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It is shown that each multivariate normal model determined by lattice con-

ditional independence (LCI) restrictions on the covariances may be extended in

a natural way to a normal linear model with corresponding lattice restrictions

on the means. For these extended models it remains true that the likelihood

function (LF) and parameter space (PS) can be factored into the products of

conditional LF's and PS's, respectively, each factor being the LF or PS of an

ordinary multivariate normal linear regression model, from which maximum like-

lihood estimators and likelihood ratio test statistics are readily obtained. This

extends the classical MANOVA and GMANOVA models, where the linear re-

strictions on the means are less general but where no restrictions are imposed

on the covariances. It is shown how a collection of nonnested dependent normal

linear regression models may be combined into a single linear model by imposing

a parsimonious set of LCI restrictions.

1. Introduction. This paper is part of an ongoing study of the
structure and analysis of multivariate normal statistical models defined by
algebraic conditions on the means and/or covariances.

Because conditional independence (CI) plays an increasingly important
role in statistical model building, it is of interest to study CI models with
tractable statistical properties and to develop methods for testing one such
model against another. Andersson and Perlman (1993a, b) have introduced a
class of multivariate normal models defined by pairwise lattice conditional
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independence (LCI) restrictions on the covariance structure.1) The LCI model

N(/C) is defined to be the set of all nonsingular normal distributions JV(O, Σ)

on M1 with mean 0 such that

xLALxM I XLDM, V £ , M e / C , (1.1)

i.e., XL and XM are CI given XLDM2^- Here K, is a ring of subsets (hence a

finite distributive lattice) of the finite index set / such that φ,I E /C and, for

K E /C,#κ is the coordinate projection of x E M1 onto Mκ. Let P(/C) denote

the set of all / x / positive definite covariance matrices Σ that satisfy the CI

restrictions (1.1) determined by /C3).

For the model N(/C), the likelihood function (LF) and parameter space

(PS) can be factored into the products of conditional LF's and PS's, respec-

tively, each factor being the LF or PS of an ordinary multivariate normal linear

regression model for which MLE's and LRT's may be obtained by standard lin-

ear methods. The products are indexed by J(IC), the poset of join-irreducible

elements of /C. The collection of regression parameters is called the family

of IC-parameters of the covariance matrix Σ, and these uniquely determine Σ

when Σ E P ( £ ) . These definitions and results will be reviewed in Section 2.

Example 1.1. Let / = 123 and K = {0,1,12,13,123} — cf. Figure

1.1. Under the LCI model N(/C),£2-1L#3 | χ1% The join-irreducible elements of

/C are 1, 12, and 13, and the /C-parameters of the 3 x 3 covariance matrix Σ

are given by

( Σ n , Σ 2 i Σ n , Σ22.i, Σ β i Σ ^ , Σ33.1), (1.2)

which uniquely determine Σ under the LCI model. If x ~ JV(0, Σ) then the

density of x can be factored as follows:

f(x) = f(xi)f(x2\xi)f(x3\xι), (1.3)

where f(x2 \ xi) and f(xs \ x\) are ordinary normal linear regression models,

from which the MLE's of the /C-parameters in (1.1) easily can be derived. |

In the general case, many of the statistical properties of the LCI model

N(/C) are derived via the properties of an algebra M(/C) of generalized block-

triangular I x I matrices with additional structure determined by the lattice

/C (see Section 3). The group of nonsingular matrices in this algebra preserves

' The LCI restrictions arise naturally in the analysis of non-monotone multivariate missing

data patterns — see Andersson and Perlman (1991).

'I f LΓ\M = φ then this condition reduces to XL ALXM> ί e » χL and XM are independent.
3 ) When K is a chain, (1.1) is trivially satisfied and P(/C) = P ( / ) , the set of all / X /

positive definite covariance matrices. In Andersson and Perlman (1991), P(/C) and M(/C)

were denoted by P)c(I) and MJC(I), respectively.
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and acts transitively on the class of all covariance matrices in the model N(/C).
For example, if K is the lattice in Figure 1.1 then M(/C) consists of all 3 X 3
matrices of the form

( an 0 0

«21 <*22 0 J . (1.4)

^31 0 a 3 3

Each LCI model N(/C) is determined by CI restrictions on the covariances.
In the present paper (see Section 4) we show that the LCI model consisting
of n i.i.d. observations from JV(0,Σ) E N(/C) may be extended in the follow-
ing natural way to a normal linear model N(ί7,/C), called a IC-linear model,
determined by corresponding restrictions on the means as well.

12 < > 13

Figure 1.1
The lattice K

The model N(ί7, /C) consists of one observation of the IxN random matrix
y ~ iV(μ,Σ®/JV), where N = {1, ,n} and 1^ is the N xN identity matrix.
It is assumed that Σ G P(/C) and μ £ £/", where U is assumed to satisfy the
condition M(/C)Z7 C U, i.e., U is an M(/C)-invariant linear subspace (often
abbreviated to IC-subspace) of the observation space M(/ X iV), the set of all
I X N matrices. This generalizes the classical MANOVA and GMANOVA
models where /C is a chain, M(/C) is an algebra of block-triangular matrices in
the usual sense, and Σ is unrestricted (see Andersson, Marden and Perlman
(1994).

With / = 123 and K — the lattice in Figure 1.1, Figure 1.2 gives an
example of a /C-subspace U C M(/ x N). In this example, unshaded regions
indicate blocks of O's while shaded regions indicate unrestricted blocks. With
M(/C) consisting of all matrices of the form (1.4), it is easily verified that the
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condition M(IC)U C U is satisfied. Other examples of M(/C)-subspaces appear
in Example 6.2.

N

Figure 1.2
An M(/C)-invariant subspace U of M(/ x N)

Of course, while the linear conditions imposed on the matrix of means
μ by the /C-subspace U are more general that those that occur in MANOVA
or GMANOVA (as seen in Figure 1.2), the /C-linear model N(£/,/C) imposes
non-trivial LCI restrictions on the covariance Σ.

For the model N(ί7,/C) it is again true (Section 5) that the LF and PS can
be factored into the products (again indexed by J(IC)) of conditional LF's and
PS's, respectively, each factor being the LF or PS of an ordinary multivariate
normal linear regression model, from which the MLE's are readily obtained.
Furthermore, as will be shown elsewhere, it is then straightforward to obtain
the likelihood ratio (LR) statistic for testing between two /C-subspaces Uo C U
for the mean μ under the assumption Σ G P(/C). This generalizes the classical
MANOVA and GMANOVA testing problems in several directions, yet should
have a similarly tractable solution.

Lastly, in applications one may be presented with a collection of nonnested,
possibly dependent normal linear regression models that determine a subspace
U of M(/ x N). In Section 6 we show how to determine the minimal lattice
K,{U) such that these regression models can be combined into a single /C(U)-
linear model N(ί7,/C(?7)). The procedure is similar to that in Andersson and
Perlman (1991), where it is shown how a nonnested missing data pattern de-
termines a minimal LCI model such that the likelihood function factors into
a product of linear regression models.

2. Factorization of the Likelihood Function under the LCI
Model N(/C). For any finite index sets S and T let M(S x Γ) denote the
vector space of all real S XT matrices and F(S) the cone of all real positive
definite S X S matrices. The factorizations of the LF and PS of the LCI
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model N(/C) require that each y G M(/ X N) and each Σ G P ( £ ) C P(/)

be partitioned according to the poset J(IC) of join-irreducible elements of the

lattice /C, whose definition we now review (see also Andersson and Perlman

(1993a)).

For K G /C, Kφφ, define

(if) := ll(/f' € K I if' C if) ,

[K] := if \<if>,

where C indicates strict inclusion, so that K is the disjoint union

K = (if)U[if], (2.1)

The poset J(/C) of join-irreducible elements of K, is then defined as follows:

J{K) :={KeK,\Kφφ, (K) C K).

Then every set K G /C may be decomposed as the disjoint union

ΛΓ = LJ([/Π I ϋΓ; e J(/C), A" C if) (2.2)

(cf. Proposition 2.1 of [AP] (1993a)); in particular,

/ = LJ([ϋΓ] I ΛΓ E J(/C)). (2.3)

Thus, each matrix y G M ( / X TV) may be uniquely partitioned according to

the decomposition (2.3) as

y = (y[i<] I ff G J(/C)), (2.4)

where, for any subset S C /, 1/5E M ( 5 X TV) is the S X N submatrix of 2/.

For any Σ G P(J) and any S C /, let Σ s G P ( 5 ) denote the 5 X 5

submatrix of Σ and let Σ ^ 1 denote ( Σ s ) " 1 . For K G K partition ΣK according

to (2.1) as follows:

(l<K) {K]) (2.5)

so Σ{κ) € P«ΛΓ»,Σ [ J f ] G P([ΛΓ]), Σ [ j r > G M([if] x (if)), and Σ{κ] = (Σικ))*.

Furthermore, define

Σ[κ]. = Σ[κj.(κ> := Σ [ K ] - Σ [ K > Σ ^ ) Σ ( K ] G P([i^]) (2.6)

and let Σf^, denote ( Σ ^ j . ) " 1 . It follows from Theorem 2.1 (ii) of Andersson

and Perlman (1993a) that for every y G M(/ X N) and Σ G P(/C),

. (2.7)
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For Σ £ P(/), the family of matrices

Σ ^ } , Σ [ κ ].) I K e J(AC)) =: ( ( % 0 , V , ) | K e J(K)) (2.8)

is the family of IC-parameters of Σ. By Theorem 2.2 of Andersson and Perlman
(1993a) the mapping

P(fC) -> x (M([K) x <tf » X P([JΓ]) I ΛΓ 6 «/(£))

Σ - ( ( % Λ ) | # € / ( £ ) )

is a bijection, hence represents the parameter space P(/C) as a product of the
spaces of the /C-parameters. Thus, every Σ G P(/C) is uniquely determined by
its /C-parameters.

Now consider n independent, identically distributed (i.i.d.) observations
#i, ,xn from the LCI model N(/C) and denote the matrix of observations
by v i.e.

y:=(xu---,xn)6M{IxN), (2.10)

where N = {1, ?ft} For K E «/(/C) partition ?//<- according to (2.1) as
follows:

(2.11)

By (2.7) and Lemma 2.5 of Andersson and Perlman (1993a), the likelihood
function for the model N(/C) has the following factorization:

(Σ, y) ^(det(Σ))-/2 exp(-tr(Σ-1

2/j/ί)/2)

^ 2 1 - R[κ)y{κ))( • )t)/2) | K G
(2.12)

Note that the if-th factor in this product is the density for the conditional
distribution of y^ given ΊJ(κ) > which is that of a standard normal linear re-
gression model. Furthermore, the parameter space P(/C) has the factorization
(2.9). It follows that the MLE Σ(y) exists and is unique for a.e. y iff

n > max{|</0| + \[K]\ \ K E /(/C)} = max{|/ί| | K G J{K)}, (2.13)

where \K\ denotes the number of elements in K. In this case the /C-parameters
of Σ(y) are determined explicitly from the usual formulas for regression esti-
mators (Andersson and Perlman (1993a), §3.1), then Σ(y) itself may be recon-
structed from these /C-parameters by the algorithm in Andersson and Perlman
(1993a), §2.7.

3. Generalized Block-triangular Matrices with Lattice Struc-
ture. For any matrix A e M(J) := M(/ x /) and any two subsets L,M e
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J(IC), let A[LM] denote the [X] x [M] submatrix of A. Thus each A G M(7)

may be partitioned into blocks according to the decomposition (2.3) as

A = (A[LM]\L,MeJ(IC)), (3.1)

By Proposition 2.3 of Andersson and Perlman (1993a), for any A G M(J) the

following three conditions on A are equivalent:

(i) Vx G M^VL elC:xL = 0^ (Ax)L = 0;

(ii) Vz E JR7,VZ G K : (Ax)L = ALxL;

(iii) VZ,M G J{K) : M%L^ A[LM] = 0.

Let M(/C) denote the set of all A G M(/) that satisfy the equivalent

conditions (i), (ii), (iii) (also see Footnote 3). By (i), M(/C) is a matrix algebra,

i.e., is closed under addition and multiplication, and contains the identity 1/.

If K is a chain of subsets of / (i.e., K is totally ordered under inclusion),

then by (3.1) and (iii), M(/C) is just the algebra of all lower block-triangular

matrices. For general /C, however, M(/C) must satisfy additional restrictions

determined by (i)-(iii) (e.g., see (1.4)).

For K G K, and A G M(/) let AK denote the K x K submatrix of A and

partition A according to (2.1) and (2.5) as follows:

=(A/<) A/K]); (3.2)Aκ

note that A[κ] = A[KK] when K G J{K). By (ii), if A G M(/C) then VίΓ G

J(/C),Vx G M1,

A{K] = 0, (3.3)

(Ax)[κ] =A[κ]x[κ] + A[K)X(K). (3.4)

Furthermore, it follows from (iii) that the linear mapping

M(K) - x (U([K\ x (JO) x M([K)) I K G J{K))

A^((A[κ),A[κ])\KeJ(IC)) ( j

is a bijection.

4. Mean Value Hypotheses under LCI Restrictions. We now

show how the LCI model consisting of n i.i.d. observations from JV(0,Σ) G

N(/C) may be extended to a /C-linear model N(ί/, /C) with corresponding linear

restrictions on the means.

A subspace V C M(S X N) is called a MANOVA subspace if M(S)V C V.

Since Is G M(5), this is equivalent to the condition M(S)V = V. Note that

any subspace of the form

V = {βZ I β G M(S x Γ)} (4.1)



104 NORMAL LINEAR MODELS

is a MANOVA subspace, where T is a finite index set and Z G M(Γ X N) is

a fixed design matrix. It can be shown (cf. Andersson, Marden, and Perlman

(1994)) that every MANOVA subspace V of M(S X N) has the form (4.1)

for some T and Z. It then follows that for any MANOVA subspace V there

exists a unique projection matrix P G M(7V) (i.e., P = P2 = Pι) such that

V = M(S x N)P] note that dim(F) = \S\ rank(P) = |SΊtr(P). [P is simply

the projection onto the row space Row (Z) of Z.]

DEFINITION 4 . 1 . A subspace U C M(/ X N) is an M(/C)-Invariant

subspace (= tC-subspace) if

U{K)U C U, (4.2)

or, equivalently, if M(/C)ί7 = U. The corresponding IC-linear model N(ί7,/C)

is defined as

N(ί/, K) = {N(μ9 Σ®lN)\μeU,Σe P(/C)}. (4.3)

Thus, under the model N([/,/C) we observe y as in (2.10), where the

columns x\, , xn are independent (but no longer identically distributed)

normal random vectors with common covariance matrix Σ G M(/C), while

E(y) = μβU.

For any subspace U C M(/ x N) and K G /(/C) define the two subspaces

(cf. (2.11))

u[K] ={y[κ] \yeu}c M([K] X N ) ,

u{K) ={y{κ) \yeu}cM((K) X N ) .

Thus we have the natural linear embedding

U - x ( % , I ϋr G J(£)) , (4.4)

y -> (y[κ] I ϋΓ G J(/C)). (4.5)

Note that A G M(/C) acts on x(ί7[κ] | K G «/(/C)) in accordance with

the partitionings (3.1) and (4.5). The following basic characterization of a

/C-subspace can be derived from (3.3) and (3.4) (see Andersson, Marden, and

Perlman (1994) for the case where K is a chain):

THEOREM 4.2. A subspace U C M(/ x N) is a K-subspace if and only

if it satisfies the following three conditions:

(i) U = x(U[κ] I K G </(£)), i.e., (4.4) is a bijection;

(ii) V A" G J(/C), U[κ\ is a MANOVA subspace of M([K] x N);

(iii) VKe J(IC), M([K] x <ΛΓ»IΓW C U[κ].
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REMARK 4 . 3 . By (2.2) with K replaced by (K), conditions (i), (ii),

and (iii) in Theorem 4.2 are equivalent to conditions (i) and (iv);

(iv) VK,K' G J(IC) with K1 C K, M([K] x [K'))U[KI] C U[κ].

REMARK 4.4. By (4.1) and by (2.2) with K replaced by (JSΓ), conditions

(ii) and (iii) of Theorem 4.2 may stated in the following equivalent forms:

(ii)' V K G J(IC) there exists a finite index set Tjζ and a fixed design

matrix Zκ G U(TK X N) such that U[κ] = {βZκ \ β G M([K) X Tκ)}.

(iii)' VϋΓ, K' G J(K) with ϋf' C K, Row(Zκ.) CRow(Z#); i.e., 3W =

W(Zκ,ZKι) G M(Ttf# X Tκ) such that Z/^ = WZK.

5. Factorization of the likelihood function under the /C-linear

model N(ί7, /C). For any y, μ G M(/ x JV) and Σ G P(/C), extend the identity

(2.7) as follows:

^ y -μ)(y - μ ) * ) =

) f) | K G J(/C)). (5.1)

For any pair (μ, Σ) G M(/ x N) X P(/), the family of matrices

Σ[K}Σ^}, Σ[κ].) | JΓ G

' V l ) I ̂  e J(/C)) (5.2)

is called the family of /C-parameters of (μ, Σ). From (2.9) and Theorem 4.2 (i)

and (iii) we obtain the following factorization of the parameter space of the

/C-linear model N(£/,/C).

THEOREM 5.1 . Let U be a K,-subspa,ce ofM(IxN). Then the mapping

U x P(/C) - x (UlK] x M([K) x (K)) x P([K)) \ K G

(μ,Σ) - , ( ( ί Λ A ) | ϋΓ G J(/C)) ( ' j

is a bijection, hence represents the parameter space U X P(/C) of t i e IC-linear

model N(J7,/C) as a product of the spaces of the K-parameters. Thus, every

pair (μ, Σ) G ί7 X P ( £ ) is uniquely determined by its K-parameters. |

If C/ is a /C-subspace of M(/ x N), for each ί ί G J(/C) let P x G M(N)

denote the projection matrix corresponding to the MANOVA subspace U[κ]

and set Qκ := 1N - PK By (iii) of Theorem 4.2, μ G U =» [̂/<] G C/[κj. Thus,

by the orthogonality of P # and
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Then (5.1), (5.4), and Lemma 2.5 of Andersson and Perlman (1993a) yield the

following basic result:

THEOREM 5.2. The likelihood function for the /C-iinear model N (£/", /C)

has the following factorization:

(U x P(/C)) x M(/ x N) -> (0,oo)

((μ,Σ),y)

=Π((det(Λ [ κ ])Γ n/ 2 -

00/2) I * e /(£))).
(5.5)

I
Once again the K-th factor in this product is the density for the condi-

tional distribution of y^κ] given V(κ) a n d is seen to be the LF of a standard mul-

tivariate normal linear regression model. Since the parameter space U X P(/C)

has the factorization (5.3), it follows that the MLE (μ, Σ) = (μ(y), Σ(y)) exists

and is unique for a.e. y iff

n > max{|ΛΓ| + pκ \ K G J(/C)}, (5.6)

where px -= tτ(Pκ) = dim(?/[/<-])/|[UΓ]|. In this case the /C-parameters

R[K)^[K]) I K E J(IC)) of (μ, Σ) are determined from the usual formulas for

regression estimators (compare to Andersson and Perlman (1993a), §3.1 and

Andersson and Perlman (1991), §3.4):

))~1 ( 5 7 )

(5.8)

= y\κ]Pκ - ^QKVIK^VWQKVIK^VWPK (5.9)

Finally, (/i, Σ) itself may be reconstructed from these /C-parameters by

the algorithm given in Andersson and Perlman (1991), §3.3.

In general, the MLE (μ,Σ), is not a sufficient statistic for the model

N(ί7,/C), which is a curved exponential family. Nevertheless, it will be shown

elsewhere that for two /C-subspaces C/Q Q U, the LR statistic Q for testing Ho:

μ G Uo vs. H: μ G U has a simple expression, its exact central distribution

can be obtained in terms of its moments, and the asymptotic central distri-

bution of -2log Q as n —• oo is χ2 with dim(ί7)-dim(ί7o) degrees of free-

dom. The classical MANOVA testing problem is obtained when K = {</>,/},

while the GMANOVA testing problem is a testing problem of this form with

K = {φjK,!}, where φ C K C /.
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6. Construction of a /C-linear Regression Model. In applications,

one may be presented with a collection of nonnested, possibly dependent nor-

mal linear regression models which together determine a linear subspace U

of the observation space (= mean value space) M(/ x N) (see Example 6.2).

We now show how to determine the minimal lattice IC(U) such that these re-

gression models can be combined into a single /C({7)-linear model N(ί7,/C(ί7)).

This model is parsimonious in the sense that if the given regression models

can also be combined into a single Λί-linear model N(£f,Λl), then necessarily

K,{U) C M} hence N(ί7,/C(ί/)) imposes a minimal set of conditional indepen-

dence restrictions on the covariance structure.

As above, let y G M(/ X N) be a matrix of observations, where / and N

are finite index sets. Suppose that we are given a decomposition

I=U(S\SeS), (6.1)

where each S φ φ, and a corresponding family (Us \ S £ S) of MANOVA

subspaces, where Us Q M(S X N). If we now set

U = x(Us \SeS)CU(Ix N), (6.2)

then we wish to determine /C(f/), the minimal ring of subsets of the finite index

set / such that φ,I 6 IC(U) and such that U is a /C(ϊ/)-subspace of M(/ x N).

Define the partial ordering4) < on S as follows:

S' <S if M(5 x S')Us> C Us. (6.3)

A nonempty subset H of the poset S is called hereditary if S G H and S1 < S

imply that 5" G H. Now define K,(U) to be the set of all hereditary subsets

of S together with the empty subset φ. It follows from the fundamental cor-

respondence between the class of all finite posets and the class of all finite

distributive lattices5) that IC(U) is a finite distributive lattice such that

J(IC(U)) = {Ks\Se 5 } , (6.4)

where

Ks = LJ(5' €S\S' <S). (6.5)

' Clearly, < is reflexive and transitive on S. we may also assume that < is antisymmetric
—otherwise replace S by the set of equivalence classes induced by the equivalence relation
S ~ Sf if S < Sr and Sr < S. Note that when each Us is defined by a design matrix
ZS as in (6.10), it follows by (6.11) that S ~ Sf iff Row(Zs) = Row(Zs').
5)see Gratzer (1978, pp.61-62), Theorem 9 and Corollary 10, or Andersson (1990), Theorem
3.2 (ii).
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Furthermore, it is readily verified from (6.5) that

[Ks] = S. (6.6)

Also, by (6.1) each member of IC(U) is identified with a subset of /, so that

/C(ί7) may be considered as a ring of subsets of I.

By applying Theorem 4.2, Remark 4.3, (6.3), and the fact that Ks> C Ks

iff Sf < 5, it can be shown that U is a /C(ί7)-subspace of M(/ x N). Define

IK = {/C C 21 I K is a ring, U is a /C-subspace of M(/ X N)}.

We now show that K(U) is the unique minimal member of IK.

First, suppose there exists C G IK such that C C K,{U). Then there exists

L G J(C) such that

[X] = ύ(s\se v), (6.7)

where P C S and | P | > 2. By (6.2) and (6.7),

U[L] = χ(Us\SeV). (6.8)

Since E/[χ,] is a MANOVA subspace, i.e., M([Z])ί7[£] C £/[LJ, it now may be

shown that Sr < S for every pair 5 , 5 ; G V. But this contradicts the assump-

tion that < is antisymmetric on S (see Footnote 4), hence C = /C(ί7), so /C(ί7)

is a minimal member of M. Finally, the uniqueness of K{U) follows from the

(non-trivial) relation

M(/Ci Π /C2) = Alg (M(/Ci), M(/C2)), (6.9)

(the smallest algebra containing M(/Ci) and M(/C2)), valid for any rings /Ci

and Â2 of subsets of /.

REMARK 6 . 1 . In applications, IC(U) is most easily determined as the

ring generated by {Ks \ S G S} and 0, where Ks is given by (6.5) and (6.3).

Also, each MANOVA subspace Us usually is specified in the form

Us = {βZs I β G M(5 x Ts)}, (6.10)

where Ts is a finite index set and Zs G M(Ts x N) is a fixed design matrix.

In this case (6.3) can be expressed equivalently as

S'<S if R o w ( Z S ' ) C R o w ( Z s ) . (6.11)

EXAMPLE 6.2. Take I = 123 (see Example 1.1) and denote the matrix
of observations by

y=\y2 I G M(/ x N).
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Assume that the columns of y are independent and normally distributed with

common unknown covariance matrix Σ G P(/) Suppose that the row vec-

tors t/i,2/2?2/3 a r e known to satisfy the following nested set of ordinary linear

regression equations: for j — 1, , n,

E(yij) = βntlj9 (6.12)

E(y2j) = β2lhj 4" /?22̂ 2j5 (6.13)

EyHzj) = βsihj + βz2hj + βs&tzj (6-14)

Here S = (Si,82,83), where Si = i, and the corresponding design matrices

(cf. (6.10)) are

(6.15)

(6.16)

(6.17)

We assume that the row vectors (ία i ί α n ) j a = 1>2,3 are linearly inde-

pendent. The relations (6.12), (6.13), and (6.14) determine a linear subspace

U C M(/ X N) in which the matrix of means E(y) is assumed to lie.

In order to combine the three (dependent) regression models (6.12)-(6.14)

into a single /C-linear model by imposing a minimal set of LCI restrictions on

Σ, apply (6.5) and (6.11) to find that

KSl = 1, KS2 = 12, KS3 = 123. (6.18)

Thus {Ks I S G S} is a chain, so K(U) = {Ks \ S G S} U {φ} (see Remark

6.1), which is also chain. It is easy to apply Theorem 4.2 and Remark 4.4

to verify that U is a /C(ί7)-subspace. The MLE's of the βia and Σ under

the /C(ί7)-linear model N(Ϊ7,/C(Ϊ7)) are obtained using (5.7)-(5.9). Note that

in this example, as well as for any nested set of linear regression models,

P(/C(ί7)) = P(/), so no nontrivial CI restrictions are imposed on Σ under the

model N(?7,/C(ί/)) (see Footnote 3).

Now suppose that (6.14) is replaced by

E(y3j) = βsihj + β33t3j; (6.19)

equivalently, we add the assumption that β32 = 0. Here the three regression

models determined by (6.12), (6.13) and (6.19) are nonnested and determine

a proper subspace J7o C U. We construct K,(UQ) as above, but now (6.18)

becomes

= 12, *-s3 = 13, (6.20)
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so {Ks I S G S} no longer is a chain. It is easily seen that K,(Uo) is the
lattice in Figure 1.1 and that Uo is a IC(Uo)-subspace. The MLE's of the
βia and Σ under the /C(ί7o)-linear model N(/7o,/C(ί7o)) are again obtained
using (5.7)-(5.9), where the projection matrices P123 and Q123 corresponding
to Row(Z53) in (6.17) must be replaced by P i 3 and Q13 corresponding to
Row(Zs3)in (6.12):

ZS3 = γ : l n . (6.21)

Since IC(Uo) is not a chain, P(/C(ί7o)) C P(^), so a nontrivial CI restriction
now must be imposed on Σ to combine the regression models given by (6.12),
(6.13) and (6.19) into the /C(t/b )-linear model ΊS(Uo,IC(Uo)).
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