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A general multivariate mixed effect linear model is introduced. Special cases

of the model include the multivariate nested error covariance component regres-

sion and the random coefficient repeated measure model. Discussion is given

on modeling the random effect structure and its effect on statistical inference.

A procedure for testing certain class of hypotheses concerning the random ef-

fect structure is developed. The procedure is based on a statistic in a readily

computable form, facilitating the use at the model building stage.

1. The Model. This paper is concerned with introducing a general

multivariate mixed effect model, and with developing a procedure for testing

hypotheses concerning the random effect structure in such a model. For sim-

plicity we concentrate here on mixed models with the one-way random effect

structure, i.e., with the random effect (other than the error term) involving

one unknown covariance matrix. To introduce our general model, first con-

sider the most widely used univariate mixed effect model with the one-way

classification random effect or with the nested error structure. The response

yij and the k x 1 explanatory variable X{j for the j-th. individual in the i-th.

group are assumed to satisfy

Vij ^β'xij + Ui + eij, i = 1,2, ,ra, j = 1,2, - ,r<, (1.1)

where β is a k x 1 vector of unknown fixed parameters, u^s and ey's are

independent random variables with mean zero, and Var{ΐ/;} = φ2 and Var

{eij} = σ2 are components of variance. This univariate model has been widely

applied in animal breeding, small area estimation, and analyses of data arising

in panel study and cluster sampling. See, e.g., Henderson (1973), Fuller and

Battese (1974), and Prasad and Rao (1986). Harville (1977), Robinson (1991),

and Searle et al. (1992) provide reviews of the variance component problems

emphasizing the univariate models. Model (1.1) does not involve an unknown

covariance matrix (of dimension at least 2 X 2) to be estimated. If more than

one response variable are measured from each individual in the same setup,

then we have a multivariate extension given by
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y{j = Bxij + Ui + €ij, i = 1,2, , n, j = 1,2, , rt , (1.2)

where t/ j is the p x 1 response vector, β is a p X fc matrix of unknown fixed

parameters, the u^s and e^ 's are p x 1 independent random vectors with mean

zero, and Var{τ^} = Φ and Var {e^ } = Σ are p X p covariance components.

This extension (1.2) is obtained by stacking p equations of the form (1.1),

assuming that each response variable has the corresponding random group

effect and error term. In this model, the p x p between group covariance

matrix Φ has to be estimated. Special cases of model (1.2) have been discussed

and applied in Klotz and Putter (1969), Thompson (1973), Boch and Petersen

(1975), Amemiya (1985), Meyer (1985), Amemiya et al. (1990), Anderson and

Amemiya (1991), and Calvin and Dykstra (1991). Another widely used model

with a covariance matrix to be estimated has a univariate response. The

random coefficient regression or the random effect repeated measure model

assumes that the univariate response yij and the explanatory variables k x 1 Xij

and q X 1 Zij for the j - th measurement on the i-th. individual satisfy

yij -β'xij + OLiZii + eii, i = 1,2, ,n, j = 1,2, ,r i ? (1.3)

where β is a k x 1 vector of unknown fixed parameters, q x 1 α 's and scalar

e, / s are independent random variables, the mean of α* is a q X 1 unknown

vector, E{eij} = 0, Var{aJ = Φ, and Var{eij} = σ 2. This is a regression

model with some coefficients (α^) assumed to be random over the individuals

who constitute, e.g., a random sample from some population. In social science

panel data applications, model (1.3) is often used to explain intra-individual

covariance structure not sufficiently explained by model (1.1). In the random

effect growth curve analysis, the covariate z^ corresponds to a low order poly-

nomial in time, and the random coefficient c^ represents random individual

differences in growth curve. See, e.g., Rao (1965), Swamy (1971), Laird and

Ware (1982), Reinsel (1985), and Lange and Laird (1989). In some of these

papers, model (1.3) with no fixed parameter β was given as an empirical Bayes

model. Although some interpretation and inference may differ, the model it-

self is identical. Here we present models and related issues from a view point

of classical fixed and random effects approach.

The model considered in this paper is a general multivariate mixed effect

repeated measure model which contains both (1.2) and (1.3) as special cases.

Assume that the p x 1 response yij and the explanatory variables k x 1 X{j

and q X 1 z^ for the j - th measurement on the i-th individual satisfy

yij = Bxij + AiZij+βij, i = 1,2, ,n, j = 1,2, • • ,r<, (1.4)

where B is a p x k matrix of unknown fixed parameters, A^'s are pxq random

matrices with Var{vec A{] = Φ, pq x pq, ey's are p x l random vectors
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with E{βij} = 0 and Var{e^} = Σ, and all α 's and ey's are independent.

Here, we used the vec notation such that, for any a x b V = (i?i,t?2, ,i?b),

vec V = (v[, ΐ?2 5 " ? t^y' α& X l Model (1.4) is a multivariate extension of the

univariate repeated measure model (1.3) in the sense that p characteristics are

measured at each measurement period on each individual. The multivariate

nested error mixed effect model (1.2) is also a special case of model (1.4) with

ςr = 1, E{Ai} = 0, and Zij = 1. If the n individuals or classes are assumed to

be a random sample from a single population, then E{Ai} is assumed to be

common for all i = 1,2, , n. In general, the n individuals or classes may be

grouped into several groups, or their means may depend on some explanatory

covariate s x 1 tϋj, A model for such a situation is

Ai = T(wi® Iq) + Uu i = 1,2,... ,ra, (1.5)

where Γ is a p X qs matrix of unknown fixed parameters, ® is the Kronecker

product, and the U^s are p X q independent random matrices with E{U{} = 0

and Var{vecL/;} = Φ. Here, we assumed the covariance matrix Φ is common

for all i = 1,2, , n. The single population or common mean case is obtained

by setting s = 1 and W{ = 1 .

A special balanced case of model (1.4), with no Bxij term, r̂  = r for all i,

and Zij free of i, has been discussed in the literature. See Reinsel (1982, 1984).

Such a balanced model is applicable in a repeated measure situation where the

observations are taken in a complete rectangular panel design and the explana-

tory variables are common for all individuals. This balanced structure allows

some exact inference procedures. Here we consider the general unbalanced

model (1.4). The number of replicates r^'s differ over individuals, as T{ may

be the size of progeny of a sire or may be the number of unbalanced repeated

measures. The ajt j 's and Zj/s are allowed to be any explanatory variables, as

all variables may be measured at each time period in a panel or longitudinal

study. For our general model, exact small sample inference procedures are not

possible, and we need to appeal to some asymptotic approximation.

To express the model given by (1.4) and (1.5) in a concise form, let N =

= (»11,Ϊ/12, ?ί/lr1,3/21,J/22, ,3/nr n ), P X N, (1.6a)

Xi = (Xil,Xi2,-' ,Xiri), kXTi, (1.6b)

X = (Xx,X2,...,Xn), kxN, (1.6c)

E = OEx,^,...,^), pxN,
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Zi = (zn,zi2, - ,ziri), qxri,

π

(Zx 0 ••• 0 \

0 Zi ••• 0
nq x N, (1.6g)

V 0 0 Z n /

A = (Ai,A2, ,An), pxi ί? . (1.6h)

Then, a single equation for all N observations can be written as

Y = BX + AZ + E. (1.7)

For identification, assume that (X1, Z') is of full column rank. The model for

Ai given by (1.5) can be incorporated into (1.7) to obtain

^ E, (1.8)

where

Throughout the rest of this paper, our general multivariate mixed effect re-

peated measure model specified by (1.4) and (1.5), or alternatively (1.7) or

(1.8), is assumed to hold with the associated assumptions mentioned in this

section.

2. Discussion. A basic approach for inferences on the fixed regression

coefficient B and the mean parameter Γ for the random coefficient is an ex-

tension of that used for the special cases (1.1) and (1.3) . The form (1.8) of

our model can be transformed into a univariate linear model

vec Y = [(X', Z*') ® I,] ( ^ * ) + η, (2.1)

where

η= (Zf ® Ip)vecU + vecE,

Var{τ7}= Ω(Φ,Σ)

= block diag {(Z[ ® Ip) Φ (Zx ® J p ),

• , ( z ; ® j p ) Φ (zn ® ip)} + iN ® Σ .

Given some estimates Φ and Σ, the parameters B and Γ can be estimated

by applying the generalized least squares to (2.1) with the estimated weight
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Ω~1(Φ,Σ), although the actual computation would use some simplification.
(This form holds, even when all parameters are estimated jointly.) Another
problem of practical interest is prediction of a linear function of the element
of B and A, i.e., of i?,Γ, and U. A predictor can be obtained by evaluating
the best linear unbiased predictor given Φ and Σ at some estimators Φ and
Σ. To make inferences, an approximate covariance matrix of the estimator
or the prediction error needs to be estimated. A frequently used estimated
covariance matrix is the sum of the covariance matrix for the case with known
Φ and Σ and an additional term representing variability due to estimation of
Φ and Σ, both evaluated at the parameter estimates. Expressions for such
covariance matrices have been derived for some special cases. See, e.g., Kacker
and Harville (1984), Fuller and Harter (1987), and Prasad and Rao (1986).

An important issue associated with our general model (1.8) is inference for
the structure of the random effect Γ/i's. Each U{ contains pq random variables
corresponding to p response variables and q explanatory variables. Some of the
p response variables may be constant over the individuals. More generally, the
individual differences of the p variables may be explained by a smaller number
of underlying random effect variables. On the other hand, the model assumes
that the coefficient B for the k explanatory variables is fixed but A; 's for the
q explanatory variables are random. There is a problem of determining which
variables are assumed to have random coefficients. Thus, a model of the form
(1.7) postulated based on subject matter knowledge and experience still needs
to allow possible structure on the random coefficient covariance matrix Φ, or
in general, a singular Φ. Such a possibility also has an effect on estimation
of a fixed parameter and prediction of a random quantity mentioned earlier.
For the estimated generalized least squares estimation of a fixed parameter,
the effect of ignoring the possibility of a singular or structured Φ may not be
large, provided that an estimator Φ has reasonable properties even under a
singular Φ condition and some measure of variability in Φ is available. On
the other hand, prediction of a quantity involving Ui may not be carried out
properly without knowing the structure and singularity of f/z . Inference for
the structure of the random effect has not attracted much attention in the
literature covering special cases of our general model. Development of a test
procedure for such a purpose is the topic of the next section.

3. Testing the Structure of Random Coefficients. As described in
the previous section, inference concerning possible singularity of the random
coefficient covariance matrix Φ is an integral part of analyzing models of the
form (1.7). The assertion that some linear combinations of the q explanatory
variables have coefficients with no random individual variability can be ex-
pressed in a hypotheses that, for a q\ X q given matrix L\ of rank qι,UiL[ is
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constant, i.e.,

(3.1)

The possibility that the individual differences for the p response variables may

be explained by a certain subset of the underlying random effect variables can

be formulated by hypothesizing that, for a pi x p given matrix L2 of rank

pi, L2Ui is constant, i.e.,

(Iq®L2)Φ(Iq®L'2) = O. (3.2)

Combining (3.1) and (3.2), we consider testing a hypothesis of the form

(Xi ® L2) Φ (L[ ® ££) = 0. (3.3)

Because such testing is performed during the model building stage of the

analysis, we develop a relatively quick test procedure not involving intensive

iterative computation.

Except for very special cases, an exact small sample test is unavailable.

We develop a large sample test, assuming that the number of individuals n

is large while the numbers of replicates r; 's may not be. We also assume

that the within-individual error E^s are normally distributed, but that the

random coefficient A 's can have any distribution. Our technical regularity

assumptions are:

(i) The Ei's are normally distributed,

(ii) As n —• oo,

i

±Σ«*"Π =0(1),
n i=i /

= ) n \\ZiZl\\ = 0(1),

max \\(ZiZ<)-ι\\ = 0(1),
ί=l,2, ,n

=0(1),
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where r0 > q is a constant, || || is any matrix norm, and

Thus, our assumptions correspond to cases with a large number n of individ-
uals and with the number T{ of replicates being small to moderate and being
unbalanced. In the growth curve application, the elements of Zij are polyno-
mials in a time variable. Assumption (ii) applies to this case without worrying
about different rates of increase of polynomials, if the rz 's are not very large.

Our test procedure is based on the following fitting constants technique.
Consider applying the ordinary least squares to model (1.7), behaving as if
A 's are fixed. Then, we obtain

(B,A) = (B,Au...,An) = Y(X',Z') \(X)(X',Z')] ,
[KZJ J (3.4)

where d = N - k - nq. It follows that under the model

At = Ai + [Ei - (B - B)Xi]Z'i(ZiZl)-\

Using model (1.5) for A{ and rearranging the elements of p X qs Γ in a pq x s
matrix Γo, we can write

vec Ai = Γ0™z + vec U{ + vec { [E{ - (B - B)X{] Z[{ZiZ\yλ}. (3.6)

The idea behind our test procedure is to form a quadratic form in vec A;, i =
1,2, ••• ,ra, which does not depend on the U^s under the null (3.3), and to
compare it to some function of Σ. We remove the fixed mean part ΓQ W{ by
estimating Γo with a simple least squares estimator

>ri • (3.7)

For this Γo and B defined in (3.4), we have the following lemma.

LEMMA l. As n —>• <x>,

B - B = Op(n-χ/2),

f o - Γo = 0p(n
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PROOF. The result for B follows from assumption (ii), because E{B}

B and

Var{vecl?} = y ^ [ \ 1

For Γo, we can write

vec (f o - Γo) ί ] Γ Wiw[ J = R1 + R2 + Λ3vec (B - B),

where

Assumption (ii) and the Cauchy-Schwarz inequality can be used to show that
Var {Ri} = O(n), i = 1,2, and R3 = O(n). Thus, the result for f0 follows
from that for B and assumption (ii). |

It follows from (3.6) and Lemma 1 that vec A; — TQWI is approximately
equal to vec U{ + e ,̂ where

e; = [(ZiZ'^Zi ® Ip]vecEi ~ ΛΓ(O,(ZiZ?)"1 ® Σ).

To construct a quantity free of Uι under the null (3.3), let

hi = (Lli ® L2) (vec Ai -f0Wi),

where ΓQ is defined in (3.7), and

Under (3.3), (Zi®Z/2) v^c Ui = 0 with probability one, and ft^ does not contain
the term Ui (except in part of f 0 ) . If (3.3) is not true, hi has additional
variability due to the Ui term. The normalizing transformation in L\{ was
chosen so that

e? = (L*u ® L2)ei - N(0,Iqi ® Σ*), (3.9)
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where Σ* = J^ΣZ^ This motivates the use of H in (3.8) for our testing. We

now derive an asymptotic expansion of H under the null (3.3).

LEMMA 2. Under (3.3), as n -> oo,

wAere e* is given in (3.9).

PROOF. Under (3.3), we can write, with probability one,

hi = ε*i+(Lli®L2)(To-To)wi + [Iqi®L2(B-B)]vec[XiZl(ZiZ^

The result follows by using assumption (ii) and Lemma 1 to evaluate the terms

inEΓ=i^^ I

Hence, the piqi X pιqι,H is approximately a Wishart matrix with co-

variance matrix Iqi ® Σ* when n is large and (3.3) holds. If (3.3) does not

hold, H includes additional variability due to Ui. We compare H to another

PiQi X PiQi matrix Iqi ® 5, where 5 = l ^ Σ J ^ and Σ is defined in (3.4). We

consider a test statistic which is a function of the roots of a determinantal

equation

\H-λ(Iqi® 5 ) | = 0 . (3.10)

All the roots of (3.10) approach one as n —» oo under the null (3.3), and tend

to be larger under the alternative. Except for the Kronecker product form,

the equation (3.10) is similar to that appearing in multivariate regression. See

Anderson (1984). Based on this similarity, various functions of the roots can be

proposed. We consider a function which provides a relatively straightforward

derivation of the approximate null distribution. As an analogy to the Lawley-

Hotelling statistic in multivariate regression, we consider the sum of the p\q\

roots of (3.10), which is also equal to

T = tτ{H(Iq,®S-1)}. (3.11)

If we let Hu denote the /-th p\ x p\ diagonal block of H in dividing H into

ql blocks of size p\ X p\, then we can write

! (3.12)

To derive the limiting null distribution of T, we rewrite T as

Γ = t r { i ί*5*- 1 } , (3.13)



92 ON MULTIVARIATE MIXED MODEL ANALYSIS

where

We next present the limiting distribution of H* and 5*. Note that the inde-

pendence of if* and S* follows from the independence of A and Σ in (3.4).

LEMMA 3. Under (3.3), as n -> oo

l rr* T—H - IPl

where the distinct elements of pi x p\ symmetric F and G are independent

normal random variables with mean zero and variance 2 for diagonal and 1

for off-diagonal elements, and —• denotes the convergence in distribution.

PROOF. The result for 5* follows, because dS* - WPl(IPl,d) by (3.5),

and because d = N-k-nq-*ooa,sn-+ooby assumption (ii). By Lemma

2 and (3.9),

H* = -H° + Op(n-1), (3.14)
To

where H° ~ WPl(IPl,qιή). Thus, the result follows from the standard prop-

erty of a Wishart matrix. |

The following theorem gives the limiting null distribution of T as n -* oo.

THEOREM. Under (3.3), as n -> oo

-^ N{0,2Pl[q^+(ro-q)-1]),

where ro is defined in assumption (ii).

PROOF. By assumption (ii), as n —• oo,

• r o - ? . (3.15)
To

Thus, by Lemma 3, 5* = IPl + Opίra"1/2), and

= t r - V^(S* - JP 1)}
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where F and G are as given in Lemma 3. Hence, the result follows. |

Using this theorem and (3.15), we can construct an asymptotic test of the
null hypothesis (3.3) when n is large. We reject (3.3) if

exceeds a standard normal percentile.

Based on the form (3.13) of T and the expansion (3.14), one might argue
for the use of the percentiles of the Lawley-Hotelling trace distribution with
dimension p\ and degrees of freedom q\n and d as approximate cut-off points
for Γ. Such an argument might make sense only if n is large. But, the
percentiles of the Lawley-Hotelling distribution have been tabulated only for
small q\n, e.g., q\n < 15 (in multivariate regression this degree of freedom
is typically small), and are unavailable for cases of our interest. One might
also consider using the existing χ2 or F approximation to the Lawley-Hotelling
distribution. See, e.g., Anderson (1984). However, such an approximation was
derived under the assumption that the first of the two degrees of freedom is
fixed and the second tends to infinity (as in multivariate regression). For our
problem, both q\n and d tend to infinity as n —• oo, and such an approximation
does not apply. Of course, the use of the Lawley-Hotelling distribution based
on the expansion (3.14) is not quite valid, because (3.14) is an expansion as
n —* oo. The proper limiting distribution of T as n —• oo was derived in the
above theorem. For the general multivariate mixed effect model (1.7) with
large n, we recommend the use of the asymptotic test procedure (3.16) for
testing the random effect structure of type (3.3).
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