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In this paper the authors have proved the following result: Suppose U and

V are two centrally symmetric convex functions of X, when X is an 72 X 1 random

vector distributed as JV(O, In) such that Cov([/(X), V(X)) = 0. Then, under

certain conditions, there exists an orthogonal transformation Y = LX such that

U and V can be expressed as functions of two different sets of components of

Y. This provides a partial answer to Linnik's question on unlinking two given

functions of X.

1. Introduction. Kagan et al. [1] have considered the following

problem, let X be an n X 1 random vector distributed as 7V(0,/n). Suppose

P(X) and Q(X) are two independently distributed polynomial functions. Is

it possible to find an orthogonal transformation Y = LX such that P and Q

could be expressed as functions of different sets of components of YΊ If the

answer to this question is in the affirmative, then the functions P and Q are

said to be unlinked. Partial answers to this question are given in Chapter II

of[l].

We have shown in this paper that two statistics U(X) and V(X) could

be unlinked when both U and V are centrally symmetric convex functions

and Cov(U(X),V(X)) = 0 under certain conditions on U and V. Our result

depends on the validity of a probability inequality given in lemma 3.

2. Preliminary Results.

LEMMA 1. Let g be a convex function on M to M. Suppose there exists

λi, λ2 in M such that g(λι) ψ g(^2) Then at least one of the following holds.

(a) There exists AQ such that g(u) < g(υ) for λ0 < u < υ and g(X) —• oo

as λ —• oo.

(b) There exists λo such that g(u) < g(υ) for v < u < λo and g(X) —> +oo

a s λ —> — o o .
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PROOF. Suppose λi < λ2 and g(λi) < fir(λ2). Define h(X) = g(λ) -

. Then for λ2 < A

λ2 — λi
= λ-λi

Thus

h(X) > ^—4 L /i(λ 2 ) > Λ(λ2).

The above shows that fo(λ), as well as #(λ), strictly increases on (λ2,oo) and

tends to oc as λ -^ oo. Now take λo > λ2 to satisfy (a).

If g(Xι) > <7(λ2), then the above method of proof yields (b).

COROLLARY 1.1. Let g be a convex function on M to M. If g is

bounded above, then g must be a constant function.

COROLLARY 1.2. Let U be a convex function on Mn to M. Suppose

tha,t for some fixed vector a G iRn, Ϊ7(λ α) is a constant function of λ. Then

for any fixed vector b E iRn, U(b + Xα) is a constant function of X.

PROOF. Note that

<U(2b) +

Thus g(X) = ί7(6 + λα) is bounded above. Now Corollary 1.1 yields the result.

LEMMA 2. Let U be a convex function on Mn -> M with 17(0) = 0.

Let

Su = {α: U(Xα) = 0 for all λ G JR}.

Then SJJ is a vector subspace of Mn.

PROOF. Suppose α i , α 2 are in SJJ For ci,c 2 in iR,

f ( c i « i + c 2 α 2 ) = U(cιθLi) = 0

by Corollary 1.2. Thus ciαi + c2α2 is in 5c/.

LEMMA 3. Let X be an r X 1 random vector distributed as 7V(0,/r).

Let A and B be centrally symmetric (i.e., A = —A,JB = —B) convex sets in

Mr. Then, for r < 2,

G A],P[X G 5 ] .
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The above lemma is trivially true for r = 1. Pitt has proved it when r = 2

(Theorem 2 in [3]).

3. The Main Result. Suppose U and V are two convex functions on

Mn -> IR such that U(0) = V(0) = 0. Define Sv and Sy as in Lemma 2.

DEFINITION. Ϊ7 and V are said to be concordant of order r, if

dim(5#) - dim(5# Π Sy) = r.

Note that this definition is symmetric in U and V, since

r =dim(S#) - dim(S# Π SV)

—n - dim(Su) — n + dim(Su + Sy)

=dim(Su + S$) - dim(Su)

= d i m ( ^ ) - dim(Su Π 5^).

We now state the main result.

THEOREM. LetX bean n x l random vector distributed as JV(O,/n)

t/ and F be two centraily symmetric (i.e., U(X) = U(-X),V(X) = V(-

convex functions of X such that Cov(U(X),V(X)) = 0. Furthermore, assume

that U(0) = 0 = F(0), and i7 and F are concordant of order r < 2. TAen

tiere exists an orthogonal transformation Y = LX such that U and V can be

expressed as functions of two different sets of components ofY.

PROOF. Let {αi,.. ,α r + ί } , {α r + i , ,α r + ί },{αi, - , α r + ί + m } , and

{αi, , αn} be orthonormal bases of Sjj, Sjj Π ̂ y, 5^ + Sy, and iRn, respec-

tively. We shall show that Cov(ί7(X), V(X)) > 0 if r φ 0; otherwise ί7(JSΓ)

and V{X) could be unlinked. Note that Y^s defined by X = Σi Yiαi a r e i i.d..

as ΛΓ(O,1). By CoroUary 1.2,

/ n \ / r r + t \

U(X) =U ΣYiOi )=U[ ΣYiαi + X > a ; , (3.1)
\ 1 / \ 1 r+1 /

( n \ / r r+t+m \

Σ ^ κ Σ y ^ + Σ y<a (3 2)

1 / V 1 r+f+1 /

If r = 0, we are done. In the following we shall assume r > 0. Let y* =

(2/i, ,2/r)' Define

C/*(y*) =E (u (j^yiαi + Σγ*<*i) ) » ( 3 3 )

/ / r r+t+m \ \

y*(y*) =E [V 2y.α, + £ Y^ , (3.4)
\ \ 1 r+t+1 / /
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Note that both U* and V* are centrally symmetric convex functions of y*.

Since U (λ Σ[ yiOLi) is not identically 0 as a function of λ, U(λ J2[ Viai +

Σ r + i Viai) 1S a non-constant function of λ (use Corollary 1.2). By Lemma 1

/ r r+t \ / r r+t \

\ 1 r+1 / \ 1 r+l J

tends to oo as λ —• oo. Taking the expectation of (3.5) with respect to

yr_l_i, ,Yr+t a n d using Egoroff's theorem [2], we get

U*(Xy*) -> oo as λ -• oo. (3.6)

Similarly

-> oo as λ -> oo. (3.7)

Note that

Cov(U(X),V{X)) =EU(X)V(X) - E[U(X)]E[V(X)]

=EU*(Y*)V*(Y*) - E[U*(Y*)]E[V*(Y*)]

= Γ
Jo Jo

/

OO Z OO

/ [P(Akl ΠBk2)- P(Akl)P{Bk2)]dkxdk2

- Jo (3.8)

where

Akl ={y* : U*(y*) < h}, (3.9)

Bk2 ={y* : V*{y*) < k2}. (3.10)

From (3.6), (3.7) and Lemma 1 we can assert that there exist fei, k<ι sufficiently

large, such that

Akl C Bk2,P{Bc

k2) > 09P(Akl) > 0. (3.11)

Now Lemma 3 and (3.11) yield

Cov(U(X),V(X)) > 0, (3.12)

since there would exist a set of values of &i, /?2 with positive Lebesgue measure

for which the integrand in (3.8) is strictly positive. Since (3.12) contradicts

the assumption we must have r = 0.

NOTE 1. In the above theorem we have assumed that U(0) = V(0) = 0.

In general, U(X) > U(β) and V(X) > V(Q). So the above assumption can be

made without any loss of generality.
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NOTE 2. The above theorem also holds for any r > 2, provided Lemma
3 holds for that r. There will be no change in the proof for general r. However,
it is not known whether Lemma 3 holds for r > 2. It may be noted that the
theorem is always true when n = 2.
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