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STEPDOWN LIKELIHOOD RATIO TEST ON EACH
PARAMETER COMPONENT IN TESTING
EQUALITY OF COVARIANCE MATRICES

By AKIMICHI TAKEMURA

University of Tokyo

We consider the likelihood ratio test for testing equality of covariance ma-
trices of K multivariate normal populations Np (,uh, Eh), h=1,...,k. The
null hypothesis is Hy : X1 = - -+ = Xi. The likelihood ratio test is well known
and the stepdown test procedure for the case & = 2 was given by J. Roy (1958).
See also Sec.10.4 of Anderson (1984). The stepdown procedure can be regarded
as a decomposition of likelihood ratio statistic. Here we demonstrate how this
decomposition can be carried out to test each component of the covariance matrix

Y for the k sample problem.

1. Overview of the Stepdown Likelihood Ratio Test. Consider a
general hypothesis testing problem

Hy:0€0y vs. K:0€0. (1)

For simplicity of notation we write K : § € O instead of more usual K :
f € © — Op throughout this paper. Often we want to test an intermediate
hypothesis or partial null hypothesis H; : § € ©1, where

O, C0O,CO. (2)

Let A = maxgeo, f(z,0)/ maxseco f(z,0) be the likelihood ratio statistic for
(1) and similarly let Ag1, A12 be the likelihood ratio statistic for testing Ho vs.
Hy and H; vs. K respectively. Then the overall likelihood ratio statistic A
can be decomposed as A = Ag1 A12.

Instead of testing Hovs. K, we could test each of the partial testing
problems Hg vs. Hy, Hyvs. K in turn, using the component likelihood ratio
statistics Ag;1 and Aie. Usually the intermediate hypothesis Hy is taken to
be a hypothesis on some subvector of § and then the above decomposition of
likelihood ratio test is called stepdown procedure.

AMS 1980 Subject Classifications: 62H10, 62H15.
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With appropriately chosen intermediate hypothesis Hy, it often happens
that A\g; and A3 are mutually independently distributed under Hy. In this case
the overall significance level of stepdown procedure can be easily computed.
Therefore it is advantageous to take H; to achieve this independence under
Hy.

When stepdown procedure is used, the order of tests has to be considered.
The general principle seems to be that we first test the outer problem H; vs. K
and then test the inner problem Hy vs. H;. More precisely:

1. Test Hyvs. K using A1p. If Hy is rejected, then Hp is rejected as well
and we stop.

2. If H,y is accepted, then we continue to test Ho vs. Hy using Ag;.
For the case of determining the order of polynomial regression, the optimality
of the above “backward” order of testing is proved in Sec 3.2 of Anderson
(1971).

We now describe stepdown procedure for testing equality of covariance
matrices. Decomposition of the overall likelihood ratio statistic will be given
in terms of submatrices of the covariance matrix ¥ for simplicity. Let the
covariance matrix X, for the h-th population be partitioned as

Y, X2 h)
2, = (21 hY o h=1,. k. 3
h (Ezl,h Yo2,n (3)

Let
-1 -1
Bp = Y43 ,B12,h, Y921, = Yoo,n — V21,057 Y12,k

be the regression coefficient matrix and the residual covariance matrix. Since
(Z11,ny X1,k X22,1) and (X114, Br, X22.1,5) are in 1-to-1 relation, we can use
the parametrization (11,5, B, X22.1,n). We remark here that this reparame-
trization is advantageous in achieving independence of component likelihood
ratio statistics, but the physical interpretation of new parameters are not
necessarily simple. Consider the following 3 hypotheses:

Hiay: Y11a == X1k,
H1): By =--- = By, (4)
Hzy : Tooq1 == Yoz k.

Then the null hypothesis Hy is the intersection of the above 3 hypotheses:
Ho = H(11) N Ha1) N H(2a),

where N denotes logical intersection. Let ©¢,0(11), ©(21),0(22) be the re-
stricted parameter space corresponding to Ho, H(11), H(a1),and H(sy), respec-

tively. Then Hop : 6 € ©¢ = O(11) N O(31) N O(32). Now we form the following
nested sequence of hypotheses

©0 C O(11) N O3y C O(11) C O, (5)
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where © is the whole parameter space. This nesting of partial hypotheses
corresponds to the following ordering of testing:

1. Test H(11)~

2. If H(y,) is accepted then test H(ys).

3. If H(y9y is accepted then test H(yy).
Let A11 , A2z, and Ag1 be the likelihood ratio statistics for these intermediate
testing problems and A = A11A22A21 be the overall likelihood ratio statistic.
With this choice of intermediate hypotheses, the component likelihood ratio
statistics A11, A21, A2z are mutually independently distributed under the null
hypothesis (see Lemma 1 below). Testing H(1y first seems to be natural, if
the components of the first subvector are considered to be more important.

In the sequel we adopt the above ordering (5) of intermediate subhypothe-
ses. However we remark here that there are other possible orderings to achieve
independence of component likelihood ratio statistics under Hy. They are

Oy C @(11) N @(22) - 9(22) C o, (6)
(“)0 C @(21) n @(22) C @(22) C O (7)

The component likelihood ratio statistics A11,A22 and Ap; remain the same
for these orderings. The only requirement for independence is that we have to
test H(gg) before H(31). This means that 1) By,h = 1,...,k have to be free
when H(y9) is tested, and 2) Xp2.1, A = 1,... , k have to be equal, when H 1)
is tested. We describe this situation by saying that A;; is the likelihood ratio
statistic for H(y1), A2z is the likelihood ratio statistic for H(3,) not assuming
H(31), and Az; is the likelihood ratio test for H,;) assuming H(sg).

The explicit form of A1, A22,Ag1 is well known. Let Wy (h = 1,...,k)
be the sample sum of squares matrices from the h-th population. W}, is dis-
tributed according to Wishart distribution: W, ~ Wy(nn, L), where n, =
Nj, — 1 is the degrees of freedom and Nj, is the sample size from h-th popu-
lation. Throughout this paper we assume np > p, h = 1,--- ,k and |Z;| #0
for simplicity, although the restriction on n; can be relaxed. Let W}, be par-
titioned as

Wit Wiz
Wy = ’ ), h=1,---,k. 8
. (w’21,h sz,h) (8)

and let Wyg.1p = Wag n — W21,hW1_1}hW12,h, h=1,---,k. Denote the pooled

sum of squares matrix by

Wiu,r W12,T> 9)

Wr=Wt-+ W= (W21T Wae,r

and let Wos.r = Waa 1 — W21,TW1_1}TW12.T. For a ready reference we give
explicit expressions for A, A11, A2z, A21 in the following lemma.
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LEMMA 1. Let N = Ny+---+ N. Assume np, = N —1 2> p,h =
1,---,k,and |S4| #0,h =1,--- k. Then

k k
[ (W |Ne/2 hl_[lll’l"u,hIN"/2
= R -
IWTIN/2 1 |W11,T|N/2 )
k k N/2 10
1 |[Wag.q n|Ne/2 > Waaan (10)
Agg = hz: N77 Aol = h|_VlV |N/2
’ S Wast s 22-1,T
h=1

A11, A2z, A9y are mutually independently distributed under Hy.

Note that Aq; and Agg are of the same form as A. Ajp is based on the

(1,1) block of W}, whereas Ay, is based on (2,2) residual sum of squares block
of Wh.

2. The Main Result. In Lemma 1 stepdown procedure was described
in terms of submatrices of the covariance matrix. In this section we carry out
the decomposition down to each component of ¥ = (o;;). The ordering of our
stepdown procedure is to test the following elements of ¥ in turn:

(1’1) - (2’2) —(2,1) — (3’3) - (372) - (3’1) — (4,4) — .

However as mentioned in the previous section, the only essential restriction on
the ordering is that in each row we proceed as

(4,2) — (4, = 1) — -+ — (4, 1).

For the moment we omit the subscript h for notational simplicity. (We add
“,h” to the subscript to denote quantities for h-th population.) Let

g11 0 014
=t .ot ], o) = (0i1,++ ,04i-1),

3 S Y (11)
By = (Birs -+, Biic1) = 0B i1,
O35, i—1 = O45. = O3 — 0‘(,-)2;_11’5_10'&-).

Then ¥ = (0y;) and (03i., 1 <1 < p, Bij,1 > j) are in 1-to-1 relation and we
use the latter parametrization. Consider the following set of hypotheses:

Hi;: 04.0 ="+ = 0iik, 1=1,---,p, (12)
Hij: Bija == Bijx, 1<j<i<p (13)
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and let ©;; be the parameter space corresponding to H;;, ¢ > j. Further write

I_fijZH;jﬂH,',j+1ﬂ-"ﬂHii, (:),'j =G),-J-n@,~,]-+1r1---n®i,-. (14)

Let W), = (wij,5) and define w;;. p = wyj1,... i—1,» as in (11). The like-
lihood ratio statistic for H;; not assuming Hjy,---,H;;—1 can be easily de-
scribed in terms of w;;. p,h = 1,--- , k. Now we consider testing H;; vs. I—{i’j.l.l,
i.e., testing H;; assuming H; ji1,---,H;; and not assuming H;,--- , H; ;1.
Likelihood ratio statistic for this problem needs somewhat complicated nota-
tion. Let the ¢ x 7 upper left block of W), be partitioned as

J t—J
J Win Wi h)
A ’ ’ 15
(W21,h Waa n (15)

and let
Wh(i|j) = Waan — W21,hW1_1}hW12,h, 1<7<i-1,
W(ilg) = S Wil ). (16)
h

W (i |0) is just the 7 X i upper left block of Wr. Note that W(z | 7) is obtained
by first subtracting off the regression onto first j elements in each of Wj and
then pooling the residual sum of squares. Now regress the last (“i-th”) element
of W(z | 7) onto other elements and let

(i | §)ii. = Waz — Wa1 Wipt iz, 1<j <=2, (17)
where
i—j-1 1
~ . i—j—l( Wi 11)12)
Wi = N - . 18
(¢]4) ) Go1 Ty (18)

For j=1¢—1 or j = 0 define

w(z 7 — 1)” an hs

’if)(’t | 0)“'. = ’w,‘,'.,T = wz-,-.l,...,z-_l,T.

(19)

Finally consider the difference in residual sum of squares w(¢| ). and w(¢ |
J—1)ii. and let

uij = (e |7 — 1)is. — w(2| 7). - (20)
Note that

B(2]5)is. =wije1 + o+ wiio1 + (2|7 — 1)

:ui,j+1 -|- LI + ui,‘i—l + Z wii~,h' (21)
h=1
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The main result of this paper is the following theorem.

THEOREM 1. Assume ny, > p, h = 1,---,n, and |Zh| # 0,h =
1,---,k. Let A;; be the likelihood ratio statistic for testing H;; not assuming
Hi,--- ,H;;—1 and let \;j,i > j, be the likelihood ratio statistic for testing

H;;vs. H; jy1, namely testing H;; assuming H; jy1,- -+, H;; and not assuming
H,‘l, cee ,H,‘,j_l. Then

Aii — h=1 (22)

Aij = (_ﬁ’_(_zl_J)_u__> N/2

W(i|j — 1)
X N/2
Ui j41+ ot Uiio1 + D, Wik
= = L@
Wij + Ui g1+ Ui + hE—:I Wii. b

Under Hy, ZZ=1 Wii. by, 1 < ¢ < p and uij, © < j, are all mutually indepen-

dently distributed and
Wis _ Ui
—R (Ve =), 2t (k- 1), (24)

it- IR

where x2(f) denotes chi-square distribution with f degrees of freedom.

COROLLARY 1. Under Hy, A;j, @ > j, are all mutually independently
distributed. Furthermore for ¢ > j

AN~ Beta ([N —ki+(i—j—1)(k-1)]/2, (k=1)/2), (25

where Beta (a,b) denotes beta distribution with parameter a,b.
Proof of Theorem 1 will be given in the next section. Corollary 1 is an
easy consequence of Theorem 1.

3. Lemmas and Proofs. Our Theorem 1 is a refinement of Lemma
1 and the method of proof for Lemma 1 and Theorem 1 are basically the
same. For clarity of argument, we first prove Lemma 1 and then extend the
proof to Theorem 1. Proof of Lemma 1 is based on the author’s argument in
Takemura(1991). We divide our proof into 2 parts: derivation of likelihood
ratio statistics and derivation of distributional results under Hy.

We begin by deriving likelihood ratio tests given in Lemma 1.
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3.1. Derivation of Likelihood Ratio Statistics in Lemma 1. Let Z) ~
N(Qn,phIn, ® X),h = 1,--- ,k, be Ny X p observation matrix from h-th
population, where 1,, = (1,---,1)" € R™, i.e., the rows of Z, are independently
distributed according to N,(us,X). Let Z, = (1/Ny)Z;1n, be sample the
mean vector. The sample sum of squares matrix Wy, is Wy = Z; Z), — Nz, Z} .
The maximum likelihood estimator for up, is Zj, in any case and concentrated
likelihood ignoring irrelevant constants is

k k
- 1 -
Lo [ IZal~™/ 2 exp (-5 > jtrthhl) . (26)
h=1

h=1

Dropping subscript h for the moment, consider partitioning W and ¥ as
in (3) and (8). Let B = ;' Z15. Denote the (3, 5) block of £~ by $%. Using
the well known relation

2 =T, 2 = -5, B, =35 + B, B,
we can express tr WX ! as
tr WZ‘I =tr WuE“ + 2tr W12221 + tr W22222
=tr W11 21—11 + tr W11B22_21.1 BI
— 2r W2 S5 B! + tt Waa B354 (27)
=tr Wy 57 + tr (B — B)Wi1(B — B)S3)}, + tr Was 551,
(28)
where B = W1_11 Wis.

First consider H(;1). From (27) or (28) it follows that the maximum
likelihood estimator of X1y is given by Xq1,, = Wiy r/N when H(yqy is
assumed and Xy1,, = Wiy p/Np,h = 1,--+ ,k, when H(11) is not assumed.
Note that maximum likelihood estimators for Bj,X29.1,, remain the same
whether H(y,) is assumed or not. From this observation it is easy to derive the
expression for A;; in (10). Now consider Hyy) assuming that By,h =1,--- ,k

are free. From (28) we see that the maximum likelihood estimator of B}, is just
Bh =Wy, th n. Then the maximum likelihood estimator of ¥5.; is given by

E’,‘;:l Wiz.1,n/N when H (g is assumed and Wag.q n/Ni,h = 1,... ,k, when
H(32) is not assumed. Hence A, is easily derived as in (10).

Finally consider H(3;) assuming H(3;). We need to obtain maximum
likelihood estimator of B = By = --- = By under H(y;). From (27) we have

k
E WhE;I = Z tr Wll,hzﬁl,h + tr Wll,TBzz_zl.lBl
h

— 2tr W12,T22_21.1 B’ +tr W22,T2{21-1
= Z tr Win w2375 + tt Wiy, o(B — Wiy 'y Wi 1) 8554
h

(B - WI;}TWH,T)’ 4 tr Waz,7 555 - (29)
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Therefore under H1) N Hy2) the maximum likelihood estimator is
B= Wl'llTWu,T, S22 = Waza,r/N. (30)

Substituting this into (26) and comparing it to the maximized concentrated
likelihood under H(yy) (with 222 1 = 2, Waza /N, Bh = Wy, hW12 n) we
easily obtain A9y in (10).

3.2. Derivation of Likelihood Ratio Statistics in Theorem 1. Since the
derivation of likelihood ratio statistics in Theorem 1 is analogous to Lemma
1, we only sketch the proof. The likelihood ratio statistic A;; for H;; in (22) is
the same as in Lemma 1 and omitted. Consider H;;, ¢ > j. We first note that
the likelihood ratio statistic depends only on ¢ X ¢ upper left block of W}, ,h =
1,---,k, just as A(y1) in Lemma 1 depends only on Wiy 5, h =1,--- k. Hence
we can assume ¢ = p without loss of generality. Then it suffices to consider
the case where (dropping the subscript ) ¥ and W are partitioned as

(Wll Wi Wla) (211 12 213)
W= | Wa W Wy |, Y= 221 Y22 X3 |. (31)
Wi Wi Wag Y31 Y32 Xa3
Furthermore write
W, W, W, 0%

W=y W) e = (s W)

Waz. = Waz1,0 = Was — W(31)V‘7611)W(13)»

Wiz = Waz — Wy W' Whs,

Wasa = Was — Wy Wi Wis = Wiy 4,

Wagq = Way — Wa Wi Wi, (32)

and write similarly for £. Let B’ = 2(31)2(_111) be partitioned as B' = (B{, B}).
Now assume

Y331 = -+ = Y33.x = Xa3., By =---= By = By, (33)

and By p,h =1,--- ,k, are free parameters. The essential step in our proof is
to obtain maximum likelihood estimates of these parameters. It is straight-
forward to derive
trWE™! =tr Wany )y + tr Wy BZ35 B’
— 2tr W(13)E3_31.B' + tr Was X33
=tr W1 5}
+ [tr Wa3.1 535 — 2tr Wa3.1 2330 B + tr Wag. B2 X35 BY]
+ tr Wiy (By — Wi Wis + W7 Wiy By) 235
+(B1 = Wiy Wis + W' Wis By)'. (34)
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Writing subscript h again and adding with respect to A, let

Waga = Z Wa2.1,h, Wiz = ZW23-1,h, Wiz = ZW33~1,h- (35)
h h h

From (34) it follows that

k
> W,z

>
o

tr W(n),hz(—lll),h + tr B3 (Wazq — W32.1f472_2¥1 Wz;;.l)

&>
g
o+ -

+ TW22~1(B2 - W{ghwzaq)zé_gl.(l?z - W{é}l Was.1 )

k
+ Z tr Wi,n(Bip — Wﬁfh Wia,n + Wﬁ}th,th)Eé};l.
h=1
« (Bip = Wi Waan + Wil Wiz wBs)'. (36)

From this the maximum likelihood estimators are obtained as
~ 1 ~ ~ =~
Y33, = N(Wam — W34 Wy Wasa),

§2 = Wz_zﬂ Wzsq, (37)
Bih = Wﬁ}h Wisn — Wﬁ}h Wia,nBa, h=1,---,k,

and the maximized likelihood function is, omitting irrelevant constants,
L x |233.|_N/2 x |W33.1 — W32.1W2_2¥1 W23.1|_N/2. (38)

Now it is easy to see that A;; is given by (23).

REMARK 3.1. W33.1 - W32.1W2_2'11 ng.l is obtained by 1) regressing
out the first block in each W),, 2) adding with respect to h, i.e., pooling the
sum of squares, and 3) regressing out the second block. @(7| 7). of (17) was
defined by the same consideration.

REMARK 3.2.  Derivation of maximum likelihood estimates for Bj
and B; is somewhat easier to see in conditional regression setup in canonical
form. This approach was suggested by a referee. Let Y33, W33 be scalars in
(32) and consider the following regreesion model:

X3h ~ Ny, (X1nBin + Xo1,102,0pp.1), (39)
where X, X515, = 0. Let

bir = (X15X10) " X110 X30, ban = (X34 p X2.1,8) " X304 X3h-
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Then

Q =||X3n — X1nB1in + Xo1 082

k
= Z(blh = B1n) (X1 X10)(b1n — B1n)

h=1
k k
+ Z(bn — B2) (X34 n X2.1,1)(b2n — B2) + Z €hehn, (40)
h=1 h=1

where e, = X3p — Xinb1n — X2.1,002,. Now it easily follows that the least
square estimates of 315, and [, are given as

k 1k
Bin=bn, P2 = (Z X§.1,hX2-1,h) (Z Xé-l,hX3h) : (41)

h=1 h=1

This corresponds to Eg,ﬁl,h in (37).

3.3. Derivation of Distributional Results. It remains to show the null
distributional results in Lemma 1 and Theorem 1. They are the consequences
of a version of Cochran’s theorem (Lemma 2) and Lemma 3 below.

LEMMA 2. Let X :nxp~ N(0,I,®X). Let Vj,h = 1,---,k, be
mutually orthogonal subspaces of R™. Let V' be a subspace of R™ such that
V, C V,h = 1,---,k. Denote the orthogonal projectors onto Vy and V by
Py, and Py. Define Wy, = X'Py, X, h = 1,--- ,k and V41 = X'Py X —
Wy —---— Wy. Then Wy,--- Wiy are mutually independently distributed
according to Wishart distribution

Wi ~ W,o(dim Vi, %), h=1,---,k,
Wig1 ~ Wp(dimV — dim V4 — - - — dim Vj, 3).

Proof of this lemma is easy and omitted.

Based on Lemma 2 the following result can be established. Because of
usefulness for the case of small degrees of freedom, we do not assume n; > p
here.

LEMMA 3. Let W, ~ Wy(np,X) be independently distributed. Let
Wr =W+ ---+Wrandn=mny+---+4 ng. Assume || # 0. Let W} and
Wr be partitioned as

Wii,n Wi h) Wi Wit
W . 3 ) — ) )
h (W21 n Wan/’ Wr ’

’
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where W11 ,h, Wi1,T are ¢ X q. Let

-1 .
Waah — Wor n Wiy yWizn, i mp 2> g;

42
0, otherwise, (42)

Waan = {

and define W22~1,T similarly. Then W22.1,1, s ,W22.1,k,W22.1’T - W22.1,1 -
-+« — Waa.1,x are mutually independently distributed according to

Waz.1,n ~ Wy g(max(np — ¢,0), La2.1)

Wasar —Wagag — - — Waaak
k (43)
~ P"q(ma'x(n - q’O) - Z ma‘x(nh - q’O)’ 222-1)’
h=1

where Wishart distribution with 0 degree of freedom is degenerate at 0 matrix.

PROOF. Let X :nx p~ N(0,I, ® ¥) be partitioned as

X1 Xio
‘le Xo1 X2

X = (X(1)7X(2)) = . = : :
X Xr1 Xko,

where X(1) : 7 X ¢, Xp : np X p. Then Wr = X'X, W), = X} Xj. It suffices
to show that the results hold conditionally when all elements of X(;) are fixed
and the results do not depend on X(;). Let M; = span X(;) be the subspace
of R™ spanned by the columns of X(;) and let V = Mj" be the orthogonal
complement of M;. Let U, C R™ be the n; dimensional subspace of vectors
of the following form

07"' aO sToy+ednp14+1s" " 5 TngdFnp O, 70
N —’ N —r’
ni+-+np—1 Nh41+-+nk

Now let U, = span 0,---,0,X;,,0,---,0) = span Py, X(1) be the subset of
Uy, spanned by columns of Xj;. Then dim Uy = min(ns,q). Furthermore
define V,, = U, N U hl Note that V} is the orthogonal complement of Uh in
Uy,. This corresponds to subtracting off the regression on Xj;. Note dim V}, =
max(np — ¢,0). With these definitions we have

Waza,r = X(5)Pv X(2),

44
Was1,n = X(3y Py X(2)- (44)

Now V;, C Uy, and Up’s are mutually orthogonal subspaces. Hence V}’s
are mutually orthogonal subspaces. Therefore by Lemma 2 it suffices to show
Vi, CV,h=1,---,k. Noting V = Mj* and

Vi C Mit <= M, CV,
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it suffices to show that the orthogonal projection of M; onto V} is {0} or
0 = Py, X(1) = Pu, X() = Py, Xq)- (45)
Since Uy, = span Py, X(1), Pﬁh can be written as

Pﬁh = PUhX(l)[X(ll)PUhX(l)]—lX(’l)PUh .

Hence Pﬁh X@) = Pu, X(1) and this proves the lemma. J

Based on Lemma 3 it is easy to prove distributional results in Lemma 1
and Theorem 1.
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