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We consider the likelihood ratio test for testing equality of covariance ma-

trices of k multivariate normal populations Np (/i^, Σ/^), h = 1,. . . ,&. The

null hypothesis is Ho : Σ i = = Σfc. The likelihood ratio test is well known

and the stepdown test procedure for the case k = 2 was given by J. Roy (1958).

See also Sec.10.4 of Anderson (1984). The stepdown procedure can be regarded

as a decomposition of likelihood ratio statistic. Here we demonstrate how this

decomposition can be carried out to test each component of the covariance matrix

Σ for the k sample problem.

1. Overview of the Stepdown Likelihood Ratio Test. Consider a

general hypothesis testing problem

H0:θ e Θo vs. K : θ G Θ. (1)

For simplicity of notation we write K : θ G Θ instead of more usual K :

θ G Θ — Θo throughout this paper. Often we want to test an intermediate

hypothesis or partial null hypothesis Hi : θ G Θi, where

Θo C Θi C Θ. (2)

Let λ = ma,xβeβ0 /(%->())/ ma,xθee f(x,θ) ^ e ^ e likelihood ratio statistic for

(1) and similarly let λoi, λχ2 be the likelihood ratio statistic for testing Ho vs.

# i and Hi vs. K respectively. Then the overall likelihood ratio statistic λ

can be decomposed as λ = λoiλi2

Instead of testing j?ovs. K, we could test each of the partial testing

problems Ho vs. J3Ί, H\ vs. K in turn, using the component likelihood ratio

statistics λoi and λi2 Usually the intermediate hypothesis Hi is taken to

be a hypothesis on some subvector of θ and then the above decomposition of

likelihood ratio test is called stepdown procedure.

AMS 1980 Subject Classifications: 62H10, 62H15.
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With appropriately chosen intermediate hypothesis Hi, it often happens
that λoi and λχ2 are mutually independently distributed under Ho . In this case
the overall significance level of step down procedure can be easily computed.
Therefore it is advantageous to take Hi to achieve this independence under
#o

When stepdown procedure is used, the order of tests has to be considered.
The general principle seems to be that we first test the outer problem Hi vs. K
and then test the inner problem Ho vs. H\. More precisely:

1. Test Hi vs. K using λi2 If Hi is rejected, then Ho is rejected as well
and we stop.

2. If Hi is accepted, then we continue to test Ho vs. Hi using λoi
For the case of determining the order of polynomial regression, the optimality
of the above "backward" order of testing is proved in Sec 3.2 of Anderson
(1971).

We now describe stepdown procedure for testing equality of covariance
matrices. Decomposition of the overall likelihood ratio statistic will be given
in terms of submatrices of the covariance matrix Σ for simplicity. Let the
covariance matrix Σ^ for the ft-th population be partitioned as

( v
1,h

Let

V V ' ft = 1, ,&. (3)
^21, h ^22hJ

be the regression coefficient matrix and the residual covariance matrix. Since
(Σii)/ι,Σ2i,/ι,Σ22,/ι) and (Σn> h,B h,Σ 22 i,h) are in 1-to-l relation, we can use
the parametrization (ΣH JΛ,5/ 1,Σ22.I,Λ). We remark here that this reparame-
trization is advantageous in achieving independence of component likelihood
ratio statistics, but the physical interpretation of new parameters are not
necessarily simple. Consider the following 3 hypotheses:

J Γ ( 2 1 ) : 5 l = . . . = j B f c ϊ (

#(22) ' Σ22 l,l = = Σ22.1,fc

Then the null hypothesis Ho is the intersection of the above 3 hypotheses:

H # Π 5 Π #(22) 5

where Π denotes logical intersection. Let Θo,Θ(n), Θ(2i),Θ(22) be the re-
stricted parameter space corresponding to 5o, #(n) 9 #(2i)>and #(22)5 respec-
tively. Then Ho : θ G Θo = Θ(n) Π Θ(2i) Π Θ(22) Now we form the following
nested sequence of hypotheses

Θo C Θ(n) Π Θ(22) C Θ(1i) C Θ, (5)
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where Θ is the whole parameter space. This nesting of partial hypotheses
corresponds to the following ordering of testing:

1. Test # ( 1 1 ) .

2. If #(ii) is accepted then test #(22)-
3. If #(22) is accepted then test #(21)

Let λn , λ22, and λ2i be the likelihood ratio statistics for these intermediate
testing problems and λ = λnλ22λ2i be the overall likelihood ratio statistic.
With this choice of intermediate hypotheses, the component likelihood ratio
statistics λii,λ2i,λ22 are mutually independently distributed under the null
hypothesis (see Lemma 1 below). Testing -δ*(n) first seems to be natural, if
the components of the first subvector are considered to be more important.

In the sequel we adopt the above ordering (5) of intermediate subhypothe-
ses. However we remark here that there are other possible orderings to achieve
independence of component likelihood ratio statistics under #0 . They are

C Θ(n) Π Θ(22) C Θ(22) C Θ,

C Θ(2i) Π Θ(22) C Θ(22) C Θ.

(6)

(7)

The component likelihood ratio statistics λn, λ22 and λ2i remain t|ie same
for these orderings. The only requirement for independence is that we have to
test iί(22) before #(21) This means that 1) Bh,h — 1,... ,fc have to be free
when #(22) is tested, and 2) Σ22.i,/ι h = 1,... , k have to be equal, when #(21)
is tested. We describe this situation by saying that λn is the likelihood ratio
statistic for #(11), A22 is the likelihood ratio statistic for #(22) n°t assuming
#(21), and λ2i is the likelihood ratio test for #(21) assuming #(22)-

The explicit form of λii,λ22,λ2i is well known. Let Wh (h = 1,... , k)
be the sample sum of squares matrices from the h-th. population. Wh is dis-
tributed according to Wishart distribution: Wh ~ Wp(nh,Σh), where Πh =
Nh — 1 is the degrees of freedom and Nh is the sample size from h-th. popu-
lation. Throughout this paper we assume rih > p, h — 1, , k and |Σ/i| / 0
for simplicity, although the restriction on nh can be relaxed. Let Wh be par-
titioned as

and let W22Λth = W22,h - W2i1hW11

1

hWι2,hi h = 1, ,&. Denote the pooled
sum of squares matrix by

TTT TΓΓ . , TΓ7- I W^ll T W^12 T 1 //Λ\

H/j1 = W\ + + Wk — I TTT ' τr7 ' j (yj

and let t722.i,τ = W22,τ ~ ^ 2 1 , 7 ^ ^ 1 2 . 7 . For a ready reference we give
explicit expressions for λ, λn,λ 22,λ 2i in the following lemma.
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LEMMA 1. Let N = Ni + ••• + Nk Assume nh = Nh - 1 > p,h =

1, , k, and \Σh\ φ 0, h = 1, , k. Then

k
ΓT \Wh\Nh'2

h=l χ i

\WT\
N'2 '

k

Π IW22-I h\Nh^2

/ ι = l ' Λ
— \ „ < —

k N/2 ' ^ Z i

A;
TT |Wii /rl^^2

|Wii fTr/2 '
k

Y w
ΛΓ/2

AT /O

1T/Γ7" 1 /
1 22 1,T|

(10)

λ n , λ22, λ 2 i are mutually independently distributed under Ho .

Note that An and λ22 are of the same form as λ. λ n is based on the

(1,1) block of Wh , whereas λ22 is based on (2,2) residual sum of squares block

2. The Main Result. In Lemma 1 stepdown procedure was described

in terms of submatrices of the covariance matrix. In this section we carry out

the decomposition down to each component of Σ = (σij). The ordering of our

stepdown procedure is to test the following elements of Σ in turn:

(1,1) —> (2,2) —> (2,1) —> (3,3) —> (3,2) —> (3,1) — * (4,4) - + . . . .

However as mentioned in the previous section, the only essential restriction on

the ordering is that in each row we proceed as

(M-i) (M)

For the moment we omit the subscript h for notational simplicity. (We add

",/ι" to the subscript to denote quantities for h-th. population.) Let

(11)

Then Σ = (σij) and (σu., 1 < i < p, βij,i > j) are in 1-to-l relation and we

use the latter parametrization. Consider the following set of hypotheses:

Hij • βij,i =

= σn.^, i = 1, ,p,

= βij,k, l<j<i<P

(12)

(13)
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and let Θij be the parameter space corresponding to H^, i > j. Further write

Ha = Hij n fr i f i + 1 n n HiU Θ y = Θ y n Θ i f j + i n n Θ«. (14)

Let W^ = (wij^h) and define w^.^ = Wu.i,...,i-i,/ι as in (11). The like-

lihood ratio statistic for Ha not assuming Hn, - , ίΓi,i_i can be easily de-

scribed in terms of wa.th, h = 1, , k. Now we consider testing Hij vs. -H"t,j+i ?

i.e., testing jy, j assuming JBΓt jj7 +i, ,5"^ and not assuming JB"JI, ,Hij-\.

Likelihood ratio statistic for this problem needs somewhat complicated nota-

tion. Let the i x i upper left block of W^ be partitioned as

3 i-3

j (Wll9h WuΛ ( ,
i-3 \W21%h W22,h)

 K }

and let

wh(i I j) = w22,h - w2hhw1-]hw12ih, l < j < i -1,

W(i I 0) is just the i x i upper left block of Wτ Note that W(i | j) is obtained

by first subtracting off the regression onto first j elements in each of Wh and

then pooling the residual sum of squares. Now regress the last ("z-th") element

of W(i I j) onto other elements and let

1 <j < i - 2, (17)

where
i-3-I 1

Wn * 1 2 V (18)
w21 w22j

 v ;

For j = i - 1 or j = 0 define

w(i I 0)i». = wa^T = WiM,... ,t-i,τ

Finally consider the difference in residual sum of squares w(i \j)u. and w(i \

j — l)u. and let

uij = w{i\j-l)ii.-w(i\j)u.. (20)

Note that

-•••+ «*,<_!+ Σ ««-.*• (21)
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The main result of this paper is the following theorem.

THEOREM 1. Assume nh > p, h = 1, ,n, and |Σ/,| ψ 0,/ι =
1, ,fc. Let Xu be the likelihood ratio statistic for testing Hu not assuming
Hα, ,Hiti-i and let λij,i > j , be the likelihood ratio statistic for testing
Hij vs. Hij+i, namely testingHij assuming Hij+ι, , Hu and not assuming
Hii, ' ,Hi,j-χ. Then

λ« =
π

/ k

[Έwiih
\/ι=l

( *>(i\j)

U«ii-

V

\ N/2'
)
/

+ h ̂ i,i-l +
k

A;

/ ι = l

\

(22)

Under Ho, ]CΛ=I ^MΊΛ? 1
dently distributed and

* ^ P a ι l ( ί

(23)

< J? a r e a ^ mutually indepen-

^ - X2(Nh - <), - ^ (24)

wiiere χ2(f) denotes chi-square distribution with f degrees of freedom.

COROLLARY 1. Under ίfo, λ^ , i > j , are all mutually independently
distributed. Furthermore for i > j

ψ ki + (i-j-l)(k-l)]/2, (*-l)/2), (25)

where Beta (α, 6) denotes beta distribution with parameter α,6.
Proof of Theorem 1 will be given in the next section. Corollary 1 is an

easy consequence of Theorem 1.

3. Lemmas and Proofs. Our Theorem 1 is a refinement of Lemma
1 and the method of proof for Lemma 1 and Theorem 1 are basically the
same. For clarity of argument, we first prove Lemma 1 and then extend the
proof to Theorem 1. Proof of Lemma 1 is based on the author's argument in
Takemura(1991). We divide our proof into 2 parts: derivation of likelihood
ratio statistics and derivation of distributional results under Ho.

We begin by deriving likelihood ratio tests given in Lemma 1.
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3.1. Derivation of Likelihood Ratio Statistics in Lemma 1. Let Zh ~
N{ljsfhμ'h,Iisrh ® Σ),h = 1, , &, be Nh X P observation matrix from h-th.
population, where l n = (1, , 1)' G i2n, i.e., the rows of Zh are independently
distributed according to Nv{μh,Σ). Let Zh = (l/Nh)Z'hlNh be sample the
mean vector. The sample sum of squares matrix Wh is Wh = Z'hZh — NhZhZr

h.
The maximum likelihood estimator for μh is Zh in any case and concentrated
likelihood ignoring irrelevant constants is

k / k \

ί o c J I |Σ,|-^/2exp - - ^ t r ^ Σ " 1 . (26)
h=l \ h=l )

Dropping subscript h for the moment, consider partitioning W and Σ as

in (3) and (8). Let B = Σ ^ Σ ^ . Denote the (ij) block of Σ""1 by Σ y . Using

the well known relation

— ^22-15 ^ — " ^ 2 2 - 1 ^ i ^ — ^11 +

we can express t rWΣ" 1 as
1 1 1 Σ 2 1 + tr 2 2

Σ ^ (27)

tr (B - B)fWu(B - B)Σ^2\ + tvW22ΛΣ^2

1

1

(28)

where B = W^1 W12

First consider ^f(n). From (27) or (28) it follows that the maximum

likelihood estimator of Σ n ^ is given by Σ n ^ = Wntτ/N when #(n) is

assumed and Σ n ^ = Wn^/Nh^h = 1, ,A:, when #(n) is not assumed.

Note that maximum likelihood estimators for Bh^22Λ,h remain the same

whether #(π) is assumed or not. From this observation it is easy to derive the

expression for An in (10). Now consider #(22) assuming that JB^, h = 1, , k

are free. From (28) we see that the maximum likelihood estimator of Bh is just

Bh = W-[[1

hWi21h- Then the maximum likelihood estimator of Σ22.1 is given by

Σ Λ = I W22-i,h/N when #(22) is assumed and W22 i,h/Nh,h = 1,... ,&, when

,ff(22) is not assumed. Hence λ22 is easily derived as in (10).

Finally consider #(21) assuming ϋΓ(22) We need to obtain maximum

likelihood estimator of B = B\ = = Bk under #(21) From (27) we have

k

h=l

h

- 1(B - W-^Wn^Y + trW22.i,τΣ2-2

1.1. (29)
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Therefore under #(21) Π #(22) the maximum likelihood estimator is

B = Wΰ]τW12,τ, Σ22.1 = W22.ltT/N. (30)

Substituting this into (26) and comparing it to the maximized concentrated

likelihood under H(22) (with Σ 2 2 α = ΣhW^hh/N,Bh = W{[]hW12ih) we

easily obtain λ2i in (10). |

3.2. Derivation of Likelihood Ratio Statistics in Theorem 1. Since the

derivation of likelihood ratio statistics in Theorem 1 is analogous to Lemma

1, we only sketch the proof. The likelihood ratio statistic λϋ for Hu in (22) is

the same as in Lemma 1 and omitted. Consider Hij, i > j. We first note that

the likelihood ratio statistic depends only on i X i upper left block of Wh, h =

1, , fc, just as λ( n ) in Lemma 1 depends only on W\\^ ? h = 1, , &. Hence

we can assume i = p without loss of generality. Then it suffices to consider

the case where (dropping the subscript h) Σ and W are partitioned as

/Wn W12 W13\ / Σ a Σ12 Σ 1 3 \
W=\W2X W22 W23 , Σ = Σ 2 1 Σ 2 2 Σ 2 3 . (31)

\W31 W32 W33J \Σ31 Σ32 Σ33/

Furthermore write

w22

. = W-33.1,2 =

W33.1 = ^33 - W31W{[1W13,

W23.i = W23 - W2iW{?W13 = Wi2Λ,

W22.1 = W22 - W21W{[1W12, (32)

and write similarly for Σ. Let B' = Σ( 3 1 )Σ^x be partitioned as B' = (B[,B'2).

Now assume

Σ33 ,i = = Σ33.tfc = Σ33.t, J32)i = = B2yk — B2, (33)

and -Bi^, h = 1, , k, are free parameters. The essential step in our proof is

to obtain maximum likelihood estimates of these parameters. It is straight-

forward to derive

- 2tτW(lz)ΣςlB' + tr W33Σ3-31

- W1-1

1W13 + W£WX2B2)'. (34)
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Writing subscript h again and adding with respect to /ι, let

^22-1 = ^ W / 2 2 l,/ι9 W23.χ = ^ W M - I , ^ ^ 3 3 4 = ^ W^33.1,Λ. (35)

h h h

From (34) it follows that

A;

3.i - w32Λw22\w23Λ)

nΛBhh - Wϊί]h W13>h

• (Bi,k - W{*hWu,k + W{+h W12thB2γ. (36)

From this the maximum likelihood estimators are obtained as

Σ 3 3 . = ̂ ( \

( 3 7 )

ΰ\ Ti^ h = 1, ,k,

and the maximized likelihood function is, omitting irrelevant constants,

L oc | E 3 3 . r N / 2 oc IW33.1 - W32ΛW2-2\ W23Λ\-N'2. (38)

Now it is easy to see that λ^ is given by (23). |

REMARK 3.1. WZZΛ ~ W32ΛW22\ W23Λ is obtained by 1) regressing

out the first block in each Wh, 2) adding with respect to /&, i.e., pooling the

sum of squares, and 3) regressing out the second block. w(i \j)u. of (17) was

defined by the same consideration.

REMARK 3.2. Derivation of maximum likelihood estimates for Bi^h

and B2 is somewhat easier to see in conditional regression setup in canonical

form. This approach was suggested by a referee. Let Σ33, W33 be scalars in

(32) and consider the following regreesion model:

X3h - Nnh(Xlhβlh + X2.i,hβ2,σpp.I), (39)

where X[hX2.ι}h = 0. Let

δih = (X[hXih)~1 X[hX3hj hh = (X2.1^hX2Λyh)~1 X2Λ
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Then

k

Σ(bih - βιh)'(X[hXih)(blh - βlh)
h=l

k k

+ Σ>2Λ " /hnXllthX2.1,h)(b2h - β2) + Σ e W , (40)
h=l /ι=l

where e^ = X^h - Xihhh ~ X2 i,hhh- Now it easily follows that the least

square estimates of β\h and β2 are given as

) (βlh = blh, β2 = ( ) ( )
\/ι=l / \/ι=l /

This corresponds to i ^ B i ^ in (37).

3.3. Derivation of Distributional Results. It remains to show the null

distributional results in Lemma 1 and Theorem 1. They are the consequences

of a version of Cochran's theorem (Lemma 2) and Lemma 3 below.

LEMMA 2. Let X : n x p ~ iV(0,/n ® Σ). Let V*,,/* = 1, ,fc, be

mutually orthogonal subspaces of Rn. Let V be a subspace of Rn such that

Vh C y, h — 1, ,fc. Denote the orthogonal projectors onto Vh and V by

PVh and Pv. Define Wh = X'PVhX, h = 1, ,fe and Vlb+i = X ' P y X -

^ _ . . . - j ^ f c # TAen W1 ? , Wk+ι are mutually independently distributed

according to Wishart distribution

Wh~Wp{dimVh,Σ)9 Λ = l,--.,fc,

Wk+1 - Wp(άim V - dimF x dim V*, Σ).

Proof of this lemma is easy and omitted.

Based on Lemma 2 the following result can be established. Because of

usefulness for the case of small degrees of freedom, we do not assume rih > p

here.

LEMMA 3. Let Wh ~ Wp(nh,Σ) be independently distributed. Let

Wτ = W1 + + Wk and n = m + + nk. Assume | Σ | φ 0. Let Wh and

be partitioned as

W
l l i h Wτ-(Wn,τ W12,τ\

T " \W21,T W22,τJ'
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where WH,Λ, Wπ,τ are q X q. Let

' 1 0, otherwise,

and define W/

22 i,τ similarly. Then M̂22 i,ij ' ?^22 i,fc?W22-I,T — ̂ 22-1,1 ~
• — W22'i,k &re mutually independently distributed according to

}h ~ Wp-q(msx(nh - g,0), Σ22 i)

(43)

h=l

where Wishart distribution with 0 degree of freedom is degenerate at 0 matrix.

PROOF. Let X : n x p ~ N(0,In ® Σ) be partitioned as

\
- ^ 2 2

where X(1) : n X q, Xh:nhxp. Then W τ = X'X,Wh = X'hXh It suffices

to show that the results hold conditionally when all elements of X^ are fixed

and the results do not depend on X(i) Let Mi = spanX^j be the subspace

of Rn spanned by the columns of X^ and let V — Mj 1 be the orthogonal

complement of M\. Let Uh C Rn be the rih dimensional subspace of vectors

of the following form

,0 ,a : n i +.. .+ n Λ _ 1 +i, ,a; n i + . . . + n f c , 0, ,0

Now let Uh = span (0, ,0,X'hl, 0, , 0) ; = span PjjhX(\) be the subset of

Uh spanned by columns of Xh\. Then dim Uh = min(n/ l,g). Furthermore

define Vh = Uh Π U^. Note that Vh is the orthogonal complement of Uh in

Uh- This corresponds to subtracting off the regression on Xhi- Note dim Vh =

max(n/ι — #,0). With these definitions we have

2)i

W22Λth = X[2)PvhX(2)

Now Vh C Uh and U^s are mutually orthogonal subspaces. Hence W s

are mutually orthogonal subspaces. Therefore by Lemma 2 it suffices to show

V Λ C V,Λ = 1, Λ Noting V = Mf and
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it suffices to show that the orthogonal projection of M\ onto Vh is {0} or

0 = PVhX(i) = PuhX(x) - PΰhX(i). (45)

Since Uh = spanPt/^^Qi)? Pΐj cafr be written as

Hence P~ X(i) = PχjhX(\) and this proves the lemma. |

Based on Lemma 3 it is easy to prove distributional results in Lemma 1

and Theorem 1.
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