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1. Introduction

A commonly occurring life-test situation is: a time T is specified, n

units are put on test without replacement and the successive ordered times-to-

failure X-i_f_
#
"^_X

 <
 T, r<n, are observed. This life testing procedure is

commonly referred to as Type 1 censoring, which will be assumed throughout this

paper.

Here we suppose that each of the n units tested has the same one-parameter

exponential life-time distribution of which the mean is θ. Computing methods

will be developed for the lower confidence bound on θ based on the maximum-

likelihood estimate (MLE).

The MLE, say θ, has been given by Halperin (1950), Bartlett (1953a,b),

Deemer and Votaw (1955) and Bartholomew (1957):

(1) θ = [ 7 X. + (n-r) T ] / r, r > 1 .
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When r = 0, θ is undefined.

Approximate confidence intervals have been studied by Bartlett (1953a,b)

and Bartholomew (1963), and the asymptotic properties of θ have been investi-

gated by Deemer and Votaw (1955) and Yang and Sirvanci (1977). In particular,

θ is consistent and asymptotically unbiased, i.e., limit E (θ) =θ, where E

n - «
 C

denotes the conditional expectation on r>0.

The exact distribution of θ has had an interesting history: Halperin (1950)

gave the distribution of θ, conditional on r, and described very briefly how

the unconditional distribution could be obtained; Halperin (1960) gave the

distribution of rθ; Bartholomew (1963) was the first to give the distribution

of θ(r^_l); Hoem (1969) essentially presented the distribution of θ again, along

with other results.

Barlow, et al. (1968) developed a computer program for obtaining interval

estimates of θ, and Spurrier and Wei (1980) presented a hypothesis test proced-

ure based on θ, in which r =0 is not conditioned out. In each of these two

papers the exact distribution of θ was used. Virtually all authors have

commented on the computational complexity of the exact distribution. For

example, it was seventeen years (1963 to 1980) from the availability of the

exact distribution of θ to the development of hypothesis tests for this most

important life-testing situation.

The inclusion of r = 0 in the hypothesis test procedure of Spurrier and Wei

/s

(1980) is tantamount to taking θ = °° (i.e., always accept H : θ >θ ) when r = 0.

o — o

In that sense it should be noted that the two distribution functions are simply

related:

Λ
 P(θ>t|r:

(2) P ( θ > t r > l ) = '-

As indicated by the numerator in (2) the inclusion of r = 0 in testing

H : θ < ξ ( θ > ξ) precludes test sizes α < exp(-nξ~ T) ((1-α) <exp(-nξ~ T)) , On
o — — —
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the other hand, inclusion of r = 0 means that the test is always applicable.

Since θ is undefined when r = 0, in this case one can use the fact that the

number of failures r is a binomial random variable with parameters n and

p = 1 - exp(-T/θ) to obtain a confidence bound. Hence, for confidence level 1 - α,

Θ
A
/T

is a (1 - α)-level lower confidence bound for Θ/T.

The case of a random sample of size n from an exponential distribution

(right) truncated at T is different from that considered here. The former case

has been considered in some detail by, among others, Bain, et al. (1977) and

Deemer and Votaw (1955).

2. Exact Confidence Bounds for θ

Hypothesis tests involve a critical region. Hence the results of

Spurrier and Wei (1980) cannot be used for obtaining interval estimates which

require direct use of the distribution function as in the computer program of

Barlow, et al. (1968).

Following Barlow, et al., if the confidence coefficient is 1-α, then based

on Bartholomew^ (1963) result θ^ must satisfy

k=l i=0

(3)

x φ(2[kθ-(n-k + i)T]/θ., 2k) ,

where

u < 0
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and r >_1.

Inspecting (3), one notes that five quantities must be specified to obtain

θ^: n,T,r,θ and 1-α and thus it appears that a computer program must be used

for each different estimating situation. However, the following points are

noted:

i) the random variable r is needed solely to compute θ.

ii) the variables T and θ^ appear always as the ratio (Θ^/T)" ,

iii) [kθ-(n-k + i)T]/θ
Λ
 = [ ψ - (n-k + i) ] (T/Θ

Λ
)

and hence θ appears only with T as Θ/T and, again,

θ^ and T appear only as the ratio (Θ^/T)~ .

iv) only a few confidence coefficients (i.e., 0.90, 0.95) are

commonly used,

v) n, θ and T are known.

Thus, Θ/T can be an entry variable (with n and 1 - α) to obtain Θ^/T. Multi-

plication by T then yields θ^.

3. Computational Aspects and an Approximation

A computer program along the lines given by Barlow, et al. (1968) was

written for the purpose of tabulating values of Θ^/T. It produced results

agreeing exactly with their results (to four significant digits) for the two

examples given by those authors, namely 0^ = 28.49 and 6^ = 32.09, for θ = 51.166,

T = 50, n = 10 and α = 0.10 and 0.05, respectively. Results of the computer

program also agreed rather well with the asymptotic normal and chi-square

approximations in an example given by Bartholomew (1963) for Θ/T = 0.705, n=20,

α=0.025. Bartholomew's asymptotic lower confidence bounds on Θ/T are 0.45 and

0.46. The computer program yields 0.39.

It was found, however, that in another example given by Bartholomew (1963)

for Θ/T = 3.35, n = 40, α = 0.025, the asymptotic lower bound is 1.9, while the

computer program yields 0.63 for Θ^/T, the "exact" lower confidence bound.
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The vast discrepancy in these latter results appears to be due to a combina-

tion of factors. First the chi-square subroutine used in the computer program

produces results that are accurate to about 10 for Θ/T less than 1. As Θ/T

approaches n (where Θ/T < n ) , the accuracy in the output of the subroutine

declines. Second, (n + l)(n + 2)/2 terms involving these chi-square evaluations

are summed. Thus, when n=40, there are 861 such terms to be summed. Another

possible explanation, of course, is that a sample size of 40 is too small for

asymptotic results to apply.

To attempt to ascertain the level of accuracy of the estimate provided by

the computer program, three avenues are explored. A more presice chi-square

-9
evaluation, from IBM, with 10 accuracy was incorporated in the program. In

addition, a method was found for calculating approximate confidence bounds

which do not depend on asymptotic values. This allowed for comparisons to be

made for small values of n. Finally a simulation study was performed.

We noted above the asymptotic chi-square approximation used by Bartholomew.

This is simply a two-moment fit that uses the conditional (on r > 0) mean m and

variance v of θ (see Patnaik (1949)): 2mθ/v is approximately a chi-square

2
variate with V = 2m /v degrees of freedom. Bartholomew used the asymptotic

/\
conditional mean and variance, respectively, of θ for m and v and noted that

for T infinite, 2mθ/v is an exact chi-square variate with 2n degrees of freedom

since, in this case, the expectation and variance of θ are θ and θ /n, respec-

tively.

Yang and Sirvanci (1977) have provided expressions for the exact conditional

mean and variance of θ. These can readily be converted to exact conditional

moments of Θ/T, involving only the parameter Θ/T. Dividing the expressions

^ 2

for the conditional mean and variance of θ given by those authors by T and T ,

respectively, we obtain

E (Θ/T) = Θ/T - 1/p + nE (1/r)
c c
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and

where

Var
c
(θ/T) = E

c
(l/r)(θ

2
/T

2
 - q/p

2
) + n

2

-T/θ
q = e , p = l -q

Σ (I)
= l

 V
 '

and

π tΛ i 2\ V fn\ k n " k / n 2 /E (1/r ) = 2, vky P ^ /Lk (
C i f

In these expressions E (•) and Var (•) indicate conditioning on r >0. In the

sequel we let m = E (Θ/T) and v =Var (Θ/T).

Use of the chi-square approximation results generally in noninteger degrees

of freedom. Thus, to obtain iteratively the appoximate lower confidence bound

for Θ/T we use the Wilson-Hilferty (1931) transformation of chi-square to

2
normality, namely, for V= 2m /v,

1/3

^ ) + 2/(9v) -
m /

is approximately N(0,l). This transformation has been used in several instances

by Mann, Schafer and Singpurwalla (1974), particularly in obtaining approximate

lower confidence bounds for scale parameters. McGinnis and Sammons (1970), in

an investigation of gamma approximations, showed that the Wilson-Hilferty and

Severo and Zelen (1960) equations are most effective for our purposes. Their

results and results of Mann, Schafer and Singpurwalla indicate that the Wilson-

Hilferty approximation yields acceptable results (at least two good significant

2
figures) as long as the number of degrees of freedom V=2m /v is 3.5 or greater.

A comparison was made of the exact lower confidence bounds on Θ/T (with

confidence level 1 - α) obtained from the computer program with the IBM chi-

square subroutine and the bounds based on the chi-square approximation, for
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n = 5(5)20, θ/T = n/2, n/4, 1, 1/n, 2/n, 4/n and α = 0.10, 0.05 and 0.01. This

resulted in discrepancies of 2 or less in the second to fourth significant

figures in the corresponding values of Θ^/T for n=10, 15, 20 and Θ/T less than

or equal to 1, and very large discrepancies for large values of Θ/T. In all

2
of the cases evaluated, V=2m /v > 3.5.

A simulation study was then undertaken to determine the accuracy of the

values of Θ^/T computed by the two methods. In the study we evaluated the pro-

bability p associated with obtaining values less than Θ/T when Θ^/T is the true

value of Θ/T. When Θ^/T(associated with confidence level 1 - α) is the correct

value, p is equal to α.

A Monte Carlo sample size of 5000 was used with various combinations of

specified values of n, Θ/T and α, including those chosen for the earlier com-

parison of the two methods. Particular attention was paid to very large and

very small values of Θ/T.

The specified values for the confidence levels are essentially correct

(i.e., deviations in p, the calculated p, from the specified value of α are

within expected bounds) for the "exact" values of Θ^/T calculated by means of

the computer program for α = 0.1, 0.05 and 0.01 when n = 2(1)10 and Θ/T < n - 0.2

and when n=15, 20 and Θ/T < 1. Thus, it appears that an increase in sample

size beyond 10 causes problems for the computer-program estimator of Θ^/T unless

Θ/T is quite small. Tabulations for n=2(1)10 appear in Table 1.

The asymptotic estimator of Θ^/T also works best for small values of Θ/T,

as indicated earlier by the comparisons made with the computer-program esti-

mates. A simulation made to examine the asymptotic bounds for n=40 gave

results that confirmed this conclusion. For Θ/T =0.1, 0.2, 0.5, 1(1)5, p is

within expected bounds for α = 0.1 and 0.05. For α=0.01 and for values of Θ/T

10 or larger the values obtained for Θ/T are not accurate.
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TABLE 1. Values of Θ^/T

to Θ/T, for n

lower confidence bound at level 1-α, corresponding

2(l)10, α = 0.1, 0.05, 0.01.

Θ/T α=0.1 α=0.05 α=0.01

2

2
2

2
2
2
2
2

2
2
2
2

2
2
2
2
2

2
3
3
3
3
3
3
3
3

3
3
3

3
3
3

3
3
3
3
3
3
3

3
3
3

4
4
4
4
4
4
4
4
4
4
4
4

1.8

1.7
1.6

1.5
1.4
1.3
1.2
1.1

1.0
0.9
0.8
0.7

0.6
0.5
0.4
0.3
0.2

0.1
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1

2.0
1.5
1.4

1.3
1.2
1.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4

0.3
0.2
0.1
3.8
3.7
3.6

3.5
3.4
3.3
3.2
3.1
3.0

2.0
1.9
1.8

1.4575

0.9256

0.7259

0.6118

0.5330

0.4724

0.4224

0.3790

0.3397

0.3388

0.3345

0.3230

0.2991

0.2572

0.2056

0.1542

0.1028

0.0514

2.2646

1.4559

1.1540

0.9885

0.8780

0.7959

0.7304

0.6757

0.6282

0.6289

0.6254

0.6118

0.5846

0.5418

0.4844

0.4273

0.3798

0.3383

0.3001

0.2655

0.2240

0.1690

0.1127

0.0563

3.0718

1.9890

1.5826

1.3641

1.2213

1.1166

1.0346

0.9672

0.9096

0.9091

0.9026

0.8800

0.7913

0.6120

0.5180

0.4552

0.4075

0.3681

0.3336

0.3023

0.2729

0.2725

0.2701

0.2625

0.2445

0.2108

0.1686

0.1264

0.0843

0.0421

1.2154

0.9543

0.8209

0.7341

0.6703

0.6196

0.5770

0.5399

0.5066

0.5062

0.5043

0.4955

0.4761

0.4439

0.3991

0.3541

0.3161

0.2823

0.2512

0.2235

0.1894

0.1429

0.0953

0.0476

1.6410

1.2958

1.1227

1.0117

0.9312

0.8684

0.8166

0.7724

0.7333

0.7338

0.7289

0.7119

0.4127

0.3580

0.3217

0.2935

0.2694

0.2476

0.2271

0.2076

0.1885

0.1883

0.1876

0.1842

0.1740

0.1507

0.1206

0.0904

0.0603

0.0301

0.6347

0.5579

0.5092

0.4728

0.4436

0.4181

0.3952

0.3741

0.3542

0.3540

0.3526

0.3478

0.3367

0.3167

0.2871

0.2566

0.2301

0.2059

0.1836

0.1651

0.1418

0.1071

0.0714

0.0357

0.8567

0.7574

0.6959

0.6513

0.6156

0.5855

0.5593

0.5355

0.5136

0.5124

0.5103

0.5017

Θ/T α=0.1 α=0.05 α=0.01

4

4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5

5
5

5
5
5

5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5

5
5
5

5
5
5
5
5
5
5
6

6
6

1.7

1.6

1.5

1.4
1.3
1.2

1.1
1.0

0.9

0.8
0.7
0.6

0.5
0.4
0.3
0.2
0.1
4.8
4.7
4.6

4.5
4.4

4.3
4.2
4.1

4.0
2.5
2.4
2.3
2.2
2.1
2.0

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

0.9
0.8

0.7
0.6
0.5
0.4
0.3
0.2
0.1

5.8

5.7
5.6

0
0

0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
3
2,
2,

1,
1,

1,
1,
1.

1,
1.
1.
1.
1.
1.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.

0.
0.
0.
0.
0.
0.
0.
4.

3.
2.

.8385

.7789

.7060

.6395

.5895

.5510

.5219

.5011

.4749

.4318

.3792

.3282

.2809

.2329

.1794

.1197

.0599

.7948

.5209

.0113

.7396

.5641

.4366

.3376

.2570

,1889

.1889

,1807

,1489

,0925

,0158

,9269

,8493

,7933

,7529

,7262

7138

7056

6826

6389

5832

5284

4841

4446

4017

3508

2964

2429

1865

1251

0625

4991

0492

4395

0
0

0

0

0
0
0
0
0

0
0
0
0
0
0
0
0
2
1,
1,
1,
1,

1,
1.

1.
0.
0.
0.
0.
0.

0.

0.
0.

0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.

0.
0.
0.
0.
0.

0.
0.
2.
1.
1.

.6811

.6365

.5812

.5303

.4912

.4606

.4372

.4212

.4015

.3667

.3228

.2803

.2406

.2002

.1546

.1032

.0516

.0679

.6372

.4243

.2888

.1915

.1161

.0547

.0029

,9577

.9567

.9489

,9250

,8839

,8275

,7618

7041

6619

6309

6098

6003

5942

5759

5410

4958

4510

4144

3820

3468

3037

2573

2115

1629

1093

0546

4950

9783

7256

0.4842

0.4563

0.4207

0.3874

0.3609

0.3391

0.3218

0.3107

0.2989

0.2753

0.2437

0.2123

0.1830

0.1534

0.1193

0.0797

0.0398

1.0784

0.9567

0.8823

0.8290

0.7869

0.7521

0.7220

0.6952

0.6708

0.6701

0.6666

0.6532

0.6288

0.5938

0.5524

0.5155

0.4876

0.4661

0.4507

0.4437

0.4408

0.4303

0.4071

0.3750

0.3423

0.3152

0.2917

0.2668

0.2354

0.2004

0.1656

0.1283

0.0862

0.0431

1.2999

1.1558

1.0685
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TABLE 1 (continued)

Θ/T α=0.1 α=0.05 α=0.01 Θ/T α=0.1 α=0.05 α=0.01

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

6
6
6
6
6

6
6
6
6
6
6

6
6
6
6
6
6

6
6
6
6

7
7
7
7
7
7
7

7
7
7
7
7
7

7
7
7
7

7
7
7

5.5

5.4
5.3
5.2
5.1
5.0

3.0
2.9
2.8
2.7
2.6

2.5
2.4
2.3

2.2
2.1
2.0

1.9
1.8
1.7
1.6
1.5

1.4
1.3
1.2
1.1

1.0
0.9
0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1
6.8
6.7
6.6
6.5

6.4
6.3
6.2

6.1
6.0
3.5
3.4
3.3
3.2

3.1
3.0
2.9
2.8

2.7
2.6
2.5

2.1148

1.9065

1.7562

1.6401

1.5461

1.4671

1.4730

1.4610

1.4168

1.3442

1.2508

1.1465

1.0575

0.9949

0.9510

0.9228

0.9116

0.9121

0.9088

0.8913

0.8495

0.7897

0.7266

0.6744

0.6378

0.6068

0.5686

0.5169

0.4637

0.4148

0.3644

0.3093

0.2517

0.1925

0.1293

0.0647

5.7191

3.5715

2.8672

2.4891

2.2480

2.0752

1.9420

1.8345

1.7446

1.7565

1.7326

1.6764

1.5905

1.4828

1.3642

1.2644

1.1953

1.1476

1.1172

1.1050

1.5656

1.4513

1.3634

1.2924

1.2327

1.1810

1.1776

1.1676

1.1380

1.0867

1.0187

0.9421

0.8770

0.8308

0.7980

0.7767

0.7682

0.7671

0.7625

0.7501

0.7190

0.6716

0.6205

0.5776

0.5471

0.5213

0.4901

0.4477

0.4027

0.3614

0.3188

0.2713

0.2215

0.1698

0.1142

0.0571

2.9202

2.3176

2.0259

1.8419

1.7106

1.6102

1.5294

1.4618

1.4036

1.3979

1.3885

1.3532

1.2911

1.2104

1.1227

1.0495

0.9988

0.9637

0.9413

0.9331

1.0064

0.9578

0.9181

0.8840

0.8539

0.8268

0.8266

0.8213

0.8032

0.7723

0.7303

0.6822

0.6416

0.6118

0.5905

0.5754

0.5694

0.5696

0.5682

0.5601

0.5389

0.5061

0.4702

0.4396

0.4176

0.3998

0.3782

0.3472

0.3134

0.2828

0.2511

0.2151

0.1763

0.1358

0.0915

0.0458

1.5206

1.3542

1.2535

1.1835

1.1285

1.0837

1.0456

1.0121

0.9822

0.9823

0.9754

0.9523

0.9140

0.8653

0.8123

0.7678

0.7358

0.7127

0.6984

0.6926

7

7
7
7
7
7

7
7
7
7
7
7

7
7
7

7
7
7

7
7
7
7
7
8
8
8
8
8
8
8
8
8

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

8
8

8
8
8

2.3
2.2
2.1

2.0

1.9
1.8

1.7
1.6

1.5
1.4
1.3
1.2

1.1

1.0
0.9
0.8

0.7

0.6
0.5
0.4
0.3
0.2
Q.I
7.8
7.7
7.6
7.5
7.4
7.3
7.2
7.1
7.0
4.0

3.9
3.8
3.7
3.6

3.5
3.4
3.3
3.2
3.1
3.0
2.6
2.5
2.4
2.3
2.2
2.1

2.0

1.9
1.8
1.7
1.6
1.5
1.4

1
1

1
1
1

0
0
0
0

0
0

0
0
0
0
0
0

0
0

0
0

0
0
6
4
3
2
2
2,
2
2,
2,
2,

1,
1,
1,
1.
1.
1.
1,
1.

1.
1.
1.

1.
1.
1.
1.

1.
1.
0.

0.
0.
0.

0.
0.

.1101

.1105

.0944

.0589

.0011

.9310

,8660

,8205

.7925

.7690

.7338

.6813

.6259

.5783

.5347

.4842

.4295

.3751

.3188

.2592

.1976

.1329

.0665

.9127

.0841

.2888

.8615

.5879

.3930

.2427

.1222

.0211

.0256

.9982

.9327

,8346

,7136

,5811

,4704

,3946

,3431

,3108

,2971

3091

2898

2602

2138

1440

0686

0087

9703

9466

9247

8986

8511

7896

0
0
0
0
0
0
0
0
0
0
0

0
0
0

0
0
0

0
0
0
0
0

0
3
2,
2

2,
1,
1,
1,
1,
1.

1.
1.
1.
1.
1.
1.
1.
1.

1.
1.
1.

1.
1.
1.
1.
0.
0.

0.
0.
0.
0.

0.
0.
0.

.9301

.9285

.9230

.9005

.8541

.7957

.7416

.7026

.6780

.6607

.6342

.5905

.5432

.5031

.4662

.4243

.3774

.3308

.2821

.2299

.1757

.1182

.0591

.3347

.6551

.3237

.1167

.9689

.8555

.7653

.6902

.6254

.6210

,6135

,5703

4963

4030

3034

2218

1664

1285

1047

0963

0924

0941

0817

0407

9785

9137

8606

8262

8100

8012

7776

7330

6819

0.6935

0.6932

0.6873

0.6710

0.6397

0.6008
0.5641

0.5372

0.5198

0.5071

0.4881

0.4572

0.4231

0.3937

0.3668

0.3355

0.2997

0.2641

0.2265

0.1856

0.1425

0.0961

0.0480

1.7392

1.5504

1.4382

1.3594

1.2982

1.2488

1.2064

1.1696

1.1368

1.1375

1.1283

1.1002

1.0558

1.0007

0.9420

0.8935

0.8593

0.8349

0.8191

0.8145

0.8161

0.8121

0.8009

0.7751

0.7357

0.6934

0.6580

0.6350

0.6217

0.6128

0.5978

0.5683

0.5320
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Θ/T α=0.1 α=0.05 α=0.01 Θ/T α=O.l α=0
JL
05__α=0,01

8
8
8
8
8
8
8
8

8

8
8

8
8

9
9
9
9
9
9
9
9
9
9
9
9

9
9
9
9

9
9
9
9

9
9

9
9
9
9

9
9
9
9
9
9
9
9

9
9

9
9

9
9
9

9

9

1.3
1.2

1.1
1.0

0.9
0.8

0.7
0.6

0.5
0.4
0.3
0.2
0.1

8.8
8.7
8.6
8.5

8.4
8.3
8.2
8.1
8.0
4.5

4.4
4.3
4.2
4.1
4.0

3.9
3.8
3.7
3.6

3.5
3.0

2.9
2.8
2.7
2.6
2.5
2.4

2.3
2.2
2.1
2.0

1.9
1.8
1.7
1.6
1.5

1.4

1.3
1.2

1.1
1.0

0.9
0.8

0.7368

0.6960

0.6539

0.6022

0.5479

0.4970

0.4424

0.3852

0.3267

0.2656

0.2021

0.1358

0.0680

8.0543

4.5771

3.7006

3.2250

2.9212

2.7061

2.5400

2.4062

2.2953

2.2916

2.2605

2.1868

2.0775

1.9429

1.7967

1.6754

1.5929

1.5377

1.5038

1.4892

1.5013

1.4795

1.4509

1.4201

1.3705

1.2934

1.2140

1.1582

1.1237

1.0937

1.0722

1.0770

1.0350

0.9609

0.8927

0.8448

0.8164

0.7774

0.7190

0.6646

0.6165

0.5645

0.5084

0.6395

0.6071

0.5725

0.5276

0.4817

0.4379

0.3917

0.3420

0.2910

0.2372

0.1808

0.1217

0.0609

3.7199

2.9826

2.6184

2.3868

2.2236

2.0996

1.9987

1.9172

1.8452

1.8498

1.8398

1.7877

1.7014

1.5951

1.4838

1.3937

1.3335

1.2926

1.2671

1.2581

1.2555

1.2632

1.2590

1.2256

1.1671

1.0952

1.0282

0.9783

0.9502

0.9442

0.9418

0.9157

0.8743

0.8219

0.7758

0.7422

0.7127

0.6758

0.6299

0.5852

0.5445

0.4990

0.4510

0.5002

0.4758

0.4505

0.4183

0.3835

0.3503

0.3146

0.2761

0.2363

0.1936

0.1482

0.1000

0.0500

1.9450

1.7424

1.6211

1.5324

1.4653

1.4111

1.3653

1.3259

1.2901

1.2906

1.2795

1.2470

1.1963

1.1352

1.0710

1.0186

0.9821

0.9565

0.9401

0.9356

0.9376

0.9354

0.9273

0.9090

0.8746

0.8287

0.7850

0.7530

0.7330

0.7230

0.7167

0.7061

0.6805

0.6434

0.6063

0.5789

0.5589

0.5350

0.5006

0.4659

0.4351

0.4015

0.3644

9
9
9
9
9
9
9
10
10

10
10
10
10

10

10
10
10
10
10
10
10
10
10
10
10

10
10
10
10

10
10
10
10

10
10

10
10
10
10

10
10
10
10
10
10
10
10
10
10

10
10

10
10

10
10

10

0.7

0.6
0.5
0.4
0.3
0.2

0.1
9.8

9.7

9.6

9.5
9.4
9.3
9.2

9.1
9.0
5.0
4.9
4.8
4.7
4.6
4.5
4.4
4.3
4.2

4.1
4.0

3.3
3.2
3.1

3.0

2.9
2.8
2.7

2.6
2.5
2.4
2.3
2.2

2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2

1.1
1.0

0.9
0.8

0.7

0.6

0.5

0.4525

0.3941

0.3336

0.2711

0.2060

0.1384

0.0693

7.2291

5.0197

4.0725
3.5632

3.2425

3.0072

2.8279

2.6885

2.5645

2.5532

2.5196

2.4393

2.3179

2.1703

2.0103

1.8783

1.7891

1.7306

1.6958

1.6819

1.6663

1.6331

1.6103

1.7191

1.6053

1.4678

1.3716

1.3166

1.2748

1.2332

1.2089

1.2861

1.2173

1.1315

1.0471

0.9836

0.9647

0.9532

0.8932

0.8273

0.7779

0.7396

0.6862

0.6284

0.5758

0.5198

0.4616

0.4017

0.3398

0.4027

0.3519

0.2988

0.2434

0.1853

0.1247

0.0624

4.0400

3.2750

2.8907

2.6405

2.4694

2.3331

2,2286

2.1405

2.0611

2.0766

2,0631

1,9999

1.9025

1.7854

1.6629

1,5643

1.4991

1.4553

1.4282

1.4184

1.4298

1.4304

1.4053

1.3563

1.2841

1.2062

1.1404

1.0963

1.0757

1.0826

1.0798

1.0482

1.0105

0.9640

0.9209

0.8784

0.8431

0.8128

0,7832

0.7351

0.6873

0.6478

0.6066

0.5584

0.5122

0.4635

0.4127

0.3606

0.3058

0

0
0
0
0
0
0
2

1
1
1
1

1
1

1
1

1
1
1

1
1
1
1,

1,
1,

1,
1,
1,
1,

1.
1.

0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.

0.
0.

0.
0.

.3270

.2870

.2450

.2004

.1532

.1034

.0517

.1375

.9199

.7921

.6932

.6269

.5681

.5205

.4782

.4396

.4407

.4275

.3911

.3342

.2685

.1987

.1426

.1031

.0761

.0602

.0537

.0557

,0499

.0384

.0142

,9699

.9194

,8769

,8477

,8319

8237

8188

8126

7948

7584

7147

6803

6585

6457

6202

5809

5465

5194

4879

4505

4150

3779

3379

2966

2526
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Table 1 (continued)

Θ/T α=0.1 α=0.05 α=0,01

10
10
10
10

0.4
0.3
0.2
0.1

0.2758

0.2094

0.1407

0.0704

0.2488

0.1893

0.1273

0.0637

0.2067

0.1579

0.1064

0.0532

Table 2 gives values of Θ^/T calculated iteratively, by means of the chi-

square approximation in conjunction with the Wilson-Hilferty approximation, for

selected values of Θ/T £ 5 , n = 40, α=0.1 and 0.05. Here, as well as for the

values of Θ/T and Θ^/T covered in Table 1 for a fixed combination of α and n,

one can interpolate by converting to £n(θ/T) and using linear interpolation to

determine a corresponding £n(θ
Λ
/T). An example is given in Section 5.

TABLE 2. Approximate chi-square values of Θ^/T. Lower confidence bound at

level 1-α, corresponding to Θ/T, for n = 40, α=0.1, 0.05.

Θ/T

α = 0.1

3.065

2.591

2.057

1.460

0.783

0.407

0.166

0.083

α = 0.5

2.824

2.396

1.912

1.366

0.739

0.385

0.157

0.078

5.0

4.0

3.0

2.0

1.0

0.5

0.2

0.1

We are at present investigating methods combining simulation techniques and

smoothing procedures, so that tabulations can be made over the range 1<Θ/T <n

for n>10. Results of these investigations will appear in a later paper.
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4. Tabulation of the Confidence Bounds

Values of Θ^/T calculated by means of the computer program appear in

Table 1 for n = 2(1)10, α = 0.1, 0.05 and 0.01. These have been checked for

accuracy, as described in Section 3, and should be correct to within a unit in

the second significant figure. Some values have four significant figures of

accuracy.

The range of values of Θ/T exhibited in Table 1 reflects the range of values

that this estimator is able to take on. For example, if n= 9 and the number of

failures r is equal to 1, then, from (1), one sees that θ is equal to 8T, plus

an increment that ranges from zero to slightly less than T. If r = 2, then θ

/\
must be less than 4.5T, but no less than 3.5T. If r>^3, θ may range from zero

to 3T. In fact, for n = 2, 0.0 < Θ/T < 2.0; for n = 3(1)6, 0 < Θ/T < n/2 or

n - 1 < Θ/T < n; and for n = 7(1)10, 0 < Θ/T < n/3 or n/2 - 1 < Θ/T < n/2 or

n -1 < Θ/T < n.

5. An Example

Consider exponential failure times generated by a sample of size 5 of

electronic parts that have been "burnt in". Here, T is equal to 106 days and

there are four observed failure times, namely, 1.2, 19.6, 45.1 and 91.3 days,

so that 6 = [1.2 + 19.6 + 45.1 + 91.3 + 106]/4 = 65.8 days and Θ/T = 0.621.

To obtain a 95 percent lower confidence bound for θ, we first calculate

An(0.6) =-0.5108, £n(0.7) =-0.3567 and £n(0.621) =-0.4764. Then, inter-

polation in Table 1 yields for £n(θ^/T), £n(0.2803)+ 0. 2237 (£n(0. 3228)-£n (0.2803))

= -1.2719 + 0.2237(-1.1307 + 1.2719) = -1.2403. Thus, Θ^/T is equal to 0.289,

and 30.7 days is a 95 percent lower confidence bound for θ.
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