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A COMPARISON OF ROBUST LINEAR
DISCRIMINANT PROCEDURES
USING PROJECTION PURSUIT METHODS

By ZEN-YI CHEN AND RoBB J. MUIRHEAD

National Chung-Cheng University and University of Michigan, Ann Arbor

Two projection indices are proposed for the construction of robust 2-sample
linear discriminant functions using projection pursuit methods. The first robust
projection index robustifies the classical Fisher ratio of between-class variation to
within-class variation. The second is the total error rate, and here the estimators
of the cutoff points involved in their calculation are robustified. Based on these
projection indices, robust linear discriminant functions are constructed using a
numerical projection pursuit optimization algorithm. In addition, various cutoff
points used in forming robust linear discriminant procedures are examined and
Monte Carlo studies are conducted in a well-designed setting. The results show
that projection pursuit discriminant functions, derived from robustified indices,
perform well under various distributional situations with regard to their empirical
error rates. At the same time, the use of a rank cutoff, or a cutoff point in
terms of robust location estimates, enhances the robustness of the discriminant

procedures.

1. Introduction. A discriminant procedure is constructed from a train-
ing sample and used to classify each member of a testing sample. One primary
objective of discriminant analysis is to make inference about the unknown class
membership of a new observation. As noted by Gnanadesikan (1988): “Sta-
tistical considerations in discriminant analysis have to do with distributional
assumptions concerning the observations, measures of separation among the
groups, algorithms for carrying out both stages (the construction and the al-
location) of the discriminant analysis and the study of the properties of the
proposed algorithms”. For the 2-class situation considered here, we develop
linear discriminant functions which optimize projection pursuit criteria, and
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study their robustness. Fisher (1936) developed a method which uses a lin-
ear combination, formed from the training sample, of a vector observation,
and chooses the coefficients to maximize the ratio of between-class variation
to within-class variation. This method is known now as Fisher’s Linear Dis-
criminant Function (LDF) method. In related work, Welch (1939) suggested
minimizing the average probability of misclassification (error rate) on the basis
of the training sample drawn from a multivariate normal population. Fisher’s
LDF is optimal asymptotically in terms of error rates if the underlying distri-
butions of the two classes are multivariate normal with a common covariance
matrix; see, e.g., Anderson (1984) and Gnanadesikan (1988). Lachenbruch
(1982) summarized various error rates of interest (the optimal error rate, the
actual error rate, the apparent error rate, and so on) noting that “the crite-
ria for comparing discriminant functions for allocation procedures have usually
been based on the error rates”. An optimal discriminant procedure should have
desirable error rate properties, and a robust discriminant procedure should
have error rates which are insensitive to distributional assumptions. Here
we investigate the robustness of certain linear discriminant procedures when
some of the distributional assumptions made in deriving an optimal rule are
not satisfied.

To construct a discriminant procedure and to allocate a new observation,
we derive robust discriminant functions using projection pursuit. Projection
pursuit, a computer-intensive methodology, was first successfully implemented
on the computer by Friedman and Tukey (1974), and thorough reviews have
been given by Huber (1985) and Jones and Sibson (1987). In this paper, we
construct linear discriminant procedures which in some sense best separate the
2-class training samples projected in a 1-dimensional space by projection pur-
suit. The robustness and performance of discriminant rules are evaluated un-
der various distributional situations in terms of empirical error rates through
a Monte Carlo study. Section 2 discusses the linear discriminant functions
derived by projection pursuit; here the projection index plays the most im-
portant role. Two projection indices are proposed. In addition, various cutoff
points associated with the discriminant procedures are investigated. Section 3
explains our Monte Carlo studies (simulation conditions of Randles, Broffitt,
Ramberg and Hogg (1978) are modified and extended), numerical algorithms
and robust discriminant procedures are described, simulation results in terms
of empirical error rates are presented, and results are summarized. Section 4
provides a brief discussion of related work and possible future directions.

2. Projection Pursuit Linear Discriminant Procedures. In this
paper, we consider linear procedures in the 2-sample continuous situation.
Suppose that the p-dimensional training samples of our two classes are ex-



ZEN YI CHEN and ROBB J. MUIRHEAD 165

pressed as
Xl = (Q}]l,wlz,'-' ,:1!1”1) in Cl and X2 = (:z:21,a:22,--- ,a:2n2) in Cz.
Any new individual # = (z1,22,--+ ,zp) is known to come from one of the

two distinct classes C; and C2, whose locations are assumed different. (For
a study of discrimination with a common mean, see Cooper (1965).) The
observation & will be classified into one of these two classes according to a
discriminant function defined in terms of X; and X3 as well as a cutoff value.
For example, Fisher’s LDF (or, more precisely, its usual estimate) can be
expressed as Dp(z) = Az where Ap = §™1(Z — T3) with § being the usual
pooled sample covariance matrix and Z;(k = 1,2) being the sample mean
vectors.
Our study of projection pursuit linear discriminant procedures consists
of two parts: the derivation of a discriminant function and the formation of a
cutoff point.
(I) Derive the linear discriminant function by:
(1) choosing a projection index, and
(2) using numerical projection pursuit algorithms implemented on a com-
puter to find a projection axis (i.e., discriminant coefficient vector) which
optimizes the chosen projection index on the basis of the given training
sample.
(IT) Form the cutoff point by:
(1) projecting the training samples onto a projection axis found in Part I,
and
(2) calculating a cutoff point. (See Sections 2.2 and 3.2.)

Having found a discriminant coefficient vector A and cutoff point ¢, the linear
discriminant procedure is as follows:

(a) classify z into Cy if X' & > ¢,

(b) classify z into Cy if X' @ < ¢.

2.1. Two Proposed Projection Indices

Huber (1985) noted: “Projection pursuit emerges as the most powerful
method yet invented to lift 1-dimensional statistical techniques to higher di-
mensions. To give a simple example: if we take the 2-sample t-statistic as our
projection index, then projection pursuit searches for the best discriminating
hyperplane in the classical, Fisherian sense. If we replace the t-statistic by a
robust 2-sample test statistic, we obtain a robust version of discriminant anal-
ysis.” Here, we implement his suggestion and propose as our first projection
index , ,
| LN X1) — L(AN X,) |

SN X1,AM X))

where L(-)'s are location estimators, §( -, - ) is a pooled scale estimator, and
X Xy;(k = 1,2) are the training samples projected on a given projection

IX(X; X1, X2) =
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axis A. The most widely accepted criterion for assessing the performance of
discriminant rules is the total error rate. With this in mind, we propose the
apparent error rate estimator as our second projection index; that is, with the
indicator function I(-),

ni ng
IIX(Avd)?leX?) = Z I{le >¢}(T1j) + z I{72j<¢}(7—2j)
j=1 =1

where 7; = X:z:kj, k=12, L(XXI) < L()\'Xg) is assumed here without
loss of generality for a given projection axis A, and ¢ is a chosen cutoff value
discussed later (see Sections 2.2 and 3.2).

2.2. Cutoff Points

The most popular cutoff point is in terms of weighted sum of location es-
timates; that is, ¢(A; X1, X3) = 'UlL(XXl) + vQL(A'Xz) where 0 < v1,v9 <1
with v; + v, = 1. The above weights depend on the relative costs of misclas-
sification from each class and also on the prior probabilities of  coming from
each class. They are usually taken as equal if such information is not available.
In related work, Broffitt, Randles and Hogg (1976) proposed a rank procedure
and Randles, Broffitt, Ramberg and Hogg (1978) applied the same method
in discriminant analysis for choosing an alternative rank cutoff. In addition,
Chen (1989) implemented an adaptive cutoff point which minimizes the error
rates in classifying the training samples; in other words, which minimizes the
so-called apparent error rates. Other methods for choosing cutoff points can
be found in Anderson (1984) and Gnanadesikan (1988).

2.3. Linear Discriminant Functions Used
Fisher’s LDF, Dp(z) = XF @, may be derived in two ways:

(1) Simply take the coefficient vector as Ap = S~1(Z1 —Z2) with S the usual
pooled sample covariance matrix and Tk;k = 1,2, the two sample mean
vectors.

(2) Perform projection pursuit by maximizing the first projection index I X (A;
X1, X2) using the usual sample mean as the location estimate L,,z and
the sample standard deviation as the scale estimate S,y .

That these two methods lead to the same result is a consequence of the Cauchy-
Schwarz inequality which shows that

Ix* (A X1, X3) = {X(EI —2))” < (’51—52),5"1(51—52) = {AB(EI ~ 52)}2

A'SA A0S0
with equality iff A = Ag = ¢S~1(Z1 — Z2) = cAr. Our simulation results show
that the two methods achieve approximately equal error rates. This is an
important check, as our numerical projection pursuit algorithm cannot search
for every direction exhaustively (see Section 3.2.1).
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In a similar manner, another linear discriminant function of interest is
derived by using the cutoff value ¢,y = %{Lavg()\'Xl) + Lavg(}\'Xz)} in
the second projection index (see the simulation results in Section 3.3). On
the other hand, to get a robust version, there are many ways to robustify
location/scale estimates see, e.g., Andrews et al (1972) and Huber (1981).
In our study, we chose Lnyeq (the median location estimate) and Smea (the
median absolute deviation scale estimate) in the first projection index. For the
second projection index, we used a rank cutoff ¢;anx , and an equally weighted
cutoff @meq in terms of Lyeq. The (robust) linear discriminant functions are
then found using projection pursuit. Numerical algorithms are described in
Section 3.2.

3. Monte Carlo Study

3.1. Simulation Conditions

In order to compare our proposed procedures with the linear procedures of
Randles, Broffitt, Ramberg and Hogg (1978) in a Monte Carlo study, we chose
the same simulation conditions except as modified below and except for the
random number generator in our implemented C program. The Monte Carlo
study was conducted using the random number algorithm of “three simple mul-
tiplicative congruential generators” in Wichmann and Hill (1982) on a IRIS
workstation with the UNIX operating system IRIX 3.3. To produce bivariate
normal (nor), Cauchy (Cau), lognormal (log), and contaminated normal vari-
ates (con), the procedures in Johnson and Ramberg (1977) were followed. The
combinations for the two classes are designed to investigate 12 situations. The
distributional situations are tabulated in Table 1 (also see the descriptions in
Randles et al (1978)). The odd-numbered (even-numbered) situations in Table
1 have equal (unequal) covariance (or scale) matrices; and in all of these, the
correlation coefficient is p = 0.5. (In the case of the Cauchy distribution, this
is a pseudo-correlation. Details may be found in Randles, Broffitt, Ramberg
and Hogg (1978). A description of the bivariate lognormal distribution may
be found in Johnson and Kotz (1972, pp. 17-19), and the construction used
here is described below. For the contaminated normal distributions, all the
main distributions and the contaminating distributions have separate corre-
lation coefficients equal to 0.5.) In the first eight distributional situations of
Table 1, the Mahalanobis distance between the two classes is the same:

62 = (Vl et Vz)lz—l(lll - V2) =1.33.

In the contaminated normal settings, situations 9-12 of Table 1, the distribu-
tions were contaminated by 10% of the second normal distribution listed; and
the Mahalanobis distance between the main normal distributions is §2 = 1.33.
Training samples of size 30 were used and, in each distributional situation,
testing samples of size 100 from each class were utilized. The total operation
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was repeated 100 times, and average error rates and their standard errors were
calculated from the 100 replications. The conditions just described modify and
extend the conditions of Randles, Broffitt, Ramberg and Hogg (1978) in the
following ways:

TABLE 1. Distributional Situations

Situation Class (1 Class (s
Ci m  p o1 03 Cy 1 p2 01 03

1 nor 0.00 0.00 1 1 nor 1.00 1.00 1 1
2 nor 0.00 0.00 1 1 nor 1.78 1.78 2 3
3 Cau 0.00 0.00 1 1 Cau 1.00 1.00 1 1
4 Cau 0.00 0.00 1 1 Cau 1.78 1.78 2 3
5 nor 0.00 0.00 1 1 Cau 1.00 1.00 1 1
6 nor 0.00 0.00 1 1 Cau 1.78 1.78 2 3
7 log 0.00 0.00 1 1 log 1.00 1.00 1 1
8 log 0.00 0.00 1 1 log 1.78 1.78 2 3
9 con 0.00 0.00 1 1 con 1.00 1.00 1 1

0.00 0.00 10 10 1.00 1.00 10 10
10 con 0.00 0.00 1 1 con 1.78 1.78 2 3

0.00 0.00 10 10 1.78 1.78 20 30
11 con 0.00 0.00 1 1 con 1.00 1.00 1 1

1.00 1.00 10 10 0.00 0.00 10 10
12 con 0.00 0.00 1 1 con 1.78 1.78 2 3

1.78 1.78 20 30 0.00 0.00 10 10

(1)

(2)

(3)

In order to have consistency in the simulation results in all distributional
situations on the basis of pseudo-random data, we used the same set of
uniform variates to form all training (or testing) samples. Firstly, a set of
pseudo-random uniform variates was generated. These were then trans-
formed into the respective normal, Cauchy, lognormal, and contaminated
normal variates in Table 1 using the transforming procedures in Johnson
and Ramberg (1977) and Randles, Broffitt, Ramberg and Hogg (1978).

Based on early simulations (see Section 3.3), a more reasonable testing
sample size from each class is 100 rather than 50 which was used by
Randles et al (1978).

For the pseudo-random lognormal variate, the transformed covariance
structure is a function of the original normal means, variances (denoted by
¢ and ¢} in the following discussion), and correlation coefficient (Johnson
(1987)). Johnson, Wang and Ramberg (1979) pointed out: “The study by
Lachenbruch, Sneeringer and Revo (1973), however, employs the Johnson
transform system in such a way that the two populations are non-normal
and their covariance matrices are unequal’, concluding that “the two
factors in the Lachenbruch study are confounded”. In this study, we
generated the lognormal variate using the following steps:
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(i) generate the correlated normal variates,

U1 0 ¢ o*a Cz])
- ~ N o
Y (w) ((0) [9 162 S

for which

p(exply1],exp(y2]) =0 p(explys]) = eXP[%],
and o”(exp[yx]) = exp[si)(exp[si] - 1),  k=1,2,

. X 1 1 1
with p(y1,92) = ¢" = —In{l + e(explsf] - 1)* (explz] - 1)}.

(ii) transform it into the desired lognormal variate,
2
o= ()~ (G) Lo *57))
Z2 H2 0102 03

2
explyx] — exp[¥§]
{exp[s](explsf] — 1)}?

Various plots for the bivariate lognormal distributions with different val-
ues of ¢1,52, and p are presented in Johnson (1987, pages 64-69). We chose
the pair of (s1,52) = (0.05,0.5) with p = 0.5 in our study, which represents a
slightly skewed distribution shown in Johnson (1987). Other situations may
also be of interest.

Tk = Pk + o X =1,2.

3.2. Algorithms and Discriminant Procedures
We are given two bivariate training samples, denoted by

X1 = (211,212, -+ ,T1p,) in Cp and Xy = (@1, @22, ,B2pn,) in Ch.

3.2.1. Projection Pursuit Optimization Search Algorithm

In projection pursuit, a numerical search algorithm has to be designed to
find a discriminant coefficient vector, 5\(;, to approximate Ag (the ideal coeffi-
cient vector). This is a constrained optimization problem without derivatives.
Some proposed procedures are shown in Powell (1964) and Burhardt (1974).
From another point of view, Friedman and Tukey (1974) have pointed out that
“the projection index for projection onto a 1-dimensional line imbedded in an
n-dimensional space is a function of (n — 1) independent variables that define
the direction of the line”. In other words, the line can be represented as a point
on the (n — 1)-dimensional surface of a unit sphere in n-dimensional space. A
projection line under study or a point on the unit circle in 2-dimensional polar
coordinate space is determined by only one parameter ¢ with —% < < Z.
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In this context, the set of candidate projection axes is determined by the pa-
rameter 0; values of # are generated from an initial value as well as a step
size. In the simplest setting, the step size is chosen to divide the whole search
range into equal-spaced slices; using this chosen step size, the search algorithm
iteratively runs through the whole search range, starting from an initial value.
Here, we chose 0 as our initial value. Furthermore, the step size determines the
precision of approximating the derived discriminant coefficient vector to the
ideal discriminant coefficient vector. We used 0.005 7 as the step size because
early simulations showed that a finer step size did not improve performance.
The computer program implementing the search algorithm is available in Chen
(1989).

3.2.2. Discriminant Procedures Considered
Four cutoff points and eight coefficient vectors in forming the 12 discrim-
inant procedures discussed in this paper are specified as follows:

(1) bavgr Pmed> Padpt, and Prqnk are the 4 cutoff points (also discussed in
Sections 2.2 and 2.3).

(2) Ar = S71(=; — T,) is Fisher’s coefficient vector discussed before, and
A = Sz (@F - zH) is Huber’s coefficient vector in terms of the M-
estimates of the mean vectors, EkH ; k = 1,2 and the M-estimate of the
covariance matrix Sy implemented in Randles, Broffitt, Ramberg and
Hogg (1978).

(3) Xivg and S\;ed are the projection pursuit coefficient vectors obtained by
optimizing the first projection index using Lgyg With S,yg, and Lpeq

with Smeq, respectively.

(4) Ai{g, AL Aigpt, and AL, are the projection pursuit coefficient

vectors obtained by optimizing the second index using @avg, Pmed, Padpt,
and ¢rank respectively.
The 12 chosen discriminant procedures are denoted by

AF/¢avg AF/¢1"a.'nk AH/¢7~a.nls:
A£vg/¢lw.9 >‘7Ined/¢med A£'Led/¢a.dpt
x£1Iz.z]/¢a.vg xfr{ed/¢avg j‘rIr{ed/¢med

)‘;Ied/qbadpt Aﬁpt/‘ﬁadz)t >‘1{£nk/¢rank
where A represents the coefficient vector and ¢, is the corresponding cutoff.

3.3. Simulation Results
To compare and evaluate the robustness of various discriminant proce-
dures, we chose the normal distributions with a common covariance as our
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pivotal condition. In addition, Fisher’s LDF method in this setting was cho-
sen as the pivotal discriminant procedure since it is asymptotically optimal
in the sense of error rates. The simulation results are in terms of empirical
percentages of misclassification, which are the estimates of actual error rates.
In other words, we count the proportion of the testing samples misclassified by
each discriminant procedure. The numbers shown in Table 2 are the estimated
error rates in terms of empirical percentages misclassified from each class, re-
spectively. Based on the outcome of 100 replications, the estimated standard
errors of the empirical percentages in our simulations are between 0.49 and
3.62; typical values — averages (medians) — are 0.94 (0.77) for those from the
second projection index and 1.3485 (1.23) for those from others.! The chosen
seeds for the “three simple multiplicative congruential pseudo-random num-
ber generators” in Wichmann and Hill (1982) are 92484, 111359, and 71851.
For studying the effect of the size of the testing samples on the estimate of
actual error rates, we chose the same set of the above seeds as well as different
testing sample sizes, including 50, 100, 200, 500, 1000, and 2000 from each
class. The empirical error rates from the two classes in the pivotal procedure
were (29.3, 29.2), (28.8, 28.4), (28.5, 28.7), (28.8, 28.8), (28.8, 28.9), and (29.1,
28.8) respectively. In the pivotal procedure, the respective error rates for the
two classes are asymptotically equal to ®(—6/2) (see Muirhead (1982)), and
since 62 = 1.33 here, (28.2, 28.2) is the minimal error rate. In view of this, it
seems that 100 is a reasonable testing sample size for each class. We report
in this paper on 12 representative discriminant procedures taken from Chen
(1989), the first three of which are linear procedures also investigated in Ran-
dles, Broffitt, Ramberg and Hogg (1978): Ar/davg, AF/®rank and Ag/drank-
The simulation results are tabulated in Table 2. Comparing our results with
those of Randles, Broffitt, Ramberg and Hogg (1978) we note:

(1) The simulation results for the first three procedures are quite close to
those of Randles, Broffitt, Ramberg and Hogg (1978).

(2) Overall, the performance of our proposed robust procedures are better
than those of two linear procedures (Ar/¢rank and Ap/drank) proposed
by Randles et al (1978), and they are quite robust with respect to the
pivotal procedure (Ar/davg), which is apparently not robust for heavy-
tailed distributions.

(3) Our results confirm that the use of the rank cutoff studied in Randles
(1978) can balance the two misclassification probabilities. Other cutoffs
result in distorting the balance of two error rates, especially in unequal

! Based on the simulation results in Chen (1989), there are 1200 cases investi-
gated for the estimated standard errors from the second projection index and
for those from others, respectively. The averages (medians) of these 1200 cases
are chosen as our typical values here.
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covariance situations.

(4) In general, the error rates of even-numbered situations (unequal covari-
ance matrices) are lower than those of odd-numbered situations (equal
covariance matrices) even though the Mahalanobis distance between two
classes is the same (1.33). Moreover, some procedures yield lower error
rates than the pivotal procedure under the slightly skewed lognormal dis-
tribution. A similar tendency in these situations also appeared in the
results of Randles, Broffitt, Ramberg and Hogg (1978). Clearly the Ma-
halanobis distance is not the only variable determining the optimal error

rate here.
TABLE 2. Empirical Percentages Misclassified

Situation Procedure
Ar/ Ar/ XH/ Aave/  Aped/  Amed/
¢avg q-l)ra.nk ¢rank ¢avg Qbmed ¢adpt
CiC;, Ci1C;, Ci Cy C Cy Cp Cy CpCo
1 29 28 29 29 29 30 29 28 31 30 33 28
2 16 34 25 28 25 28 16 34 18 36 15 38
3 45 42 41 42 34 35 45 42 36 34 38 31
4 37 45 39 38 29 32 36 45 24 39 23 39
5 39 44 39 42 32 33 39 44 30 35 28 36
6 29 45 35 37 28 31 29 45 16 38 14 39
7 26 29 27 27 28 27 26 29 31 32 41 18
8 16 35 26 27 26 27 16 35 17 36 19 35
9 41 43 41 42 33 32 41 43 33 33 36 30
10 28 43 34 36 28 30 28 43 22 37 18 40
11 41 42 41 42 34 32 41 42 34 34 35 32
12 34 41 37 38 29 31 34 41 23 37 21 38

Situation Procedure
Az{\{g >‘£1Ied/ AﬁtIed/ A1InIed/ )‘gtlipt/ A11'1577.14:/
¢avg <Zsavg d’med d’adpt ¢adpt. ¢rank
Cyp C; C1 Cy Cy Cy Cy Cy Cp Cp Cp Ch
1 29 30 29 30 29 30 31 28 30 29 29 29
2 16 34 16 34 16 34 17 34 14 37 25 28
3 36 35 40 37 32 32 32 32 31 33 32 32
4 25 41 33 41 23 36 24 35 23 36 28 35
5 28 38 33 36 28 32 28 33 26 35 30 31
6 13 44 24 42 15 36 14 37 12 39 26 31
7 26 30 25 30 27 28 32 23 32 22 28 27
8 16 35 16 35 17 34 19 33 18 35 26 28
9 33 31 34 31 32 31 34 30 32 31 32 31
10 23 37 24 36 20 35 20 36 18 38 27 31
11 33 32 34 32 32 32 35 30 33 31 32 31
12 23 37 25 36 21 36 21 36 19 38 27 31
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In general, we note the following points from our Monte Carlo study:

(1) Generally speaking, Fisher’s LDF method performs best under normally
distributed situations with equal covariance matrices, but is not robust in
heavy- and long-tailed situations. However, it performs reasonably well
in the slightly skewed lognormal distribution.

(2) In general, the discriminant procedures constructed from the second pro-
jection index are more robust than those constructed from the first pro-
jection index.

(3) The adaptive cutoff performs best in most situations whereas the average
cutoff does worst and is not robust. The other two — rank and median
cutoff — are competitive and robust. In addition, these robust cutoffs
provide an extra measure of robustness in the performance of the corre-
sponding discriminant procedures. More details with figures are given in
Chen (1989).

(4) Fisher’s LDF can be derived by two ways (see Section 2.3) and so can
be examined in two ways in our Monte Carlo study. The simulation re-
sults are exactly equal in almost all situations studied (see the procedures
AF/@avg, and AL,/ davg ). With the same location estimate Lqy, We put
the cutoff @,,4 into the second projection index to construct a LDF (see
the procedure X,{Jg [ Pavg ). Its performance is better overall than that of
Fisher’s LDF.

(5) Among the 12 discriminant procedures, two (Ar/¢qy, and Xgug/¢a‘ug)
are non-robust, two (Al /@avg and AL, /¢avg) are somewhat robust,
while the others are robust. The five procedures constructed using the
projection index II with a robustified cutoff are competitive and better
than other robust ones derived from the first projection index. In general,
these robust discriminant procedures are not sensitive to outliers, gross
errors, or heavy-tailed distributions.

4. Discussion and Future Directions. Our Monte Carlo study has
demonstrated that it is feasible to construct robust linear discriminant func-
tions by projection pursuit techniques which optimize robustified projection
indices (also see Chen (1989)). In future work, it would also be of interest to
investigate other projection indices and to develop algorithms for higher di-
mensions. General discussions relating to the choice of projection indices can
be found in Huber (1985), and Jones and Sibson (1987). The main difficul-
ties in applying projection pursuit are computing time and the development
of fast optimization algorithms in high dimensions, as indicated by Friedman
(1987), Huber (1985), Jones and Sibson (1987), and Li and Chen (1985). Ef-
ficient numerical algorithms for projection pursuit optimization in a modern
computing environment (parallel processing, supercomputer, etc.) need to be
developed. From a theoretical point of view, Lachenbruch (1982) pointed out
that “a formal definition of robustness of discriminant function in the sense of
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Huber (1981) in not presently available”. Chen (1989) has made some progress
towards achieving this goal in deriving and investigating theoretical aspects of
the robustness of our projection indices and discriminant procedures, in the
sense of Huber (1981) and Hampel, Ronchetti, Rousseuw and Stahel (1986).
These theoretical aspects include invariance, qualitative robustness, and influ-
ence functions — see Chen (1989).
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