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The main purpose of this paper is to develop two-stage methods for covari-

ance and correlation structure analyses with continuous and polytomous vari-

ables. A full maximum likelihood approach and a partition maximum likelihood

approach are used to attain the first stage estimates of the thresholds and the

underlying covariance or correlation matrix. Then based on the joint asymptotic

distributions of the first stage estimators and appropriate weight matrices, the

generalized least squares approach is employed to estimate the structures param-

eters in the covariance or the correlation structures. Asymptotic properties of the

estimates are derived. A simulation study is reported to give some ideas about

the accuracy and the asymptotic behaviors of the method.

1. Introduction. Covariance structure analysis (Bentler 11983;
Jόreskog, 1978) is a major trend in Psychometrics in the past ten to twenty
years. It has been shown by Jόreskog (1970) that this general multivariate
method covers multivariate analysis of variance, regression,, principal com-
ponents, factor analysis and simplex models. Traditionally, it has been car-
ried out in practice under the assumption that the observed variables are
continuous with a multivariate normal distribution. Recently, asymptotically
distribution-free methods have been developed (Bentler, 1983; Browne, 1984),
and robustness of the normal theory methods underviolation of the distri-
butional assumption has been studied (Anderson, 1988; Browne, 1987). Al-
though the works cited above mainly concentrated on continuous variables,
some attention has been focused on polytomous variables because
most variables in practice are only observable in dichotomous or polytomous
form. Examples of these variables are attitude items, performance ratings, etc.
Bock and Liberman (1970) considered the maximum likelihood method for a
dichotomous factors analysis with only one factor, and which was extended
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to a multiple factors model by Christoffersson (1975). Recently, Lee, Poon,
and Bentler (1990a, b) developed likelihood estimation methods to analyze
general structural equation models for polytomous variables. The statisti-
cal properties, such as the asymptotic distribution of the estimates and the
goodness-of-fit statistics, were also provided.

More general situations that involve both continuous and polytomous
variables are more complicated. Olsson, Drasgow, and Dorans (1982) studied
the estimation of a bivariate polyserial correlation by means of the maximum
likelihood approach and a two-step approach. Poon and Lee (1987) extended
the bivariate model to a multivariate polyserial and polychoric model, where
a vector of continuous variables and a vector of polytomous variables was in-
volved. Optimal maximum likelihood estimates of the thresholds, polychoric
and polyserial correlations were obtained. The main purpose of this article is to
discuss two 2-stage procedures to analyze covariance structures for models with
continuous and polytomous variables. At the first stage of the procedures, the
thresholds and the polychoric and polyserial covariances/correlations are es-
timated without imposing any structure on the covariance/correlation model.
Based on the statistical properties of the first stage estimates, the structural
parameters in the model will be estimated at the second stage via the gener-
alized least squares approach. The asymptotic distributions of the estimators
and a goodness-of-fit test statistic will be presented. A simulation study is
reported to give some ideas about the accuracy and the asymptotic behavior
of the developed methods.

2. The Basic Model and Its Likelihood Function. Suppose
X(r x 1) and Y(s x 1) are continuous random vectors whose joint distribution
is iV[O,Σo], where elements of Σo = Σ(0O) are differentiate functions of a
q by 1 true population parameter vector #o It is assumed that the model
is identifiable, that is, Σ(0χ) = Σ(02) implies θ\ — Θi. Suppose that exact
measurements of Y are not available and that the information in Y is given
by an observable polytomous random vector Z = (Zi, , Z8)

r, such that the
αth element of Z

Za = k(a) if aaMa) <Ya < αα,*(α)+i> (1)

for a = 1, , θ, k(a) — 1, , ra(α). Here ra(α) is the number of categories

with respect to the αth variable, and α α ^( α ) is the unknown threshold parame-

ter expect for αα >i and αα,m(α)+i which are equal to -oo and +oo respectively.

Let k be the multiple index (&(1), , &(<$)), and let Zk denotes a random ob-

servation Z with Za = k(a), a = 1, ,θ,fc(α) = 1, ••• ,m(a). Consider a

random sample from (xf Z1)1 of size T, in which observed vectors are of the

form (xk,i(k)fkfy, where i(k) denotes the index of the particular polytomous

observation with Z = fe, and Xk.i(k) is the i(fc)th observed vector of X with

Z = Zfc, and the αth component of Z , Z O , takes a value from 1,2, ,ra(α).
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Thus, i(k) takes a value from the sequence 1, 2, , n*. where n*. is the total
number of observations with Z = (&(1), , &(<s)), and the sum of n*. over all
k(a) from 1 to m(a) is equal to T. In the following, if the context is clear, we
will just write i instead of i(k).

Let ΣXXJ Σyy and Σyx be matrix function of θ corresponding to correlation
matrices of X,Y and (Y,X) respectively, and let Pr{k) be the probability
of the cell k. From (1), it can be shown that

Pr(fc) = (-1) £
j(s)=0

where υ(a) — k(a) + i(a), and Φs(a\, , as, Σyy) is equal to

Γ . . . ΓS(2τr)-s/2 |Σy?/r
1/2exp(- ί/'Σ-y

1

2//2) ίίt/s d2/1. (3)

The maximum likelihood (ML) estimate of 0 can be obtained by mini-
mizing the following negative logarithm of the likelihood function of θ:

ra(l) m(s) nk

" Σ Σ Σ {loS bi (**.i)] + log [ft (* I **,i)]}. (4)
l Ar(5)=l t = l

in which pi(ccfc,i) is the r-dimensional multivariate normal density function,
and P2(k I a?fc,i) is the conditional density function of Z given Xk,i Let
σ'a be the αth row of Σya7,σ^ be the variance of Yα, and cr̂  be the column
vector obtained from the r(r + l)/2 nonduplicated triangular elements of Σxx

sequentially row by row. It can be shown that

Pl(xktl) = ̂ TΓΓ^IΣ^Γ^exp { - x'kAΣ^xkιl/2}, (5)

and P2(k \ Xk,i) is equal to

(-I)' Σ ••• Σ (- l ) Σ - < ( i l ) Φ.(αί,- .α .Λ ), (6)
i(l)=0 i(s)=O

where iZ* is the correlation matrix of Y \ X, and

«: = (««,«(α) - ^ ά Σ ^ a s i i . i ) ^ - < E ; > a ) - 1 / 2 . (7)

It is clear from (4), (5) and (6) that direct minimization of the likelihood
function to obtain the ML estimation is very difficult and tedious. Two 2-
stage procedures that can significantly simplify the computation are discussed
in the following sections.



350 COVARIANCE AND CORRELATION STRUCTURE ANALYSES

3. The FML-GLS 2-stage Procedure. In this 2-stage procedure,

the thresholds, and the polyserial and polychoric covariance/corrections are

estimated at the first stage by the full likelihood without any constraints on Σ

and the structural parameter θ is estimated by the generalized least squares

approach at the second stage.

Let ηf

a = σ'a/σa, and consider the following one-one onto transformation:

1 /9

Co,u(α) = «α,υ(α)(l ~ Va^xxVa) ? (8)

ba = -Σ^ηa{l-η'aΣ^ηay
1/2; (9)

where paj is the correlation of Ya and Yj, for a,j = 1, ,s, a < j and

υ(i) = 2, ,m(i). Then clearly from (7) that

^ ) (11)

where R is the correlation matrix with off-diagonal element raj. Since cα>υ(α)/

σa is invariant to a scalar multiplication by cα?υ(α) and σα, and hence, the

parameters and the model are not identified. To solve this problem, we fixed

cα j 2, a = 1, ,θ, to some preassigned values. The choice of these preassigned

values will not greatly affect the estimation. At this stage, the new parameter

vector is equal to (cr£,,/3), where β = (fe^σ^r',^)', with σx,b,σy,r and c

being the parameter vectors that define the unknown distinct parameters in

Σxx, &i, the diagonal elements of Σ y i / , r α j , and ca^a) for α,j •= 1, , s; j > a

and υ(a) = 2, , m{ϊ). From (6) and (11), the likelihood function (4) in terms

of this new set of parameter is expressed as

L(σx,β) = Lι(σx) + L2(b,σy,r,c), (12)

where

Lλ{σx) = 2" 1 J rTlog (2τr) + Tlog \ΣXX\ + ^g ( ) + g \XX\ + ^ i ^ { , (13)

m(l) m(s) n(k) . 1 1

L2(b,σy,rc) = - Σ - Σ Σ |kg(-l)' Σ - Σ (-l)Σ - i ( i ι )

fc(l)=l fe(s)=li(fc)=l l j(l)=0 j(s)=0

are functions that depend on fewer number of separable parameters. The

unrestricted ML estimate, Σ ^ , of Σ ^ can be easily obtained by minimizing
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(13). The ML estimates b,σy,f, and c are obtained by minimizing (14) via

the Fletcher-Powell algorithm (see, e.g. Luenberger, 1984). Furthermore,

the ML estimates (τ/,ό y ,p,c) of η,σy,p,c) can be obtained by the inverse

transformations of (8) to (10). Finally, by a one-to-one transformation that

converts correlations to covariances and vice versa, the ML estimates Σyx and

Σyy of Σyx and Σyy can be obtains from (ή,σy,ρ). Thus, the first stage

estimate Σ of Σo, composed of ΣXX9 Σyx and Σ y y , can be obtained.

Let σ be the vector that consists the non-duplicating elements in Σo

and σ be the corresponding vector that consists the ML estimates in Σ. We

will assume that every element σij(θ) of Σ and its first three orders partial

derivatives with respect to θ are continuous in a neighborhood of ΘQ. Then,

σ is consistent and its joint asymptotic distribution is multivariate normal

with mean vector σ and some covariance matrix Ω. At the second stage, the

parameter vector σ in the covariance matrix Σ(σ) is estimated by minimizing

the GLS function

Q(σ)=1-{σ-σ(θ))'W-1{σ-σ(θ)), (15)

where σ(θ) is the vector defined by the lower symmetric part of Σ(0) and W is

an appropriate weight matrix that converges to Ω in probability. Expressions

for W can be obtained from the large sample approximation of various infor-

mation matrices. Let θ be the vector that minimizes Q(θ). It can be shown

by similar arguments as in Ferguson (1958, Section 3.2) that: (i) the asymp-

totic distribution of θ is normal with mean vector θ and covariance matrix

{(dσ/dθ)'W-1(dσ/dθ)}-1, and (ii) the asymptotic distribution of 2Q(Θ) is

chi-squared with degrees of freedom (s + r)(s + r + l)/2 — q. Basic statistical

inference for structural equation models, such as goodness-of-fit test of the

model, test of the null hypothesis concerning 0, etc., can be performed via (i)

and (ii). Computationally, θ can be obtained efficiently by the Gauss-Newton

algorithm, see, for example, Lee h Jennrich, (1979).

4. The PML-GLS 2-stage Procedure. The FML-GLS 2-stage pro-
cedure requires computing multiple integrals of the form Φ5(α£, , α*; 12*).

Clearly, if s is large, it takes a long computer time to achieve the solution. In

this section, a computationally more efficient PML-GLS 2-stage procedure is

proposed. To solve the identification problem, here, we assume diag(Σ2/2/) = /;

and for convenience we also assume diag(Σa7a7) = /.

The first stage of this procedure is devoted to obtain the partition ML

estimates (see, e.g. Poon & Lee, 1987) of the threshold parameters and ele-

ments in Σ without any correlatin structure. Elements in Σ are respectively

the polyserial correlations pa between X and Ya and the polychoric correla-

tion pab between Ya and Y&. The basic idea is to partition the whole general

model into smaller submodels. For each a = 1, , s, ρa is estimated based on
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the observed random sample from the polyserial submodel corresponding to
(X', Za) with only one polytomous variable Zα. The partition ML estimate of
pab is obtained from the polychoric submodel corresponding to the two dimen-
sional m(a) x m(b) contingency table, with frequencies given by observations
in Za and Z\>. Hence, we only need to compute single and double integrals in
this procedure.

First, consider the partition ML estimation of pa based on the random
sample corresponding to (X', Za). Let α α = (αα > 2, ,αα,m(α))', and n fc(α),
nk(a),kW>m'' ->nk k e the numbers of observations respectively corresponding
to Za = k(a),Za = k(a),Zb = fc(6)), ,Z = fc, etc; and Xk(a)j> 3 =
1? * >Wfc(o) be the observed x vectors corresponding to Za = fe(α). For this
submodel, the negative log likelihood function can be obtained as a special
case of (4) with 5 = 1 and is given by

TT T
La(px,<xa,pa) = — log(2π)+ - log | Σ ^ |

m(o) njfc(β)

+ 2 Σ Σ Xfc(α)li
Σ

jb(o)=i i = i

α)=l j=l

.1/2

where p^ is the column vector obtained from the r(r - l)/2 non-duplicated
lower triangular elements of Σxx sequentially row by row, and Φ is the standard
univariate normal distribution function. To simplify the minimization of this
function, the following one to one transformations as given in Lee and Poon
(1986) are used:

TaM*) = αα,fc(α)(l " P α ^ P α ) " 1 ' 2 , (17)

and
ζa = -Σ-χVα(l - p'αΣ-Jpα)"1/2. (18)

Letrα = (rα,2,.. , r a j m ( a ) ) ' . It follows from (16), (17) and (18) that La(ρx,θLa,
pa) can be expressed as

La{px,τa,ζa) = Fx(Px) + Fa(τaΛa)>

where

m(α) rcfc(α)

Fa(τa,ζa) = -
fc(o)=l i =
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l k(s) = l i=l

(α)K>fc,i)}, (19)

and

m(l) m(s) nh

Fx{px) =r—\og{2π)+ Σ ••• Σ Σ 2 ^ l θ g | Σ ^ l + X ^ Σ - l ί C f c ^ ( 2 0 )

Ar(l)=l k{s)=l t = l

Since the jacobian of the one to one transformations (17) and (18) is

nonsingular, minimizing La with respect to {p x ,α α ,p α } is equivalent to min-

imizing Fa and Fx with respect to (raχa and ρx. Clearly, ρx is asymptoti-

cally equivalent to the vector that contains the corresponding lower triangu-

lar off-diagonal elements of the sample correlation matrix obtained from the

continuous observations. Computationally, the minimum of F α (τ α , ζa) can be

achieved by the efficient Newton-Raphson algorithm, see Lee and Poon (1986).

This minimization problem is relatively simple because only one polytomous

variable and the univariate normal distribution function is involved. For all

a — 1, , θ, the partition ML estimate {δία, pa} of {αα, pa} is obtained from

{τa >ζa} and ρx via thee inverse transformation of (17) and (18).

Now, for α, b — 1, , 5, a > 6, consider the estimation of the polychoric

correlation, pab, of the bivariate submodel corresponding to Ya and Yb. The

negative logarithm likelihood function is given by

m(a) m(b)

k(a)=l k(b)=l

where {k(a),k(b)} are respectively the αth and δth element of an observa-

tion z*j in the s-dimensional sample space. Since each random observation

{k(a),k(b)} in the bivariate submodel is corresponding to an observation in

the s-dimensional multivariate model, we have

m(l) m(b)

The partition ML estimate, (6ία, α&, pab)f, is the vector that minimizes

Fabi^-a, G-bipab)- Notice that this minimization problem is again relatively

simple because only bivariate distribution functions are involved.

It should be noted that this partition ML approach gives two types of

threshold estimates, one from the estimation of the poly serial correlations and
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the other from the estimation of the polychoric correlations. As pointed out
by Poon and Lee 91987), the differences among these estimates usually are
very small. Moreover, the second stage estimation of the parameter θ in the
correlation matrix is basically not affected by this phenomenon since it does
not involve the threshold estimates in the estimation. Of course, one can take
thee average of these estimates to be the final unique estimate of the threshold,
if desired.

Let σ* be the parameter vector of elements in Σ that consists all the
polychoric correlations pab, and polyserial correlations p α , and σ* be the first
stage estimate of σ in this PML-GLS 2-stage approach. It can be shown that
(see, Lee Poon and Bentler, 19991) σ* is consistent and its joint asymptotic
distribution is multivariate normal with mean vector θ* and some covariance
matrix Ω*.

The second stage of the approach involves the estimation of the structural
parameter θ in the correlation structure based on the following GLS function:

Q*(θ)=1-[σ*-σ*(θ)]'V-1[ϊ*-σ*(θ% (22)

where σ*(θ) is the vector σ* with elements now considered as functions of
the structural parameter 0, and V is an appropriate weight matrix that
converges to Ω* in probability. Again expressions for V can be obtained
from the large sample approximation of the appropriate information matri-
ces and Hessian matrices (see, Lee, Poon and Bentler, 1991). Let θ be the
vector that minimizes Q*(θ). Then, it can be shown that (i) the asymp-
totic distribution of θ is norma; with mean vector θ and covariance matrix
{(dσ*/dθ)}'V-1(dσ*/dθ)}-1, and (ii) The asymptotic distribution of 2Q*(Θ)
is chi-squared with degrees of freedom (s + r)(s + r — l)/2 - q.

5. Simulation Study. A simulation study was conducted to study the
performance of the estimates. Three sample sizes T = 100,200, and 500 were
considered and the dimensions r and s were chosen to be 6 and 2, respectively.
The structure of Σ was taken from a confirmatory factor analysis model:

Σ = BCB1 + E,

were B is the factor loading matrix, C and E are covariance matrices of the
factors and error measurements, respectively. For each sample size, random
observations {x\^yΊ)' with distribution 7V[0, Σ] were simulated using the IMSL
(1987) subroutine DRNMVN. The true values of S ,C, and E are:

, = [0.8 0.8 0.8 0.8 0* 0* 0* 0
" [θ* 0* 0* 0* 0.8 0.8 0.8 0

* 1
.8J '

= [o°6
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where Is is the 8x8 identity matrix. The continuous data yι were transformed
to polytomous data Z{ via αi = OL<I = (—1.0,0.0). The off diagonal elements
of E and parameters with an asterisk were treated as known parameters and
were not estimated. Since a correlation structure is considered in this paper,
there are totally nine independent parameters in B and C to be estimated.
Estimates of the diagonal parameters of E can be obtained as functions of the
estimates of these nine parameters. Based on these simulated data, the two-
stage estimates of the structural parameters were obtained. The subroutine
given by Schervich (1984) was used to compute the multiple integrals of the
normal distribution functions. For each sample size, the process was continued
until 50 replications of the FML-GLS 2-stage estimates and the PML-GLS 2-
stage estimates were completed. The means and the root mean square errors
(RMSE) between the estimates and the true population values are reported
in Table 1. Based on the RMSE values, it seems that the PML-GLS 2-stage
method can produce reasonably accurate estimates that essentially have the
same degree of accuracy as the FML-GLS 2-Stage estimates. For each sample
size, the 50 goodness-of-ίit test statistic values were analyzed via the SPSS
(1988) program to see whether they deviate from the theoretical expected chi-
squared distribution. The p-values of the 2-sided Kolmogorov test based on
the PLM-GLS 2-Stage test statistic values for T =100, 200, and 500 are 0.12,
0.72 and 0.53, respectively. The corresponding p-values of the FML-GLS 2
Stage approach are 0.91, 0.47 and 0.28, respectively. These values indicate
the expected result that with moderate sample sizes, the distribution of the
goodness-of-fit test statistics is reasonably chi-squared. Results obtained from
similar analysis on univariate normality of the parameter estimates are also
satisfactory.

6. Discussion. In this paper, two 2-stage procedures, namely FML-
GLS and PML-GLS, for analyzing correlation structure with continuous and
polytomous variables are developed. The asymptotic distribution of the esti-
mators and a goodness-of-fit statistics are also presented. Hence, statistical
analysis on the covariance and correlation structures is possible based on our
results. Computationally, it is shown that since it only involves the evaluation
of single and double integrals, the PML-GLS procedure is a feasible method
to use in practice.

Acknowledgement. This research was support in part by a Hong
Kong UGPC research grant for the project "Analysis of Structural Equation
Models with Non-sstandard Data" and a research grant DA01070 from U.S.
Public Health Service. We are indebted to a referee for very valuable comments
and suggestions for imporvement of this papers.



356 COVARIANCE AND CORRELATION STRUCTURE ANALYSES

Mean

Mean

True Parameters

#11 =0.8

#21 =0.8

#31 =0.8

#41 =0.8

#52 =0.8

#62 -° 8

B72 =0.8

BS2 =0.8

α 2 i =o.6

#11 =0.8

B2\ =0.8

£31 =°'s

#41 =0.8

#52 =0.8

B62 =0.8

£72 =0.8

#82 =0.8

C2i =0.6

P M L -

Γ=100

0.87

0.87

0.86

0.85

0.84

0.83

0.81

0.81

0.69

0.09

0.09

0.08

0.07

0.07

0.07

0.06

0.07

0.13

GLS Estimates

Γ=200

0.84

0.85

0.83

0.83

0.83

0.82

0.81

0.80

0.67

0.06

0.05

0.05

0.05

0.04

0.05

0.04

0.05

0.09

Γ=500

0.81

0.82

0.81

0.82

0.81

0.81

0.80

0.80

0.63

0.03

0.03

0.02

0.03

0.02

0.03

0.03

0.03

0.04

F M L -

Γ=100

0.77

0.78

0.78

0.77

0.80

0.80

0.76

0.75

0.65

0.07

0.07

0.08

0.07

0.05

0.06

0.09

0.09

0.09

GLS Estimates

Γ=200

0.79

0.79

0.79

0.79

0.79

0.79

0.78

0.80

0.62

0.04

0.04

0.04

0.05

0.04

0.04

0.06

0.06

0.06

Γ=500

0.79

0.79

0.80

0.79

0.80

0.80

0.80

0.80

0.61

0.03

0.03

0.03

0.03

0.03

0.02

0.03

0.03

0.05
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