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A real canonical parameter of a generalized linear model can have third

order tail probabilities or significance functions by the saddlepoint analysis of

Davison (1988). Recent methods using asymptotically modulated densities pro-

duce third order tail probabilities for real or vector parameters in the presence

of nuisance parameters; the parameters need not be canonical and thus may be

based on a noncanonical link function. Examples are given for generalized linear

models.

1. Introduction. The saddlepoint methods of Daniels (1954) and
Lugannani and Rice (1980) have been applied (Davison, 1988) to obtain tail
probabilities for a real canonical parameter of a generalized linear model. The
computational aspects have been simplified (Fraser, Reid & Wong, 1991) by
working directly with a conditional likelihood (Cox & Reid, 1987); related
theory (Fraser & Reid, 1989, 1992a,1992b) shows that the third order asymp-
totic properties are preserved, and implementations indicate that accuracy is
improved.

For a general model consider n independent variables, where a component
yι has the canonical exponential model with density

exV{yiθi - c(θi)}f(yi) (1)

but with canonical parameter θ{ — g(Xιβ) related by a link function g(-) to
a vector X{ — (xn,..., Xip) of concomitant variables having a regression-type
parameter β — (/?i,... ,βp)

r. The link function describes how the composite
effect Xiβ of the concomitant variables affects the canonical parameter θι
of the exponential model; note that the definition of the link function, for
convenience here, differs slightly from that in McCullagh and Nelder (1989).
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For the special case of a canonical link with θ{ = Xiβ, the likelihood
simplifies to

n

έ(β y) = a + y'Xβ-Σc(Xiβ), (2)
1

and has sufficient statistic y'X. For inference concerning βp with nuisance

β(i) = {βι, ,βP-i)', the Cox and Reid (1987) adjusted profile

£c(βp) = /(3(i)()9p),i9p) + |log|j>(1)i9(1>(i3(i)(i9p),i9p)| (3)

gives a likelihood function appropriate to the interest parameter βp in the
context of no information concerning the nuisance parameter β^ — (/?i,...,
βp-ι)\ For notation, in the preceding expression, β^(βp) is the maximum
likelihood estimate of /3(χ) for fixed βp; the first term is thus the profile like-
lihood; the second term contains the observed information matrix j for the
nuisance parameter β^ again with fixed /3P,

This adjusted parameter can then be inverted by a procedure (Fraser, Reid &
Wong, 1991, Fraser 1991) to give the tail probability

p(βp) = P(βp<β°p;βp) (4)

to third order accuracy (Fraser & Reid, 1989, 1991); this is an extension of the
Lugannani Sz Rice (1980) formula to the more general context with nuisance
parameters. The computation by this route is somewhat more direct than in
Davison (1988).

For independent observations y\,... , yn with a non-canonical link θi =
g(Xiβ), there is no longer a sufficient statistic reduction to dimension p; in
fact in general there is no reduction from the sample dimension n. BarndorfF-
Nielsen's (1983) formula for the distribution of the maximum likelihood esti-
mate

c(2π)-p/2exp{£(β;y) - l{β y)}\j\112 dβ (5)

when renormalized provides O(n~3/2) accuracy, but it is in fact a conditional
distribution and needs to be calculated conditionally given an ancillary a(y);
no general method of determining the ancillary is available in the literature.

For the present generalized linear models, the method in Fraser (1964) can
be adapted to produce an approximate ancillary. In the resulting conditional
model, the parameters enter nonlinearly in general. The use of a tangent ex-
ponential model (Fraser, 1964, 1990) or the r* formula of Barndorff-Nielsen
(1991), leads to significance with O(n~3/2) accuracy for real component pa-
rameters. An alternative route (Fraser & Reid, 1992b) based on Fraser (1990)
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and Cheah, Fraser & Reid (1991) leads to O(n~3/2) significance for real or
vector parameters.

For the generalized linear models with noncanonical link we develop, as
just discussed, the approximate ancillary and obtain significance by the al-
ternate route. A simple example is used for which exact probabilities are
available, thus allowing appropriate comparisons.

An example concerning lifetime of leukemia patients is discussed in Sec-
tion 2; the suggested generalized linear model has two parameters. In Sections
3 and 4 one of the parameters is assumed known a priori and two different
types of tangent exponential models are developed and analyzed in the two
sections. The general case with nuisance parameter is discussed in Section 5.

2. An example. As illustration we choose Example U from Cox and
Snell (1981). The response y is lifetime in weeks for leukemia patients and the
concomitant variable x is the logarithm of the initial white blood cell count
(Feigl k Zelen (1965)):
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The suggested model is

fi(yi) = exv{-yiθi+hL(θi)} (6)

on yi > 0 where

EiVi) = ΘΓ1 = exV{a + β(Xi-x)}. (7)

This is a simple exponential model with link

θi = g(Xiβ) = exv{-a-β(xi-x)}

= exp{-(l,s, -30(α,/3)'} (8)

which is nonlinear in the canonical parameters. In Sections 3 and 4 we examine
the regression parameter β with an assumed value for α. Then in Section 5
we again examine β but with a treated as a nuisance parameter.

The example has special features that allow an exact analysis for both a
known and a as nuisance. For this let W{ = log y^ then Wi-a-β(xι -x) = t{
has the extreme value distribution

exp{t - e^dt (9)
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and the model is seen to be a location model. For some background and
general discussion, see Lawless (1982).

A natural and fundamental analysis for location and transformation mod-
els was initiated by Fisher (for example, 1956); some developments of this with
reference to error variable models may be found in Fraser (1968, 1979). For a
regression model, the analysis uses the conditional distribution given the error
residuals and within the conditional model marginalizes to a pivotal variable
for the interest parameter; the computations can be presented succinctly in
terms of likelihood.

For the present model in the form preceding (9) we obtain the conditional
density for δ, β in terms of likelihood,

f(aj;a9β) = cL°(a - a + α°,/3 - β + β°)

where Z°(α,/3) = Z(α,/?;2/°) is the observed (non-log) likelihood from the
data vector y°. The significance for β in the case that a = αo is known is
based on a further conditioning which here in fact corresponds to the simple
substitution a = ao:

P(β<β°;ao,β) = I cL(ao,β-β + β°)dβ
•/—CO

ΛOO

= / cL(a0,η)dη . (10)
Jβ

The significance for β with a unknown is obtained by marginalizing over a:

/•CO Z CO

P(β<β°\β) = / / cL(a,Ί)dadΊ (11)
Jβ J-oo

where the norming constant and then probabilities can be obtained in general
by numerical integration.

3. Tangent model (at parameter value); real parameter. Con-

sider variables y\,... , yn with the generalized linear model

exj>[yig(Xtf) - c{g(Xrf)}]h(yi), (12)

where X{ and β are real. The model in general is a curved (n, 1) exponential
model.

For the hypothesis β — β0 we need the null density for β = βo plus some
model structure to obtain a test statistic. Standard first order asymptotics
would suggest the quantities

= s(β)Γ1/2

r(β) = sgn(β-β)[2{lφ)-t{β)})λl2 (13)
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based on the maximum likelihood estimate, the score

S(β) = (d/dβ)£(β) ,

and the signed likelihood ratio r. Standard generalized linear model analysis

(McCullagh & Nelder, 1989) uses deviance which is equivalent to the use of

the likelihood ratio r.

An alternative procedure can be based on approximating the given model

by its tangent at βo, which has density

explViXigKβ - βo) - c{9i + Xi9[(β - /?0)}]%;) (14)

where gι = g(Xiβo), g\ — g\Xiβo) This is an exponential model with suffi-

cient statistic Σ ViXi9i a n d coincides to first derivative with the given model

at β = βo. The likelihood inversion procedure (Fraser, Reid & Wong, 1991,

Fraser, 1991) can then be applied to the likelihood from the tangent model to

give the significance function

Pa(β) = P(β<β°;β) (15)

to saddlepoint accuracy. It should be noted that the procedure needs to be

repeated for each value of βo.

For the example in Section 2 with a taken pragmatically at its maximum

likelihood value ^

ea° = 51.109 weeks ,

we obtain approximations to the significance function for β: the first order

approximations pi(/ϊ), P2(β)-> Pr(β) and the third order approximation pa(β)

obtained from the tangent model. These are plotted in Figure 1 together with

the exact p(β) as obtained from the numerical integration described in Section

2.

The score and maximum likelihood curves are on either side of the exact,

the likelihood ratio is very close to the exact. From experience with the sad-

dlepoint procedure we can find that pa(β) is often accurate to 2, sometimes

3 significant figures. It differs slightly from the exact in the right tail: that

it differs from the location-model exact can be attributed to its score based

measure-of-departure. The corresponding score test is the locally most pow-

erful test (a marginal test) and can be expected to differ from the location

model exact test (a conditional test).

4. Tangent model (at data value); real parameter. In order to
use Barndorff-Nielsen (1983) formula (5) for the maximum likelihood estimate

we need to determine an approximate ancillary. Following Fraser (1964) we

determine the local location relation for a typical coordinate yi

( 1 6 )
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In the particular case of the example with an exponential life distribution, we

obtain

d(y θ) = ^ , (17)

which is easily seen to come from the location model structure mentioned in

Section 2.

For the generalized linear model (12) we have then that a change dβ in β

at β° produces the change

g'iXidβ

in θ at θ° and thus the change

yΊflteXidβ = vdβ (18)

in the ith coordinate yι at y®. For the ancillary direction at t/° we therefore

use v = (vι,... , vn)
f. In the particular case of the exponential life example

we have

* = -ψ $(-i) i = vl (19)

The tangent exponential model (Fraser, 1988, 1990) that coincides with

the given conditional model determined at y° is

£°(β)}h(z) (20)

where £°(β) is the observed likelihood,

± ) \ y ΰ (21)

is its canonical parameter, and z is the canonical variable such that zv coin-

cides with dy in the direction v at y°.

For the exponential life example in Section 2 we have

1
n

ψ = ^ e x p ί - α o - ^ ί ^ i - ^ ) } ^ 9 ^ - ^ ) . (22)
1

The left tail probability

Pb(β) = P(β<β°;β) = Φ(r) + (^(r){^-i} (23)

obtained by applying the Lugannani k Rice (1980) formula to the exponential

model (20) at the data point z — 0 corresponding to y°; it has accuracy (Fraser
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& Reid, 1989, 1991) of order O(n"3/2). This is asymptotically equivalent to
the use of r* in Barndorff-Nielsen (1991).

The approximation Pb(θ) for the example is also plotted in Figure 1.
Its closeness to the exact (essentially superimposed) corresponds to the +
effectiveness of the generalized Lugannani and Rice approximation for location
models (Fraser, 1990; DiCiccio, Field,& Fraser, 1990).

5. Tangent model (at data point); interest parameter with
nuisance parameter. Consider the generalized linear model (12) with
interest parameter φ and nuisance parameter A; for example we could have

Φ = (/?r+1,...,/jpy = βm , A = (ft,...,/?,.)' =

For the case of a vector interest parameter φ we can apply Skovgaard (1988) or
Cheah, Fraser & Reid (1991) to an adjusted density obtained by the methods
in Fraser & Reid (1992a,1992b). For present purposes we restrict our attention
to a real interest parameter and real nuisance parameter: φ = β2, λ = /?i, and
for convenience follow the pattern for the exponential life example in Section
2 taking φ = /?, λ = α.

A change da at α° produces by the method outlined in Section 4 the
change

β?) ίf? lΛ* = yU<* = v}da

in yι at t/°; and the change dβ at β° produces the change

d^^ g^-ixi-^dβ = yUxi~x)dβ = vfdβ

in yi at j/°. The resulting ancillary directions are v1, v2 at y°:

t,1 = (vi...ynγ, v* = (vi...yny.

The tangent exponential model (Fraser, 1988, 1990) that coincides with
the given conditional model determined at y° is

where -ί°(α,/3) is the observed likelihood

are the canonical parameters, and (21,22) is t n e canonical variable such that
+ 22ΪJ2 coincides with dy in the directions C(vx,v2).
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For the exponential life case we have

ψ2 = 2_] e χ p { ~ α —

A significance function pβ(β) for β is obtained by averaging over the condi-
tional distribution of λ^. The resulting significance function is obtained from
(23) with the standardized maximum likelihood quantity q replaced by the
adjusted version

Q =sgn(β-β) {ΨX~

\dψlda\{2ββ)

where ψβ is the pseudo parameter ψ evaluated at the constrained maximum
likelihood estimate (δ/?,/?), z^ is the corresponding canonical variable value

and (to

a,t
θβ) is the score vector for the observed likelihood function.

For the data in Section 2, we plot pβ(β) which allows for the nuisance
parameter and also the exact p(β) which also allows for the nuisance parame-
ter: they are essentially superimposed. For comparison with the results from
Section 4 where the maximum likelihood value is used for α we plot Pb(β) with
a = δ°; this provides a tighter confidence function corresponding to treating
the nuisance parameter as known.
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