifetime distribution. A typical

empirical size is about 0.07. As expected, the boundaries 0 and H are less

affected by such trends, and F is completely robust.

One can adhere to a group sequential plan by analyzing the data when pre-

specified numbers of deaths have occurred. If one plans to perform repeated

analyses at fixed calendar times, instead, predetermined boundaries may turn

out to be inappropriate because accrual and death rates are variable and hard

to predict.
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