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Estimates are published each month for rates of employment and unem-

ployment in each of the 50 United States plus the District of Columbia. The

basic data source for these estimates is the Current Population Survey (CPS),

a national survey that samples approximately 60,000 households each month ac-

cording to a complex multistage design with rotating panel structure. Estimation

procedures based on successively more detailed models can lead to corresponding

successive improvements in accuracy of estimation. A three phase project-in-

progress (i) models the multivariate time series structure of sampling errors from

8 parallel subsamples called streams, (ii) introduces time series models for the

true series that are a basis for mean square error reduction through signal ex-

traction methods, and (iii) jointly models true and covariate time series, from

nonCPS sources, to achieve still more error reduction. Models and associated

Bayesian posterior-sampler computing techniques are sketched in detail for the

first phase that studies sampling error only.

1. Introduction. Any segment of a national population, such as
U. S. residents aged 16 to 65, may be classified using appropriate definitions
into "not in the labor force", "in the labor force and unemployed", or "in the
labor force and employed", leading in turn to rates of employment (EMP) and
unemployment (UNEMP) on any particular date. U. S. official statistics use
the definitions embodied in the Current Population Survey (CPS) which is
also the basic data source for the estimates released each month.

For practical reasons related to cost, and to a lesser extent related to
accuracy of estimation, the CPS does not select an independent random sample
from the population each month. Before introducing the actual design, and
the consequent autocovariances of sampling errors implicit in the design, it
may illuminate our analysis strategy, and forestall confusions, if we separate
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two distinct roles played by these autocovariances. The first role is presented
in detail in this paper, namely, the use of the panel structure of the design to
motivate a general form of a variance-reduction technique known in the sam-
ple survey literature as compositing. The second role arises in the second and
third phases of the project, not discussed in detail here, where the autocovari-
ance structure of the sampling error is balanced against the autocovariance
structure of the time series of underlying true population values of EMP and
UNEMP, in search of optimum signal extraction.

The latter use of autocovariances, in combination with the joint time se-
ries behavior of other covarying time series, is capable of producing dramatic
gains in efficiency, as much as tenfold. This we plan to show in later reports.
The bases of such gains are (i) that smoothness of the true phenomena allow
the use of projections from previous months' sample observations in combina-
tion with the current month's data, (ii) that common patterns across states
allow borrowing strength from other states' correlated time series, and (iii)
that nonCPS measures of the phenomena also track the survey measures and
hence can be used to improve accuracy of estimation. Note that these uses
of autocorrelation structure would be important even if independent samples
had been drawn each month, whence no autocorrelation of sampling errors
and no possibility of compositing had existed.

It is important to study compositing in advance of general time series
modelling for two reasons. First, the theory of composite estimation in effect
defines the efficient use of the CPS panel data. Second, the theory specifies
the autocovariance structure of these efficient estimates, to be used as inputs
to the later phases of analysis where optimum combination with time series
properties of the underlying target phenomena are considered. Reducing these
inputs by a factor of 8 yields important savings of computing effort.

The empirical input to our study is a pair of 51 X 48 X 8 data arrays, one
giving estimates of EMP and the other estimates of UNEMP. The two arrays
come from the same surveys, and could be analyzed jointly. However, for ease
of modelling and analysis, we treat them separately in two parallel analyses.
The "51" dimension refers to the 50 U.S. states plus Washington DC, referred
to in the sequel as "51 states". The "48" dimension refers to the 48 calendar
months from Jan. 1986 through Dec. 1989, and the "8" refers to the stream
dimension that provides replication internal to the survey design, and is the
basis for compositing. The survey design giving rise to the stream structure
is sketched in Section 2.

The variation in each of the EMP and UNEMP data sets was studied,
and each was modelled using a set of 4 variance components for each of the
51 states, as detailed in Section 3. Since the variance of a rate estimator
depends functionally on the mean of the estimator, we may not have constant
variance components across time within each state. In the models, a variance
stabilizing transform is applied to each raw estimate Z in the data arrays
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and expressed as Y = arcsin(\/Z:), which is known as the angular transform.
The analysis has hierarchical structure in that the 51 states are treated as
a random sample, or in Bayesian terms as exchangeable, so that variation
both among and within states is analyzed formally. At the higher level, the
4-vectors of logs of variances for each state are treated as independent normal
4-vectors, and approximations to the likelihood functions of these 51 4-vectors
are devised that allow efficient sampling of their posterior distributions. At the
lower level of within state variation, the conditional distribution of the sample
values given the sampled 4-vector is Gaussian, and posteriors and likelihoods
are computed by standard numerical linear algebra methods.

Composite estimation for a given state in a given month may be described
in terms of covariance adjustment of the raw estimates formed by averaging
across the 8 streams, using as covariates the 7 contrasts among the 8 streams
that in effect estimate zero. In its simplest form, compositing assumes that
the autocovariances within streams are known. In practice, we sample the
posterior distribution of the 4 variances, and in effect sample the posterior
distribution of the within stream autocovariances that are determined by the
4 variances, thus arriving at a generalized form of compositing that averages
over the posterior distribution of the composite estimates given our 51 X 48 x 8
data set. We stress that averaging here includes averaging over the posteriors
of the 51x4 array of variances as well as averaging over the Gaussian linear
model posteriors that define composite estimation given the variances.

2. CPS Design Features. A full description of the complex multi-
stage design and of the many adjustments made during analysis is beyond our
present scope. Further details may be found in U.S. Bureau of the Census
(1978). The major sources of estimation error are addressed in our analy-
ses, but not all can be quantified from the data. For example, one important
source of bias relates to the 4-8-4 rotation pattern whereby a household is
interviewed in 4 successive months, dropped for 8 months, then interviewed
again for 4 months. The first and fifth interviews are conducted in person,
while the rest are conducted by telephone. Systematic differences are visible
in the data between different techniques, whence fixed effects can be fitted,
but from sample data alone it is not possible to make an adjustment which
identifies the bias associated with each interview technique. In effect, it is
assumed that the average bias over the 8 interviews is zero. Similarly, a selec-
tion is made among a few primary sampling units (PSUs) in rural areas that
are "non-self-representing" and that are typically unchanged over years if not
decades. Sampling variances from this source are by and large not assessed in
our analyses, but are believed by experts to contribute very little to overall
sampling error.

The ultimate sampling units (USUs) are mostly clusters of 4 neighboring
households selected from a list by systematic sampling with a random start.
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Each individual in a sampled household receives a weight such that aggregate
sample weights produce a population of the correct size and distribution by
age, sex, and race within each stream for each state and month.

Almost exactly one-eighth of the households interviewed in a given month
are in each of the month-in-sample categories. Sets of households phased in
over 8 month periods beginning in Dec. 1984, August 1985, , are called a
"sample" by the survey managers, and appear roughly in ordered sets of 8,
equally spaced along the list that defines the sampling frame, with separation
chosen to achieve the desired sampling rate. When the households in each
"sample" complete their 16 month cycle, they are replaced not by new ran-
dom draws, but rather by the next USUs in the list. Consequently the data
presents itself in 8 staggered replicates that we call streams, where stream 1
consists of data from households observed initially in Dec. 1984, Jan. 1985,
Feb. 1985, March 1985, then households from a previous "sample" observed
in their second year in April 1985 through July 1985, and so forth. Streams
2, 3, , 8 are similar, except that the patterns of dates are shifted ahead by
one month in successive streams. Weights are computed for each individual
sampled each month, separately by stream, whence the 8x48 data sets from
each state can be regarded as 8 independent subsamples operating on 8 stag-
gered timetables. Because the replacement of households within a stream is
typically by neighboring households, it is evident that 8 random stream effects
can be anticipated to persist across the 48 month observation period selected
for study.

3. Sampling Error Model. For each state the angular transformed
estimates, Yy, for EMP and UNEMP in the j t h stream at time t is represented
as the sum of month level μ f, month-in-sample bias effect */, plus three random
components, Sj for stream, Vjg for sample g within stream j,Wjg for annual
change within sample g within stream j , and residual ey,

t =

=
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The standard estimates of fixed effects that may be obtained either by
maximum likelihood or by generalized least squares are also the Bayesian
posterior means obtained in the limiting case where the prior variance of the
effects tends to infinity. Because both Bayesians and non-Bayesians estimate
random effects by using conditional means given the data and the variance
parameters, it follows that the Bayesian approach unifies the treatment of the
fixed and random effects.

In order to apply general computing algorithms, we rewrite the specific
model in the general form

Y = X1β1+X2β2+X3β3,

where βi is normal with mean vector zero and covariance matrix Σ;.
The connections between the general and specific notations are:

where the three covariance matrices are

0 0 ,Σi

Σ2

Σ3

and the dimensions are k\ = 8, k2 = £3 = g\ +
three design matrices are X3 = /^4 and

h gs, k4 = 8n. Finally, the

Xi =

In :

In !
J

J

Vo

1 if the kth month sample is the

first or fifth one in stream j ,

— 1 otherwise,

O

J

O O 1

O O

where

Jτ = (1,1, , 1), As = (ajM), Bj = (bjkl),
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1 if the kth month sample is

the Ith one in stream j ,

0 otherwise,

1 if the kth month sample is the Ith one

in stream j and in the first 4 months,

bjkl = I - 1 if the kth month sample is the Ith one

in stream j and in the last 4 months,

0 otherwise.

4. Estimation of Variance Components. Estimation methods
for the linear covariance components model were developed and illustrated in
Dempster, Rubin and Tsutakawa (1981). These techniques include Bayesian
estimation of fixed and random effects when the variances and covariances are
known and point estimation of unknown variances and covariances using an
EM algorithm.

Spelling out the details, we begin with the joint normal distribution

where

β
Q

ΣXT Σ
(1)

X =(-Xlj -X*2j ̂ 3 ) ,

βτ=(βϊ, βξ, βj),
Σ =diag(Σi, Σ 2 , Σ 3),

Q = T

σ2lki.

The conditional distribution of β given Y is

(2)

where

β = UTY, U = Q-τXΣ,

C = Σ-ΣXτQ-τXΣ.

The operation of finding the above conditional distribution (2) from the
marginal distribution (1) can be expressed in SWP terms as shown from the
upper left array to the upper right array in Figure 1. The computing opera-
tions SWP (for sweep) and RSW (for reverse sweep) provide compact deriva-
tions of formulas for Bayesian linear model calculations. The definitions of
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the these operators and their properties are illustrated briefly in appendix.
See also, e.g., Dempster (1969, 1982) and Carlin (1990) for more detailed
discussions and applications.
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Figure 1. Schematic Picture of Sweeps
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Clearly, taking the limit Σi -+ oo in the prior distribution results in
an improperly defined probability measure. But under mild conditions, see
Dempster (1982), we can deal with the infinite variances case using the algo-
rithm embodied in the SWP/RSW manipulation. We first carry out a SWP
on indices corresponding to /?χ, and later undo this operation with a RSW,
meanwhile allowing Σ-f1 —» 0. This first step SWP[/?i] may be represented in
the usual framework as shown in the first two arrays of the schematic picture
of sweeps in Figure 1.

When the dim(Q) is much bigger than dim(Σ2), we may run another
SWP on /?2 at the second step SWP^], and later we will undo this operation
with RSW on β<ι again. This is because the block corresponding to Y reduces
to σ2Jfc4 after sweeping on /?2 Processing SWPJY] is then trivial.

The real computations are the fourth step RSW[/?i] and the final step
RSW[/?2] The resulting array equals that which would be obtained by simple
application of SWP[Y] alone to the original array. For this identity we require
only that Q(-) — Q — X\Y*\X^ be of full rank, a trivially satisfied condition
in the present case. But, the suggested 5-step route to the final array would
reduce computation burden and the possibility of numerical roundoff errors.

The basis of the EM algorithm in the standard variance components model
is that the observable vector Y is written as a linear combination of unobserv-
able random effects /?2, A3, each of whose distributions is normal with mean 0
and variance known up to a simple scale factor (" the component of variance").
If the random effects were in fact observable quantities, maximum likelihood
estimates of the scale factors would be available very simply in the usual way,
by equating "observed" and "expected" variances. The EM algorithm pro-
ceeds by alternatively (E-Step) filling in values for the random effects (more
precisely, for the corresponding sufficient statistics), using conditional expec-
tations given the observed Y and current estimated variances, and (M-step)
obtaining new estimates from the filled-in data. This iterative procedure can
be shown in general (Dempster, Laird and Rubin 1977) to increase the likeli-
hood at every step. In our specific model the processing of the above sweep
operations will complete an E-step. The M-step of the EM algorithm is then
trivial.

Conditions for convergence to a global maximum of the likelihood are
complicated, but practical experience with variance component models has
shown generally good results, although convergence may be very slow. Fortu-
nately there are several possible ways of speeding up iterations, for example,
a simple algorithm in Hwang (1992).

5. Computing Approximate Likelihood. To adjust for different
sample sizes, the four variance estimates in each state are multiplied by the
state's household number to a per household basis. Since the survey designs
are similar across states, variances per household should be roughly stable. We
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will explore the data for evidence of variation of the underlying true variance
components over the 51 states. Most especially in the case of the stream
variance, since there are only 7 degrees of freedom among the 8 streams in
each state, there is far too much sampling variation to think of substituting
maximum likelihood estimates directly into models. The maximum likelihood
estimates, certainly for stream variance, cannot possibly be accurate and so are
not very informative about the phenomenon. One sensible method is to devise
a sampling scheme to draw sets of four variances from a posterior distribution.

The posterior is proportional to the likelihood function times prior. The
direct computation of the exact posterior requires more likelihood computa-
tions than we can afford. We therefore develop simple approximations that
both are accurate enough and greatly simplify the computations of estimating
the four variances.

There are N = 48x8 observations for each state in the 48 months data.
There are 49 degrees of freedom for the fixed row effects and a bias effect,
711=7 degrees of freedom for streams, n<ι — 47 degrees of freedom for sample,
713 = 47 degrees of freedom for sample-lag, leaving n^—'N — 150 for residual.
The five subspaces that span the JV-space are not exactly orthogonal, and even
worse the degree of nonorthogonality changes a bit as the variances themselves
change. In fact, this is what makes the exact computation of likelihood diffi-
cult, i.e., we must reinvert big covariance matrices every time we change the
values of the variances in EM steps. But suppose the five subspaces are very
nearly orthogonal whatever the values of the variances. Then there are four
approximately sufficient statistics, and estimating the four variances is just a
matter of equating these sufficient sums of squares with their expectations.

Recall the schematic picture of sweeps in Figure 1, the first element of the
extra row of the right bottom matrix, -YYτσ~2, after SWP[/?i], SWP[/?2],
and SWP[Y] implemented, is just the familiar sum of squares of ANOVA
treated with a minus sign and division by σ2 . If we look at what the RSW[/?i]
step does to this sum of squares, we see that it is just doing a similarly doctored
version of ordinary multiple regression on the fixed effects, and in effect reduces
the sum of squares to the residual sum of squares after removing the 49 degrees
of freedom for fixed effects in the usual way.

Next we consider what happens to this residual sum of squares in the
RSW[/?2] step. This step includes the three sets of random effects for stream,
sample within stream, and sample-lag within stream. During these three suc-
cessive sweeping operations, the sum of squares continues to shrink just as it
did in the preceding RSW[/?i] step.

Apart from the negative sign, these two values are all chi-squares with
the same degrees of freedom N — 49, specifically, the model with just the fixed
effects and error terms, that is χ | , and the model that adds stream random
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effects, sample random effects, and sample-lag random effects χ2

IV, where

χ] = Y(I - H)Yτσ-> > χ]v = YQ~*YT.

Another way to describe what these chi-squares are is to say that after multi-
plying by — I they are the exponents in the normal likelihood function of the
data under the random effects model.

The result here is exact, i.e., not dependent on approximate orthogonality,
so it can be used as part of exact likelihood calculation of likelihood of fitted
models as we go through the sweeps. The other factor in the likelihood is the
determinant of the covariance matrix of the normal. This determinant may
be carried forward during the sweeps using the formula (3.17) in Dempster
(1982).

The corrected sum of squares after removing fixed effects, SS = 0"2%j,
can be decomposed in some approximate sense into

SS = SS! + SS2 + SS3 +

with ni,n2,7i3, and n4 degrees of freedom, where

2 SSi SS2 SSs SS4

2
XlV - σ* + na*na

strSS2 SS3 SS4
2 + Z l 2 +

The above formulas are obvious from Gaussian linear model theory. The
theory says that Y(-)-, the data vector minus fixed effects, has a multivari-
ate normal distribution with mean vector zero and covariance matrix of rank
N — 49 whose components in four subspaces of dimensions ni, 712, 113, and n±
are independent under any choices of the four variances. The two different chi-
squares are just the chi-squares in the exponent of the multivariate normal un-
der two choices of the variances, namely (σ2,0,0,0) and (σ"2,^str?σsαmϊσfαp)
The various denominators are just the expected mean squares which represent
the variances of the normal in the associated directions.

Under orthogonality the likelihood would be proportional to

τ\ T22 V V xexp^--(5 f 5iτ 1 + 55l2r2 + S'53r3 + 554r4)^, (3)

where

Π =(σ + nσstΓ + 8σ s a m + 8σ l a J

+
- 2
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The four sums of squares in (3) are replaced with

SS1 = m (σ2 + nσ2

t r + 8σ2

am + 8σ2

ag)

2 ~ n 2 : σ

2

 σ s

2

a m (4)

554 = ^ 4 5" ?

where 5 2 ,θ 2

t Γ,σ 2

a m, and σ2

ag are the maximum likelihood estimates.
The 4 components SSiTi are chi-squares with degrees of freedom n^. To

draw a sample of 4 variances from (3) is equivalent to the following: draw
4 chi-square values from each χ 2. set the 4 chi-square values equal to the 4
SSiTi and solve the 4 equations.

However, for some of the variances, solving could produce a negative value,
and any among the samples for which this happened, would be rejected as not
being in the parameter space, so having zero prior and posterior probability
density. For the states with extremely small stream variances, the rejection
fraction in the original chi-square sampling would be large. The marginal
distributions of the simulated 4 log transformed variances are bell-shaped, and
three of them are reasonable symmetric (not stream component), so normal
fits them more or less well. We then assume the simulated 4 variances in log
scale are approximate normal, and let the sample mean and sample variance
of the Ith variance component of the simulated sample for the kth state be θki
and ηk{.

6. Posteriors of Variance Components. After obtaining the ap-
proximate likelihood function we choose proper prior distributions for the four
variances for each state to get a posterior distribution of the four variances.
The prior distribution of the four variances in principle could be different for
each state, e.g., if we had special information about the sample design for
each state. Instead, however, we use variation among the states to arrive at
a plausible prior for all states. This is the idea behind "borrowing strength"
across the states, which could also be called empirical Bayes, the idea being
that we treat all states as exchangeable for the purposes of formalizing prior
uncertainty about the four true variances of any particular state.

We start by looking directly at original maximum likelihood estimates of
the eight variances, i.e., four each for unemployment rates and employment
rates. The maximum likelihood estimates are all multiplied by the number of
households in each state to standardize for sample size. The histograms of the
log transforms of the variances are fairly normal except stream components
which have a cluster of extremely small values. The pairwise scatter plots of
the log variance estimates also show little correlation. Therefore it is natural
to start with four independent log normal priors for the four variances. The
means and standard deviations of the log normal distributions may be obtained
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from the sample means and sample standard deviations of the 51x4 maximum
likelihood estimates (in log scale).

Let δ{ and ζi be the log normal prior mean and variance of ith variance
component. Then, the posterior of the ith variance component for the kth

state is log normal with mean and variance

ME - EMP

0.2 0.4 0.6 0.8 1.0

Figure 2. Frequencies of frequencies plot

+
+

and

The next step is to assess the approximate log normal posterior from
which we attempt to draw. One way is to look at the distribution of the
correct importance sampling weights, the ratio of exact likelihood times the
prior and the approximate log normal posterior. The basic question is whether
the distribution of weights is acceptable. In other words, we cannot use this
approximate posterior when the total weights is provided by a few largest
weights. A descriptive graphic for detecting too many large values in a sample
is the frequencies of frequencies plot. For example, suppose we have computed
a large sample of weights, ordered them from largest to smallest, and calculated
the fraction y of the total weight provided by each fraction x of the largest
weights. The degree of nonlinearity of the plot of y vs x indicates nonconstancy
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of the weights, as illustrated in Figure 2 for EMP in the state of Maine (ME),
where the largest 5% of the weights provide 10% of the total weight, not a
severe deviation from the straight line. Figure 2 is typical of our Monte Carlo

runs.

Table 1. The posterior variance ratios of raw estimators
to composite estimators in the transform scale

State

AL

AK

AZ

AR

CA

CO

CT

DE

DC

FL

GA

HI

ID

IL

IN

IA

KS

EMP

1.602

1.408

1.436

1.681

1.681

1.473

1.516

1.577

1.471

1.431

1.651

1.553

1.454

1.604

1.588

1.693

1.679

UNEMP

1.119

1.081

1.088

1.081

1.061

1.064

1.049

1.049

1.056

1.037

1.085

1.061

1.098

1.101

1.054

1.080

1.097

State

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

EMP

1.622

1.696

1.525

1.470

1.546

1.636

1.662

1.561

1.650

1.541

1.669

1.604

1.543

1.685

1.608

1.521

1.607

UNEMP

1.101

1.125

1.065

1.033

1.104

1.119

1.083

1.097

1.102

1.110

1.074

1.089

1.059

1.109

1.083

1.088

1.067

State

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

EMP

1.710

1.581

1.542

1.591

1.551

1.553

1.686

1.548

1.609

1.550

1.617

1.667

1.673

1.496

1.537

1.553

1.507

UNEMP

1.109

1.123

1.043

1.070

1.088

1.050

1.107

1.092

1.057

1.054

1.101

1.049

1.082

1.078

1.063

1.084

1.141

7. Optimal Composite Estimation. We propose a fc-lag composite
estimator of the tth month rate, which is the sum of the tth month weighted
average and the previous k months' adjustments. Let Ytj be the angular trans-
formed estimate at month t from the j t h stream, and the unbiased composite
estimator in the transform scale is defined as

/ = 1 3=1

where

f o r Z = I , - . - , f c .
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The special estimator defined by k = 0 and Cj = 1/8, j = 1,2, ,8 is
the uncomposited or raw estimator that simply averages the original stream
estimates in the transform scale. In the following, we describe how to obtain
an optimal composite estimate under the sampling error model.

Given a sample of the four variances from the approximate log normal
posterior, the conditional estimate of the fixed effect of the nth month is the
optimal (n — l)-lag composite estimator with coefficients Cj and bij found in
U\ in Figure 1. The conditional posterior variance of the raw estimator is the
sum of the simulated four variances divided by 8. The conditional posterior
means and variances of the composite estimators were discussed in Section 3.
These are shown as in β\ and C\\ in Figure 1.

To obtain approximate posterior means and variances of the composite
and raw estimators, we repeat drawing four variances from the approximate
log normal posterior and dividing the four variances by each state's household
number back to a per sample basis. The posterior variance of the raw esti-
mator is the average of these conditional posterior variances. The posterior
mean of the composite estimator is the average of the simulated conditional
posterior means. The approximate posterior variance is the sample variance
of the simulated means plus the average of the simulated conditional posterior
variances.

Table 1 shows the posterior variance ratios of raw estimators to composite
estimators in the transform scale, which are based on 200 draws of the four
variances from the approximate log normal posteriors. The optimal UNEMP
composite estimates improve about 5%. There are substantial gains for the
optimal EMP composite estimates.
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Appendix: The SWP Operator — Definition and Properties.
Suppose that M is an r X r symmetric matrix with (i,j) element my. For
any k such that 1 < k < r, sweeping, or pivoting, on k produces a new r X r
matrix which we denote by SWP[fc]: M and has (i, j) elements ra^ , where

m*kk~ - l/mkk
mϊk =mti = ™>iklmkk (5)
mij =mij ~ mik'mkj/mkki for i φ j , j φ k.

The value mkk found at the kth diagonal element of M before applying
SWP[fc] is called the pivot element associated with SWP [A]. It is straight-
forward to check that the elementary sweep operations SWP[1], SWP[2], . . .,
SWP[r] are commutative. Hence one can define SWP[t̂ ] for any subset u of
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the integers {1, ,r} to the result of applying SWP[&] for each k G u , in
any order.

The result of the block form of SWP is easily displayed if we assume that
u = {1,2, , s} and v = {s + 1, , r}, and make a corresponding partition
of M. For any s on 1 < s < r, it may readily be shown (e.g., Dempster, 1969)
that

SWPΓtil \Mu Mu] = ί " M l ΐ i MϊiMιl
[M2i M22] [M^M^ M22 - M^M^Mu

Note that the block form (6) reduces to the single-index form (5) in the
case r = 2, s = 1, as it obviously must.

The effect of SWP is readily reversed by an analogous operator, RSW,
which plays an important role in the methods described in this paper. It
is defined that RSWffc] is identical to SWP[fc] except for a change of sign
in the second line of the definition. The block version, RSW [it], is defined
analogously, and gives the same result as (6) except for a change of sign in the
off-diagonal block.

It is clear that successive application of SWP [A;] in any order to M yields
—M" 1 . An important by-product of performing SWP[1], , SWP[r] is that
the determinant detM may be calculated by multiplying the pivot elements
associated with each of the r steps.

REFERENCES

CARLIN, J. B. (1990). An algorithmic approach to Bayesian linear model
calculations. Austral J. Statist., 32(1), 29-43.

DEMPSTER, A. P. (1969). Elements of Continuous Multivariate Analysis.
Addison-Wesley, Reading, Mass.

DEMPSTER, A. P. (1982). Some formulas useful for covariance estimation with
Gaussian linear component models. In Statistics and Probability: Essays in
Honor of C.R. Rao, eds. G. Kallianpur et ai v Amsterdam: North-Holland,
213-229.

DEMPSTER, A. P. LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm (with discussion). J. R.
Statist. Soc. B, 39, 1-38.

DEMPSTER, A. P., RUBIN, D. B. and TSUTAKAWA, R. K. (1981). Estimation
in covariance components models. J. Amer. Statist. Assoc. 76, 341-353.

HWANG, J. S. (1992). Prototype Bayesian estimation of US state employment
and unemployment rates. Ph. D. Thesis, Department of Statistics, Harvard
University.



236 BAYESIAN IMPLEMENTATION

U.S. Bureau of the Census (1978). The Current Population Survey: Design
and methodology, Technical Paper 40, Washington, D.C.

DEPARTMENT OF STATISTICS

HARVARD UNIVERSITY

ONE OXFORD ST.

CAMBRIDGE, MA 02138
U.S.A.




