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We establish two new versions of Cochran's Theorem concerning the distri-

bution of quadratic forms in normal variables. Instead of the usual rank additivity

condition we consider two partial orderings among symmetric matrices.

l Results. Our main purpose in this paper is to establish two new
versions of Cochran's Theorem concerning the distribution of quadratic forms
in normal variables. Instead of the usual rank additivity condition we consider
two matrix partial orderings.

In our first theorem we use the rank subtractivity, or minus, partial or-
dering of two matrices L and M, possibly rectangular, introduced by Hartwig
(1980) and defined by

L <rs M <=>> rank(M - L) = rank(M) - rank(X), (1)

cf. also Hartwig and Styan (1986).
The equivalence of the rank subtractivity partial ordering with rank ad-

ditivity for any matrices B\, , 2?/~, possibly rectangular, was established by
Hartwig (1981), and is

k k

rank( ^ B^ = ^ rank(Bi) «=> B{ <rs B = Bλ + + Bk

t = l t = l

for all i = l, ••-,&. (2)
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THEOREM 1. Let A — Σ£=i Ai, where the Ai are n x n nonrandom

symmetric matrices, i = 1, ,fc, not necessarily nonnegative definite. Let

the random n x l vector X follow a multivariate normal distribution with

mean vector E(X) = μ, not necessarily 0, and covariance matrix V > 0,

not necessarily positive definite, and let W denote the n X (n + 1) par-

titioned matrix (V : μ). Consider the quadratic forms Q = X1 AX and

Qi = X1 A{X, i — 1, , k, and the conditions:

(a) Qi is distributed as a chi-squared variable for all i = 1, , A;,

(b) Qi, , Qk are mutually independent,

(c) Q is distributed as a chi-squared variable,

(d) WΆiW<raWΆW for all i = 1, - - , *.

Tien

(a)and(b)<^(c)and(d) (3)

and

(a)and(c)=*(b)and(d). (4)

Furthermore, whenever

rank(VF) = rank(V), or A{ = 0 for all i = 1, , k,

or Aiμ = 0 for all i = 1, , k, (5)

then the condition (d) simplifies to

(di) VAiV <rsVAV for all i = l , •--,*,

and then

(b) and (c) = * (a) and (di). (6)

Whenever

rank(A; : W) = rank(W) for all i = 1, - - , k, (7)

tien t ie condition (d) simplifies to

(d2) Ai < r s A for all i = l, ,fe.

Being valid for arbitrary V > 0, i.e., nonnegative definite and not nec-

essarily positive definite, and μ not necessarily 0, Theorem 1 is comparable

to Theorem 9.3.3 in Rao and Mitra (1971) and generalizes all those versions

of Cochran's theorem which require one of the assumptions in (5) — cf. Rao

and Mitra (1971, Lemma 9.3.1), Scarowsky (1973, Theorem 5.2), and Khatri

(1980, Theorem 7). As observed by Scarowsky (1973, p.70) the conclusion (6)

does not follow unless V, μ and the Ai are restricted as in (5).

The original version (Cochran, 1934) of Cochran's Theorem is (1) with

μ = 0 and V = A = In, the n x n identity matrix, and with (d) replaced by
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(cb) in the form of the rank additivity condition (2). Ogasawara and Taka-

hashi (1951) extended Cochran's Theorem by showing that (1) holds when

the dispersion matrix V is positive definite and μ is any n x 1 vector, not

necessarily 0, and when μ = 0 and V is nonnegative definite, possibly sin-

gular. The property of inheritance of chi-squaredness was discussed in terms

of the rank subtractivity partial ordering by Baksalary and Hauke (1984) and

Hartwig and Styan (1986, p. 159; 1987, pp. 363-364). Styan (1970, Theorem

6), Rao and Mitra (1971, Lemma 9.3.1 and Theorem 9.3.3), Scarowsky (1973,

Theorem 5.2), Tan (1977, Theorem 4.2), and Khatri (1980, Theorem 7) gave

further extensions.

Our second main result is a version of Cochran's theorem for quadratic

forms distributed as linear combinations of two independent chi-squared vari-

ables. We will use the spectral partial ordering of two real symmetric matrices

L and M defined by

L < Λ M «=» L <rs M and {ch(Z)} C {ch(M)}, (8)

where {ch( )} denotes the set of nonzero eigenvalues. This partial ordering

was introduced by Baksalary and Hauke (1987) following canonical interpreta-

tions of the rank subtractivity partial ordering derived by Hartwig and Styan

(1986).

THEOREM 2. Let A = X)is=1 A{, where the A{ are n x n nonrandom

symmetric matrices, i = 1, ,&. Furthermore, let the random n x 1 vector

X follow a multivariate normal distribution with mean vector S(X) = μ

and covariance matrix V > 0, not necessarily positive definite, and let W

denote the n x ( n + l ) partitioned matrix (V : μ). Let c\ and C2 be given

nonzero distinct real numbers. Consider the quadratic forms Q = X1 AX and

Qi = X1 AiX, i = 1, , k, and the conditions:

(a) Qi is distributed as c\χ2

iΎ + c2χf2 for all i = 1, , fc,

(b) Q\, , Qk are mutually independent,

(c) Q is distributed as cχχl + c2χ^,

(d) VAiV <λ VAV and rank \vA-V) = rank (W'A W) for all i =

V Λ
where χ2

iλ with χj2 for each i = 1, , k in (a), and χ\ with χ\ in (c), are

independent chi-squared variables, some of which may have zero degrees of

freedom. Then

(a) and(b) <^=ϊ (c) and (d). (9)

It should be pointed out that the second condition in (d) is redundant

if any one of the conditions in (5) holds. With V and/or μ restricted by

(5), Theorem 2 is partially comparable with Theorem 8 of Khatri (1980).

An interesting particular case is when c\ — l,c2 = —1, and V = In, cf.
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Luther (1965); then VA{V = A{ and VAV = A are tripotent matrices and
our Theorem 2 may be compared with Theorem 3.2 in Anderson and Styan
(1982).

The following three lemmas give some fundamental results concerning the
distribution theory of quadratic forms in normal variables; see also Mathai and
Provost (1992).

LEMMA 1. Let A and B be n x n nonrandom symmetric matrices.
Let the random n x 1 vector X follow a multivariate normal distribution
with mean vector S(X) = μ and covariance matrix V > 0, not necessarily
positive definite, and let W denote the n X (n+ 1) partitioned matrix (V : μ).
Then the quadratic forms XfAX and X'BX are independent if and only if
WΆVBW = 0.

With the dispersion matrix V nonnegative definite and not necessarily
positive definite, Lemma 1 was first established by Ogasawara and Takahashi
(1951). With μ = 0, Lemma 1 was first given by Craig (1943) with V = J, the
identity matrix, and by Sakamoto (1944, Theorem I, page 5) with V positive
definite and not necessarily equal to J; for further discussion see Anderson
and Styan (1982, page 2; 1990, page 1308).

LEMMA 2. Let A, X, μ, V and W be defined as in Lemma 1. Then the
quadratic form X1 AX is distributed as a chi-squared variable if and only if
W'AVAW = WΆW.

Lemma 2 was derived, independently, by Ogasawara and Takahashi (1951),
Khatri (1963), Rayner and Livingstone (1965), and Makelainen (1966); see also
Styan (1970).

LEMMA 3. Let A,X,μ, V and W be defined as in Lemma 1 and let
ci, ,c5 be distinct nonzero constants. Then the quadratic form X1 AX
is distributed as a linear combination Σ j = i cjXj of independent chi-squared
variables χf, , χ^, s < n, if and only if

W'AV{VAV)+VAW = W'A W (10)

and ci, , cs are eigenvalues ofAV.
In (10) the matrix (VAV)+ denotes the Moore-Penrose inverse of VAV.

Lemma 3 was established by Baldessari (1967) for V positive definite and then
extended by Khatri (1977, Theorem 1). The conditions established there were
later simplified, and the condition (10) is equivalent to

rank(VAW) = rank(VΛV) and μ'AV(VAV)+VAμ = μ'Aμ, (11)

given by Khatri (1980, Theorem 1). An interpretation of the two conditions
(9) and (10) follows from a general characterization of the distribution of the
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quadratic form X'AX; cf. Khatri (1977, p.90) and Dik and de Gunst (1985,

Remarks 2.2 and 2.3).

Perhaps the first result on quadratic forms in normal variables which

involves (implicitly) a partial order of real symmetric matrices is Theorem 6

of Ogasawara and Takahashi (1951), asserting that — with V positive definite

and A nonnegative definite — the property of independence of X1 AX from

X'BX is inherited by every nonnegative definite X1 AQX such that AQ <L A,

the Lόwner partial ordering defined by

AQ <L A <=Ϊ A - Ao > 0, (12)

i.e., A — Ao nonnegative definite.

This result was generalized by Baksalary and Hauke (1984) in two direc-

tions: first, by deleting the assumption on the rank of the dispersion matrix V,

and secondly by replacing the Lόwner partial ordering by the column space,

or range, preordering,

Ao<cA <=^ C(Λo) C C(A). (13)

We recall that a preordering is a binary relation which is reflexive and tran-

sitive, while a partial ordering is a preordering which is in addition antisym-

metric; cf. e.g., Marshall and Olkin (1979, p. 13).

We quote here the generalization by Baksalary and Hauke (1984) in the

following:

LEMMA 4. Let A,AQ and B be n x n nonrandom symmetric matrices,

no one necessarily nonnegative definite. Let the random nxl vector X follow

a multivariate normal distribution with mean vector £(X) = μ and covari-

ance matrix V > 0, not necessarily positive definite, and let W denote the

nx (n+1) partitioned matrix (V : μ). Further, let X1 AX be distributed inde-

pendently of X1 BX. Then every quadratic form X1 AQX, with Ao satisfying

the preordering

W'AoW<cW'AW, (14)

inherits this property, in the sense that X' AQX is also independent ofX1BX.

The condition (14) simplifies to

Ao<cA, (15)

whenever the partitioned matrix (A : AQ) <Q W.

If X1 AX is distributed as a chi-squared variable then every quadratic

form X1 AQX with Ao satisfying the rank subtractivity partial ordering

W'AQW <rs W'AW (16)
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inherits the property of chi-squaredness, as showed by Baksalary and Hauke

(1984), who also pointed out there that this is no longer necessarily so when

(16) is replaced by the Lόwner partial ordering W'Ao W <L W'AW or by

the column space preordering W1 AQW <QW' AW.

2. PROOFS.

Proof of Theorem 1. In view of Lemmas 1 and 2 and the characterization

of the rank subtractivity partial ordering for real symmetric matrices L and

M

L <rs M <=> MM~L = L = LM~L, (17)

where the choice of a generalized inverse M " is arbitrary, cf. Marsaglia and

Styan (1974, Theorem 17), we may write the statements (a) through (d) of

Theorem 1 as follows:

W =W'AiW for all < = l,.--,fc, (18)

W =0 ίoτ a& i £ j ; i , j = l, ,fc, (19)

WAV AW = W'AW, (20)

WtAW{W'AW)-WlAiW =W'AiW

= W'AiW(W'AWyw'AiW

for all i = 1, ,jfc, (21)

where the choice of a generalized inverse (Wf AW)~ in (21) is arbitrary. It is

clear that the pair (18) and (19) implies (20) and

W foraU t = l, ••-,*. (22)

Hence W1 A{W <c W'AW and, consequently,

W'AiW <cW'AW for all i = l, ••-,*. (23)

The preorderings (23) ensure that the equalities in (21) are independent of the

choice of (W'AW)-, cf. Rao and Mitra (1971, p. 21). Reexpressing (20) in

the form

W'AW(W-VW-')W'AW = W'AW (24)

shows that (W'AW)- may be chosen as W~VW~'. In view of (18),

(22), and WW'V = V, it is clear that (21) holds with this choice of

(W'AW)-, which completes the proof of the part "(18) and (19) => (20)

and (21)".

Conversely, we note that the conditions (21) are equivalent to the rank

additivity property

k

τank(W'AW) = ]Γ τank(W'AiW), (25)
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cf. Hartwig (1981, Theorem 1). Hence it follows that

W'AjW = 0 for all i φ j ; ί, j = 1, - - , ft, (26)

cf. Marsaglia and Styan (1974, Th. 13). Utilizing again the fact that

{W1 AW)~ may be chosen as W~VW~ , the right-hand parts of (21) and

(26) yield (18) and (19), respectively. |

Proof of Theorem 2. In view of Lemmas 1 and 3, the statement (a) of

Theorem 2 is equivalent to the pair of conditions:

{ch(VAiV)}C{cu c2} foraU t = l , ••-,*:. (27)

and

= Z'AiZ for all i = l,---,ft; (28)

the statement (b) is equivalent to (19); and the statement (c) is equivalent to

the pair of conditions:

{ch(VAV)}C{ci, c2} (29)

and

Z'AV{VAV)+VAZ = Z9AZ. (30)

Since W = (V : μ), the condition (19) asserts in particular that

VAiVAjV = 0 for all i φ j; i, j = l,- ,fc. (31)

Styan and Takemura (1983, Theorem 4) established that if (31) holds, then the

set of nonzero eigenvalues of VAV coincides with the set of all the nonzero

eigenvalues of all the VA{ V, i = 1, , k. It follows at once, therefore, that

(27) and (19) imply (29). Further, an immediate consequence of (31) is that

VAiVAV = (VAiV)2 for all i = l,...,ft. (32)

This means that we have the star partial ordering (Hartwig and Styan, 1986)

VAiV <„ VAV for all ί = l, --,ft, (33)

which in turn implies the spectral partial ordering

VAV foraU i = l,.- ,ft, (34)

cf. Baksalary and Hauke (1987), and so we see that (31) implies the first part

of (d).

Moreover, from (33) it follows that

k

{VAVΫ = YJyAiVΫ, (35)
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and so (19) leads to

k k

(VAV)+ VAW = γ\VAiVγVAW = Σ(VAiV)+VAΪW. (36)

Consequently, combining (28) with (35) and (36) yields (31). The condition
(28) includes the statements

VAiμ<cVAiV foraU t = l, ••-,*, (37)

and

μ'Aiμ = μ'AiV(VAiV)+VAiμ for aU i = l , ••-,*. (38)

Theorem 19.1 of Marsaglia and Styan (1974) assures that if (37) holds, then

rank(WrΆiWr) =rank

iV) + TΆnk(μ'Aiμ - μ'AiV(VAiV)+VAiμ).
(39)

Consequently, on account of (38) it follows that (28) implies the second part
of (d). This concludes the proof of the part "(a) and (b) = ^ (c) and (d)."

Conversely, it is clear that (29) and the first part of (d) together imply
(27). Further, arguing similarly as in the proof of Theorem 2 in Baksalary and
Hauke (1987), it can be shown that, in the particular case specified by (29), the
spectral orderings in the first part of (d) are equivalent to the corresponding
star partial orderings in (33). In view of Theorem 1 of Hartwig (1981) and
Theorem 15 of Marsaglia and Styan (1974), this implies (31). On the other
hand, the second part of (d) implies

C(VAiW) = C(VAiV) for all < = l,-- ,jfc, (40)

and thus pre- and post-multiplying (31) by W'AiV(VAiV)+ and (VAjV)+
VAjWy respectively, leads to (19). Finally, in view of (39) and the formula
(8.7) in Marsaglia and Styan (1974), it follows that if the second part of (d)
is satisfied, then (36) and (37) must hold, thus leading to (28). The proof is
complete. |
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