CHAPTER 6
GOODNESS-OF-FIT TESTS FOR THE ERRORS

6.1. INTRODUCTION
Consider the model (1.1.1) and the goodness—of—fit hypothesis
(1) Hy: Fhi=Fy, Fy aknown continuous d.f..

This is a classical problem yet not much is readily available in literature.
Observe that even if F, is known, having an unknown # in the model poses
a problem in constructing tests of H, that would be implementable, at least
asymptotically.

One test of Hy could be based on D; of (1.3.3). This test statistic is
suggested by looking at the estimated residuals and mimicking the one
sample location model technique. In general, its large sample distribution
depends on the design matrix. In addition, it does not reduce to the Kiefer
1959) tests of goodness—of—fit in the k—sample location problem when
1.1.1) is reduced to this model. The test statistics that overcome these
deficiencies are those that are based on the w.e.p.’s V of (1.1.2). For
example, the two candidates that will be considered in this chapter are

(2) D, == supy |Wo(y, f)|,  Ds:=supy [W(y, A,
where f is an estimator of f and,
3) Wiy, t) = (X X) V(5 ) - X 1Fy(y)}, yeR, te R,

1’ = (1, cesey l)lxn.

Other classes of tests are based on K)%(ﬁx) and inf{K(t), teRP}, where K¢
is equals to the Ky of (1.3.2) with W replaced by W in there.

Section 6.2a discusses the asymptotic null distributions (a.n.d.’s) of the
supremum distance test statistics for H, when f is estimated arbitrarily
and asymptotically efficiently. Also discussed in this section are some
asymptotically distribution free (a.d.f.) tests for H,. Some comments about
the asymptotic power of these tests appear at the end of this section. Section

6.2b discusses a smooth bootstrap distribution of Ds.

Analogous results for tests of Hy based on Lj-distances involving the
ordinary and weighted empirical processes appear in Section 6.3.

A closely related problem to H, 1is that of testing the composite
hypothesis
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(4) Hy: Fui(-) = Fo(+/0), 0>0, Fp aknownd.f.

Modifications of various tests of H, and their asymptotic null
distributions are discussed in Section 6.4.

Another problem of interest is to test the composite hypothesis of
symmetry of the errors:

(5) Hg: Fpi=F, 1<i<n,n>1; F ad.f symmetric around 0.

This is a more general hypothesis than H,. In some situations it may be of
interest to test Hs before testing, say, that the errors are normally
distributed. Rejection of Hg would a priori exclude any possibility of
normality of the errors. A test of Hg could be based on

(6) Dys := supy |Wi(y, A,

where

(7) Wi, ) =072 E1(Yai ¢y + x0at) ~ (Vi < y — xait) ]
:= Hy(y, t) =1 + Hy(-y, t), y€R, y € RP,

with Hp asin (1.2.1). Other candidates are

(8) Dys := supy |[W'(y, A)I,

Dss = supy [W*(y, B)ll = supy[V*' (3, H)(X X)*V*(y, B2,
where
(9) W= AV, V= (VY ..., V), with

n
Vi(y, 8) = Vi(y, ) = Exaij + Vi(-3, 1), 1<j<p, yeR, teR’.

Yet other tests can be obtained by considering various Lj-norms involving

W1 and W'. The asymptotic null distribution of all of these test statistics
is given in Section 6.5.

It will be observed that the tests based on the vectors W0 and W* of
w.e.p.’s will have asymptotic distributions similar to their counterparts in
the k—sample location models. Consequently these tests can use, at least for
the large samples, the null distribution tables that are available for such
problems. For the sake of the completeness some of these table are
reproduced in the following sections.
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6.2. THE SUPREMUM DISTANCE TESTS

6.2a. Asymptotic Null Distributions.

To begin with, define, for 0 <t < 1,5 € RP,

1) Wi, 8) == nY2H(Fol(t), s) —t},  WI(t, 8) := WO(Fo(t), s).

Let
(2) Wit) := Wit, B),  W(t) := W(t, B), 0¢t<L.

Clearly, if F, is continuous then the distribution of f)j, j=1,2,3,is the
same as that of ||W1||m, sup{|W(t)|; 0 <t <1}, sup{||W(t)]l; 0 <t <1},

respectively. Consequently, from Corollaries 2.3.3 and 2.3.5 one readil
obtains the following Theorem 6.2a.1. Recall the conditions (Fo1) and (NX
from Corollary 2.3.1 and just after Corollary 2.3.2.

Theorem 6.2a.1. Suppose that the model (1.1.1) and H, hold. In

addition, assume that X and F, satisfy (NX) and (Fol), and that B
satisfies

(3) IA™{(B - B)ll = 0p(1).

Then )

@)  sup|Wi(t, B) — {Wi(t, B) + qo(t) 0/ ToA- A7 (B~ B)}| = op(1),
(5) supl|W(t, B) — {W(t, B) + ao(t)- A" (B— A} = op(1),

where qq := fo(FEI) and the supremum is over 0 <t < 1. a

Write W (t), W(t) for W(t, f), W(t, f), respectively. The following
corollary gives the weak limits of Wy and W under H.

Lemma 6.2a2.2. Suppose that the model (1.1.1) and Hy hold. Then

(M W, 3 B, B a Brownian bridge in ([0, 1].
In addition, if X satisfies (NX), then,
(8) W 3 B':=(By, ..., Bp)

where By, ...., By are independent Brownian bridges in C[0, 1].
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Proof. The result (7) is well known or may be deduced from Corollary
2.2a.2. The same corollary implies (8). To see this, rewrite

(9) W(t) = A 3 xaifI(ens ¢ Fol(t)) — t} = AX aq(t),
Whel‘e an(t) = (anl(t), cesey ann(t))', With
ani(t) := {I(eni < Fol(t)) — t}, 1¢i¢m, 0¢t< L.
Clearly, under H,,
(10) EW=0, Cov(W(s), W(t)) = (sAt —st)Ixp, 0<s, t<1.

Now apply Corollary 2.2a.2 p times, jth time to the w.e.p. with the weights
and r.v.’s given as in (11) below, 1 < j < p, to conclude (8).

(11) weights d(;) = the jth column of XA, ther.v.’s Xpj = eni, and F = F,
1<j<p,

See (2.3.33) and (2.3.34) for ensuring the applicability of Corollary 2.2a.2 to
this case. o

Remark 6.2a.1. From (5) it follows that if A is chosen so that the
finite dimensional asymptotic distributions of {W(t) + qo(t) A'I(Z‘) - B);

0<t<1} do not depend on the design matrix then the a.n.d.’s of ﬁj, i=2,3,
will also not depend on the design matrix. The classes of estimators that
satisfy this requirment include M-, R- and m.d. estimators. Consequently,

in these cases, the a.n.d.’s of ﬁj, j =2, 3, are design free.
On the other hand, from (4), the a.n.d. of D; depends on the design

matrix through nt/ 2i;A. Of course, if X, equals to zero, then this
distribution is free from F, and the design matrix. o

Remark 6.2a.2. The effect of estimating the parameter f efficiently.
To describe this, assume that

(12) F, has an a.c. density f, with a.e. derivative f, satisfying
0< Iy:= f(fo/fo)2 dFy < w.

Define
(13) Sni := — fo(eni)/fo(eni), 1<i<m; 8n := (Sni, -+, Snn)’,
and assume that the estimator ﬂ satisfies

(14) A Y B—-P) = I AX s + 0p(1).
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Then, the approximating processes in (4) and (5), respectively, become

(15) Wi(t) = Wi(t) + qo(t)-n'/* ToA- 15" AX sy,

W(t) := W(t) + qo(t)- Io" AX sp, 0<t<l
Using the independence of the errors, one directly obtains
(16) EWy(s) Wi(t) = {s(1~t) — nxa(X X) '%q qo(s)ae(t) o'},

EW(s) W(t) = {s(1~t) — qo(s)ao(t) o'} Ipxp, 0 <s<tCIL.

The calculations in (16) use the facts that Esp = 0, Ean(t)sn’ = qo(t)Inxn.

From (16), Theorem 2.2a.1(i) applied to the quantities given in (11),
and the uniform continuity of qo, which is implied by (12), it readily follows
that W » Z:=(Zy, ..., Zp)’, where Zj, ..., Z, are continuous independent
Gaussian processes, each having the covariance function

(17) o(s, t) := s(1—t) — qo(s)qo(t) I, 0<s<t <l
Consequently,
(18) D, » sup{|Z(t)|; 0<t<1}, Ds » sup{||Z(t)|; 0<t<1}.

This shows that the a.n.d.’s of ﬁj, j = 2, 3, are design free when an
asymptotically efficient estimator of A is used in constructing the residuals

while the same can not be said about D.
Moreover, recall, say from Durbin (1975), that when testing for H, in
the one sample location model, the Gaussian process Z; with the covariance

function p appears as the limiting process for the analogue of D;. Note also

that in this case, D; = D, = D3. However, it is the test based on D3 that
provides the right extension of the one sample Kolmogorov goodness—of—fit
test to the linear regression model (1.1.1) for testing H, in the sense that it
includes the k—sample goodness—of—fit Kolmogorov type test of Kiefer
(1959). That is, if we specialize (1.1.1) to the k—sample location model, then

]53 reduces to the TI:I of Section 2 of Kiefer modulo the fact that we have

to estimate f.

The distribution of sup{|Z(t)|; 0<t<1} has been studied by Durbin
(1976) when F, equals N(0, 1) and some other distributions. Consequently,
one can use these results together with the independence of Zj, ..., Zp to

implement the tests based on 132, Dj; in a routine fashion. 0
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Remark 6.22.3. Asymptotically distribution free (a.d.f.) tests. Here we
shall construct estimators of g such that the above tests become a.d.f. for
testing Hy. To that effect, write X, and A, for X and A to emphasize
their dependence on n. Recall that n is the number of rows in X;. Let m
= my be a sequence of positive integers, m, < n. Let X, be mjxp matrix
obtained from some m, rows of X;. A way to choose m, and these rows
will be discussed later on. Relable the rows of X, so that its first m, rows
are the rows of Xy and let {eni*, 1<i<mp}, {Yni*; 1<i<mj} denote the
corresponding errors and observations, respectively. Define
(19) sni* := — fo(eni*)/fo(eni*), 1 <i<my;  8o* := (8ni*, 1<i<my),

T = I' AuXp 80*, An = (XoXa) V2
Observe that under (12),
(20) ET, = 0, EToTn = Iy Ipxp.
Consider the assumption
(21) mp <n, mp — o such that
(Xn Xa)/*(Xa Xa) ' (Xn X0)'/? — 2.
The assumptions (21) and (NX) together imply

(22) l?ai?m x.ni'AmAm Xnpi = 0(1).
Consequently one obtains, with the aid of the Cramer—Wold LF—CLT, that
(23) Ta — N(O, I pxp).

Now use {(x,',i, Yai*); 1<i<my} to construct an estimator B of f
such that

(24) n'(Bn— ) = Tu + 0p(1).

Note that, by (21) and (23), ||A;1Am||m = O(1) and, hence
(25) Al (Ba — B) = AnAnTa + oy(1).
Therefore it follows that By satisfies (3). Define

K*(t) := W(t) + AntAgTa qolt), 0<t <l
From (5) and (25) it now readily follows that
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A _K* —
(26) sup, W, )~ K*O)l| = o5(1)
We shall now show that
(27) K* 3 B, with B asin (8).

First, consider the covariance function of K*. By the independence of the
errors and by (12) one obtains that

E{I(eni < Fo'(t)) — tHo(eai*)/folen*) = 0, 4§, 1€i<n, 1< < mp,
= qo(t), 1<i=j<my, OSHCL
Use this and direct calculations to obtain that
(28) EK*(s)K*(t) = s(1-t)Ipxp
15" q0(s)a0(t) 2psp~(XaXa) /*(XaXa) "(XnXa)'/?),
0<s<t<l.
Thus (21) implies that
(29) EK*(s)K*(t) — s(1-t)Ipxp, VOo<s<t<l.
Because of (8) and the uniform continuity of qg, the relative compactness of

the sequence {K*} is a priori established, thereby completing the proof of
(27). Consequently, we obtain the followmg

Corollary 6.2a.1. Under (1.1.1), H,, (NX), (12), (21) and (24),
) _ . 12
Dz T4 o28R: 5%, | Bi(8)1, Din d oiugl{leBJ(t)}

where ﬁjm stand for the ﬁj with B = B, j=2,3. o

It thus follows, from the independence of the Brownian bridges {B;, 1
<j<p} and Theorem V.3.6.1 of Hajek and Sidak (1967), that the test that

rejects Hy, when Dgn> d is of the asymptotic size a, provided d is
determined from the relation

(30) 237 (-l)j*1e'212d2 =1-(1-a)'/.

Let stand for the the limiting r.v. of D3m The distribution of Tp
has been tagulated by Kiefer (1959) for 1 < p < 5. Delong (1983) has also
computed these tables for 1 < p < 7. The following table is obtained from
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Kiefer for 1 < p < 5 and Delong for p = 6, 7, for the sake of completeness.
The last place digit is rounded from their entries.

.001 1.9495 2.1516 2.3030 2.4301 2.5422 2.6437 2.7373

.005 1.7308 1.9417 2.0977 2.2280 2.3424 2.445 2.540

.01 1.6276 1.8427 2.0009 2.1326 2.2480 2.3525 2.4525

.02 1.5174 1.7370 1.8974 2.0305 2.1470 2.252 2.350

.025 1.480 1.702 1.8625 1.9961 2.116 2217 2.315

.05 1.3581 1.5838 1.7473 1.8823 2.0001 2.1053 2.2031

.10 1.2239 1.4540 1.6196 1.7559 1.8746 1.981 2.0788

15 1.1380 1.3703 1.5370 1.6740 1.7930 1.900 1.9977

.20 1.0728 1.3061 1.4734 1.6107 1.730 1.8352 1.9349

.25 1.0192 1.2530 1.4205 1.5579 1.6773 1.785 1.8825

Table 1: Values d such that P(Tp > d) ~ a for 1< p < 7. Obtained from
Kiefer (1959) & Delong (personal communication).

Note that for p =1, Day and Dsy are the same tests and d of (30) is the
same as the d of column 1 of Table 1 for various values of a.
The entries in Table 1 can be used to get the asymptotic critical level

of Dan for 1¢ p < 7. Thus for p =5, a = .05, the test that rejects H

when ]33.,, > 2.0001 is of the asymptotic size .05, no matter what F, is
within the class of d.f.’s satisfying (12).

Next, to make D,-test a.df, let r =1, be a sequence of positive
integers, rp < n, r, — o. Let X; denote the ryxp matrix obtain from
some r, rows of X,. Relable the rows of X; so that the first r, rows are

in X; and let Y3, e} denote the corresponding Yi’s and ej’s. Let
A= (X;Xr)—l/ 2 Assume that
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(31) () |JnY%.Ad = O(1), and
(i)  |0Xn(X;Xr) X0 — 2raXn(XeXs) x| = o(1).

Let B. be an estimator of A based on {(x;,i, Yni), 1<i< 1y} such that
(32) A B—B) = Te + 0p(1), Tr:= I AX 82

where s5; = —f(ef;)/f(e3;), 1<i< o, and 82 =(s3;, 1<i<1a) . Define

Ki(t) := Wi(t) + n/%x0A;- Toqo(t), 0¢t <l

Similar to (28), we obtain, for s < t, that

* * - g ’ - —_— —_—
EK 1(s)K 1(t) = s(1 — t) — Io qo(s)qo(t){Xa(X:Xr) }[n%n — 2r:%:]}
Argue as for Corollary 6.2a.1 to conclude
Corollary 6.2a.2. Under (1.1.1), Ho, (NX), (12), (31) and (32),
(33) Dir — sup ., |B()I,

where ﬁlr 18 the ]31 with ﬂ:ﬂr o
Remark 6.2a.4. Assumptions (21) and (31). To begin with note that if

(34) lim, n_l(X;,Xn) exists and is positive definite,
then (21) is equivalent to

1

— 2.

(35) nmy,

If, in addition to (34), one also assumes

(36) lim, x, exists and is finite,
then (31) is equivalent to

1

— 2.

(37) nry

There are many designs that satisfy (34) and (36). These include the one
way classification, randomized block and the factorial designs, among others.
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The choice of m, and r, rows is, of course, crucial, and obviously,
depends on the design matrix. In the one way classification design with p
treatments, n; observations from the jth treatment, it is recommended to
choose the first myj = [n;j/2] observations from the jth treatment, 1 < j < p,
to estimate f. Here my = mpq + ... + myp = [n/2]. One chooses 1y =
myj, 1< j<p, In= 31y = [n/2]. The choice of m, and r, is made
similarly in the randomized block design and other similar designs. If one
had several replications of a design, where the design matrix satisfies (34)
and (36), then one could use the first half of the replications to estimate A
and all replications to carry out the test.

Thus, in those cases where designs satisfy (34) and (36), the above
construction of the a.d.f. tests is similar to the half sample technique in the
one sample problem as found in Rao (1972) or Durbin (1976).

Of course there are designs of interest where (34) and (36) do not hold.

An example is p = 1, xpj =i. Here, XXy = O(na). If one decides to
choose the first mp(ry) xi’s, then (21) and (31) are equivalent to requiring
(mn/n)3 — 1/2 and (rn/n)2 — 1/2. Thus, here Dyy or D3z would use
79% of the observations to estimate [ while Dy would use 71%. On the
other hand, if one decides to use the last my(rn) xi’s, then 152, D; will use

the last 21% observations while D; will use the last 29% observations to
estimate f. Of course all of these tests would be based on the entire sample.
In general, to avoid the above kind of problem, one may wish to use,
from the practical point of view, some other characteristics of the design
matrix in deciding which my, r, rows to choose. One criterion to use ma
be to choose those mp(ry) rows that will approximately maximize (mn/n{

((rn/n)) subject to (21) ((31)). o

Remark 6.2a.5. Construction of Pu and B.. If Fy is a d.f for which
the maximum likelihood estimator (m.l.e.) of A has a limiting distribution
under (NX) and (12) then one should use this estimator based on 1, (mp)

observations {(x’i, Y;)} for Dy (D; or Ds). For example, if Fy is the
N(0,1) d.f., then the obvious choice for B and ﬂm are the least squares
estimators:

Boi= (XeXo) XYY Bai= (XoXa) XaYa*

Of course there are many d.f.’s F, that satisfy the above conditions,
but for which the computation of m.l.e. is not easy. One way to proceed in
such cases is to use one step linear approximation. To make this precise, let

Pn be an estimator of f based on {(x;,i, Yni), 1<i<my} such that

(38) An (Ba— ) = Op(1).
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Define
(39) o(y) := —Lo(y)/1o(y), yER;
Sni := Yo(Yni — Xniba), 1<i<my  8g:= (Sni, 1Si<my)’;
Bu := Pu + Io AnAn Xusn;
V;(Y, t) = Amigil: Xni I(Yni $y + X;it), yER, t eRP.
Then

’ * -
AnXyBn = f"/’o(Y) Vm(dy, ﬁm)
From this and (2.3.37), applied to {(x,',i, Yni), 1 <i< my}, one readily
obtains
Corollary 6.2a.3. Assume that (1.1.1) and Hy, hold. In addition,
assume that ¥, is strictly increasing, satisfies (12) and is such that ¥, s a
finite linear combination of nondecreasing bounded functions, X and {Bu}
satisfy (NX) and (38). Then {Bu} of (39) satisfies (24) for any sequence
my —w, G5 1 — w.
Proof. Clearly,
A (Ba—B) = A3 (Ba— ) + I AuXuBa.
But, integration by parts and (2.3.37) yield
’ * - *
AnXo{8n — 8n} = f Po(y){Vu(dy, B) — Va(dy, £)}
%* - *
=~ {Va(y, B) = Va(y, )} d¥a(y)
_1 -
= —Aun (fu — ) ffo(Y)d¢o(Y) + 0p(1)
= —Az'(Ba — A)Io + 0(1). o
The above result is useful, e.g., when F, is logistic, Cauchy or double
exponential. In the first case m.l.e. is not easy to compute but F, has finite

second moment. So take By to be the l.s.e. and then use (39) to obtain the

final estimator to be used for testing. In the case of Cauchy, fu may be
chosen to be an R-estimator.

Clearly, there is an analogue of the above corollary involving {B:}
that would satisfy (31). o
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6.2b. Bootstrap Distributions

In this subsection we shall obtain a weak convergence result about a
bootstrapped w.e.p.’s and then apply this to yield bootstrap distributions of
some of the above tests.

Let (1.1.1) with epj=e; and Hp hold. Let E, and P, denote the
expectation and probability, respectively, under these assumptions. 1In
addition, throughout this section we shall assume that (Fol), (F¢2) and (NX)
hold.

Recall the definition of W, W from (6.2a.1), (6.22.2). Let B be an
M-estimators of f corresponding to a bounded nondecreasing right
continuous score function ¢ such that

(1) f¢dFo=o, ffod¢>0.
Upon specializing (4.2a.8) to the current setup one readily obtains
(2) A7 (B— B) = -k %: Axni Y(e3) + 0p(1), (Po).

where & := 1/[f, d¢.
Let the approximating process obtained from (6.2a.5) and (2) be

denoted by W, i.e.,

(3) W(t) == 5 Axai{I(e; < Fo'(t)) - t - s qot) ¥es)},  0<t<l.
Define
(4) o? := Egy2(ey),
golt) := Eofl(es < Fo'(t)) - t} %(er)
= [I(x < F'(t)) 9(x) dFo(x), 0<t<l,

and,for 0<t<u<l,

(8)  polt, u) := t(1-u) - & [qo(t)go(u) + go(t)qo(w)] + K2qo(t)ao(u)o?.
Note that

(6) Co(t, u) == Eo{W(t)W(u) } = po(t, )lpzp, 0<t<ugl.

Let Go := (Got, ---, Gop)’ be a p-vector of independent Gaussian processes
each having the covariance function po. Thus, EGy(t)Go(u)’ = Co(t, u).

Since po is continuous, Goe{C[0, 1]}*. Moreover, from Corollary 2.2a.1
applied p time, jth time to the entities Xp; = €5, Fni = Fo and dnj = (i,j)t2
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entry of AX, 1<j<p, 1<i<n, and from the uniform continuity of qo it readily
follows that

(7 W 3 G, in [{D[0, 1]}, <].

Now, let f,, be a density estimator based on {€ni :==Yn; - x;iﬁ; 1<i<n}
a %* ~
and Fp be the corresponding d.f.. Let {eni; 1<i<n} represent i.i.d. Fy
r.v.’s, i.e., {e:i; 1<i<n} is a random sample from the population f?n.

Because Iy is continuous, the resampling procedures based on it are usually
called smooth bootstrap procedures. Let

(8) Yoi = xuif+ eni, 1<i<n.
Define the bootstrap estimator ﬂ* to be a solution s€RP of the equation

* ’ ~ x*
(9) zi AXni {"p(Yni - XniS) - En"p(enl)} = 0.

where E, is the expectation under Fn. Let P, denote the the bootstrap
probability under F,. Finally, define

(10) S*(t, u) == i Axni I(eni < F3l(t) + xniAu), 0<t<1, uelRP,
and the vector of bootstrap w.e.p.’s

(11) WH(t) := B Axni {I(Yai - xaif < Fal(t)) -t},  0<t<l.
We also need

(12) W(t) := 5 Axni{I(en; < Fal(t)) - t}, 0<t<l.

Our goal is to show that W* converges weakly to G in [{D[0, 1]}?, <], a.s..
Here a.s. refers to almost all error sequences {e;; i > 1}. We in fact have the
following

Theorem 6.2b.1. In addition to (1.1.1), Hy, (Fol), (Fo2), (NX) and (1),

assume that ¢ is a bounded nondecreasing right continuous score function
and that the following hold.

(13) For almost all error sequences {e;; i>1}, fn(x)>0 for almost all xeR, n>1.
(14) Ia-foll, — 0, as,, (Po).

Then,V 0 < B < o,

(15) sup [|S*(t, u) — 8*(t, 0) — ufa(Fal(t)] = 0p(1), (Pr), as.,
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where the supremum is over 0 <t <1, ||u| < B.
Moreover, for almost all error sequences {es; i > 1},

(16) A" - B) = ~n %5 Axui{¥(ens) - Entfent)} + 0p(1), (Pa),
and
(17) W* 2 gO in [{D[O, 1]}1),4/]’

where ky:=1 /f £, dy.
Proof. Fix an error sequences {ej; i > 1} for which
(14*) fa(x) > 0, for almost all xeR, and ||{, - foll  — 0.

The following arguments are carried out conditional on this sequence.
Observe that S*(t, u) is a p-vector of w.e.p.’s Sq(t, u) of (2.3.1)
whose jth component has various underlying entities as follows:

* .
(18) Xni = €ni, Fni="Fn, Cni = AXpi, dni = 3'(j)xni, 1<i<n

where, as usual, a(j, = jth column of A, 1< j<p.

Thus, (15) follows from p applications of Theorem 2.3.1, jth time
applied to the above entities, provided we ensure the validity of the
assumptions of that theorem. But, f; uniformly continuous and (14) readily

imply that {fn, n > 1} satisfies (2.3.3a,b). In view of (2.3.33), (2.3.34) and
(NX), it follows that all other assumptions of Theorem 2.3.1 are satisfied.
Hence, (15) follows from (2.3.6). In view of (13) we also obtain, from (2.3.7),

(19) sup [|89%(x, u) — 8%%(x, 0) — uln(x)|| = 0p(1), (Pu),

where 8%(x, u) = 8%(Fy(x), u) and where the supremum is over x€R, ||ul|<B.
Now, (16) follows from (19) in precisely the same fashion as does (4.2a.8)
from (2.3.7).

From (11), (15), (16) and (31) below, we readily obtain that, under Py,

(20)  W(t) = 31 Axai{l(eni € Fal(t)) - t- Aa a(t)[¥(ens) - Batead]}
+0p(1),
where §n := In(Fab).
In analogy to (4) and (5), let gn, pn stand for go, po after Fo is
replaced by Fn in these entities. Thus

(21) £a(t) := En{l(ens < F2'()) - t} ¥lent)
= [1(x < F21(t)) ¥(x) dFu(x), 0¢t<l,
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and,for 0<t<u<l,

(22) pu(t, 1) := t(1-u) = Ral@n(t)8n(u)+Bn(t)an(w)] + Kadn(t)dn(u) 5.
where &2 := Eq[¢(en1) - Entlenn)]’.
Let W*(t) denote the leading r.v. in the r.h.s. of (20). Observe that,

(23) Ca(t, 1) := Eo{WH(t)W*(u) } = pu(t, ©) Ipxp, 0<t<u<l.

(24) Claim:  pn(t,u) — po(t,u), V 0<t<ugl

To prove (24), note that (14*) and Scheffé’s Theorem (Lehmann, 1986,
p573) imply that for the given error sequence {e;; i > 1},

(25) 6n = "f“n - Follm - 0,
which, together with the continuity of Fy, yields
~-1
(26) SUD (< |Fo(Fn(t)) -t] — O.
Also, observe that
- - _1 -~ _1 A
vy | TaER(0) - (0] € NEa - oll, — 0,
by (14*), and that,
|£a(Fa(t)) - fo(Fo ()] = |ao(Fo(Fa'(t))) - ao(t)], VY 0<t<.
Hence, by (26) and the uniform continuity of qq, which is implied by (F,1),

|@n(t) - qo(t)| — 0.

sup

(27) sup0 G

Next, let ga(t) = [I(Fa(x) < )§(x)fo(x) dx, 0 <t < 1. Upon
rewriting gn(t) = f I(Fa(x) < t)9(x)fn(x) dx, from (14*), Scheffé’s Theorem
(Lehmann: 1986, p 573) and the boundedness of 9, we readily obtain that

sup ., |&a(t) - Ba(t)] < f 1Ea(x) - ()| dx — 0.
But, the inequality Fo(x) - 6n < Fu(x) ¢ Fo(x) + & for all x, implies that

18a(t) - go(t)] < 19l S I(Fo(x) - 6a €t < Fo(x) + 62) dFo(x),

<9l 260, Vo<t
Hence, by (25),
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(28) sup . |8n(t) - go(t)| — 0.
Again by the boundedness of ¢, (14*) and (25), one readily concludes that
(29) o — Kk, 02 — oo

Claim (24) now readily follows from (27) — (29).
Now recall (12) and rewrite W* as

(30) W*(t) = W*(t) - An da(t) % Axni [¥(eni) - Ent(ens)]-
Observe that because
Bn|S5 Axas [${ens) - Entfen)]l” = p &5,
by (29) and the Markov inequality it follow that
(31) 1 Axas [#{ens) - Batenn)]ll = Op(1), (Pu).

Apply Corollary 2.2a.1 p times, jtb time to the entities given at (18), to
conclude that

lim lim sup, Py( sup | W(t) - W*(s)| > n) =0.
70 |t-s|<n
This together with (31), (30), (27) and the uniform continuity of Fo implies
that the sequence of processes {W*} is tight in the uniform metric </ and
all its subsequential limits must be in {C[0, 1]}*. Now, (17) follows from
this, Claim (24), (20), (13), (14) and (6). O
Remark 6.2b.1. One of the main consequences of (17) is that one can

use the bootstrap analogue of Dj, v.i.z., D3 = sup{||W*(t)||, 0<t<1} to
carry out the test H,. Thus an approximation to the the null distribution of

]33 is obtained by the distribution of f); under f’n. In practice it means to
obtain repeated random samples of size n from Fa, compute the frequency
distribution of f); from these samples and use that to approximate the null
distribution of Dj. At least asymptotically this converges to the right

distribution. Obviously the smooth bootstrap distributions for Dy, D can be
obtained similarly.

Reader might have realized that the conclusion (17) is true for any
sequence of estimators {8}, {ﬂ*} satisfying (2) and (16). O
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6.3. L,-DISTANCE TESTS

Let K and K3, respectively, stand for the K; and Ky of (5.2.5) and
(5.2.7) after the d.f.’s {Hp;} there are replaced by F,. Thus, for GeDI(R),

(1) K(t) == [{W3(y, 1)}2dG(y),

K3(t) == [IW°(y, )I’dG(y), teR,
where W° is as in (6.1.3) and
(2) Wiy, t) := 0/ %[Ha(y, ) - Fo(y)], yeR t e,
Let A be an estimator of A and define the four test statistics
(3) K :=inf {K;(t); te R}, K;:==K;(f), j=1,2

The large values of these statistics are significant for testing Hj.
We shall first discuss the an.d’s of K;, j=1,2 Let W3(-), W°(+)
stand for Wi(-, f) and W°(-, f).

Theorem 6.3.1. Assume that (1.1.1), H,, (NX), (5.5.68) — (5.5.70)
with F =Fy hold.

(a) If, in addition, (5.6a.10) and (5.6a.11) hold, then

0 K= [{Wiy) - 1y) J%}Zw + og(1).

(b) Under no additional assumptions,

(5) K = [IW°(y) - fy) J—IW%(‘E—andG + 05(1).
0

Proof. Apply Theorems 5.5.1 and 5.5.3 twice, once with D = 2 Y 2(1,
0, ..., 0] and once with D = XA, and the rest of the entities as follows:

(6) Yni = eni, Hni = FO = Fni, Gn = G.
The theorem then follows from (5.5.28), (5.6a.5), (5.6a.12) and some algebra.
See also Claim 5.5.2. o

Remark 6.3.1. Perhaps it is worthwhile repeating that (5) holds
without any extra conditions on the design matrix X. Thus, at least in this
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sense, K; is a more natural statistic to use than K: for testing H,.
A consequence of (4) is that even if f; of (5.2.4) is asymptotically
*
non—unique, K; asymptotically behaves like a unique sequence of r.v.’s.

Moreover, unlike the D,-statistic, the asymptotic null distribution of K’;
does not depend on the design matrix among all those designs that satisfy the
given conditions.

The assumptions (5.6a.10) and (5.6a.11) are restrictive. For example,
in the case p = 1, (5.6a.10) translates to requiring that either xj; > 0 for all

i or xi; <0 for all i. The assumption (5.6a.11) says that x# 0 or can not
converge to 0. Compare this with the fact that if x % 0 then the asymptotic
distribution of D, does not depend on the preliminary estimator B. o

Next, we need a result that will be useful in deriving the limiting
distributions of certain quadratic forms involving w.e.p.’s. To that effect, let

Lg(lR, G) be the equivalence classes of measurable functions h: R to RP such
that |h| é = | ||h||2dG < o. The equivalence classes are defined in terms of
the norm |- | é In the following lemma, {aj; i > 1} is a fixed orthonormal
basisin L3(R, G).

Lemma 6.3.1. Let {Zn, n > 1} be a sequence of p-vector stochastic
processes with EZy = 0, Cov(Zn(x), Za(y)) := Ku(x, y) = ((Kaij(x, ¥))),
1<i,j<p, x,y €R. In addition, assume the following:

There is a covariance matriz function K(x, y) = ((Kij(x, y))), and a
p-vector mean zero covariance—K Gaussian process Z such that

Q) (a) J}El [ Kaji(x, X)AG(x) < =, 02 1. (b) él [Kij(x, )4G(x) < a.

.. P P
(i) z S Kajj(x, x)dG(x) — z [ Kji(x, x)dG(x).
(iii) For every m 2 1,

([ ZaadG, ..., [ ZnaadG) - ([ % adG, ..., [ 2 a.dG);
(iv) Foreach i1,
E( [ 212:dG)’ — E( [ 2 a:dG)’.

Then, Zn, Z belong to Lg(IR, G), and

1) Zo 3 Z in L3R, G).
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Proof: In view of Theorem VI.2.2 of Parthasarthy (1967) and in view
of (iii), it suffices to show that for any € > 0, thereis an N (= N¢) such
that

’ 2
(8) supy E i§N ( f ZnaidG) <e
Because of the properties of {a;}, Fubini and (i),
P 2 ’ 2
(9) z f Kaji(x, x)dG(x) = E|Zn| 2 = z, E( [ ZnaidG ),
14 2 ’ 2
(10) z [ Kji(x, x)dG(x) = E|Z| § =3, E( 2 adG)’.

Thus, to prove (8), it suffices to exhibit an N such that
(11) Supn i§N E(fZ,,,aidG)2 e

By (ii), (9) and (10), there exists Nje such that
(12) 2 B(fZaidG)’ < B E(f2'adG)’ + ¢/3, 12N
By (i)(b) and (10), there exists N(= Ne¢) such that
(13) y E([2 2:dG)’ < ¢/3.
By (iv), there exists Nje such that
(14) 3 E(f2'2dG)* ¢ 3, B(f2:aidG)* + ¢/3, 13Ny
Therefore, from (12) — (14), with N = Ne := N;eVNge

Sup, i§N E( f Z,"aidG)2
< suBZN[ig1 E(fZ,aidG)z—&N (fZ,’la.idG)z] + €¢/3< e

Use (i)(a) to take care of the case n < Ne. This proves the result. o

Remark 6.3.2. Millar (1981) contains a special case of the above lemma
where p = 1, Z, is the standardized ordinary e.p. and Z is the Brownian
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bridge. The above lemma is an extension of Millar’s result to cover more
general processes like the w.e.p.’s under general independent setting. In
applications of the above lemma, one may choose {a;} to be such that the
support S; of a; has G(Si) < w,i> 1 and such that {a;} are bounded. o

Corollary 6.3.1. (a) Under the conditions of Theorem 6.3.1(a),
(15) Ki — f{B(F) -1, - L £0dG12 45 . 3, (say).

[ 124G
(b) Under the conditions of Theorem 6.3.1(b),
*
(16) K; — [IBFo) —fo- fﬂ!‘;—;%igfﬁuz =T, (say).
0

Here B, B are is as in (6.2a.7), (6.2a.8).
Proof: (b) Apply Lemma 6.3.1, with a; as in the Remark 6.3.2 above,
| fdG [{0dG
Direct calculations show that EZ, =0=EZ,and V x,y€R,

to

Kn(X, y) = EZu(x)Za(y) =Ipnp 4x, ) = K(x, y) = EZ(x)Z(y),
where, for x,y €R,
1(x, Y) = k(xs Y) - a'-lfO(Y)fk(xa S) d’¢(S) - a_lfO(y)fk(Y1 S) d’l/)(S) +
+a” [ [k(s, t) dy(s)dy(t),

k(x,3) 1= Fu(shy) = Fo(x)Fuly), () = [ 4G, 2 = ¥(o).

Therefore, (5.5.68), (5.5.69) imply (i), (ii) and (iv). To prove (iii), let
At ..., An be real numbers. Then,

’

B[ zaade = [wWe'bac - foayp=n(w), ()

where b := _ElAjaj. Because 9 and bdG are finite measures, h(W°) is a
J:

uniformly continuous function of W°. Thus by Lemma 6.2a.2 and Theorem
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5.1 of Billingsley (1968), h(W°) = h(B(F,)), under Hy, and (NX). This

then verifies all conditions of Lemma 6.3.1. Hence Z, 2 Z in Lg(IR, G). In
particular [||Zq|%dG - [|Z||%dG. This and (5) proves (16). The proof of
(15) is similar. o

Remark 6.3.3. Ther.v. G; can be rewritten as

T = (BAF)G - {BFo)f,dG}

Recall that G; is the same as the limiting r.v. obtained in the one sample
location model. Its distribution for various G and F;, has been
theoretically studied by Martynov (1975). Boos (1981) has tabulated some

critical values of G; when dG = {F((1 — Fo)}_ldFo and F, = Logistic.
From Anderson—Darling or Boos one obtains that in this case

Gi= [ B0 - 0) a6 B = 3 NG+ )

where {N;} areii.d. N(0,1) r.v.’s. From Boos (Table 3), one obtains the
following

Table II
a | .005 01 025 .05
ta 1.710 1.505 1.240 1.046

In Table II, ta is such that P(G; > te) = a. For some other tables see
Stephens (1979).

The r.v. G; can be rewritten as
2 B(F,) £ (G|
Ty o= f11B(Fo)|2aG — LLB(Es) LodG]
[£2dG

R (I Bi(Fo)f 0dG)?
=, [/ Bitrajac - 55 45

which is a sum of p independent r.v.’s identically distributed as G;. The
distribution of such r.v.’s does not seem to have been studied yet. Until the

distribution of G, is tabulated one could use the independence of the
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summands in G, and the bounds between the sum and the maximum to
obtain a crude approximation to the significance level.

For p = 1, the a.n.d. of K: and K; is the same but the conditions under

which the results for K’: hold are stronger than those for K: o

The next result gives an approximation for Kj, j=1,2. It also follows
from Theorem 5.5.1 in a fashion similar to the previous theorem, and hence
no details are given.

Theorem 6.3.2. Assume that (1.1.1), Hp, (NX), (5.5.68) — (5.5.70)
with F =Fy and (6.2a.3) hold. Then,

(17) K= [IWiy) + 0% 2A- A7 (- B)fo(y)IPdG(y) + op(1).
Ky = [Wo(y) + A(B— B)fo(y)I*dG(y) + op(1). o

From this we can obtain the asymptotic null distribution of these

statistics when f is estimated efficiently for the large samples as follows.
Recall the definition of {s;} from (6.2a.13) and let

7i(y) := I(es < y) — Foy) + nx’ (X X) 'x; 8305 fo(y),
oi(y) := I(es ¢ y) —Fo(y) + silofo(y),  1<i<m,  yeR,
a=(a...,an), T1=(71) - M) -
Also, define

(1) Zuly) = W) + 2V AAX sl (5) = 12 ()

Zns(y) := WO(y) + AX sl fo(y) = AX ofy), yeR
From Theorem 6.3.2 we readily obtain the
Corolla? 6.3.2. Assume that (1.1.1), H,, (NX), (5.5.68) — (5.5.70)

with F = Fy, (6.2a.12) and (6.2a.14) hold. Then,
(20) K= [Z2dG + o5(1).
(21) Ky= [ 1 Zn2||2dG + op(1). o

Next, observe that for y < z,
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Knl(y1 Z) = COV(ZI\I(Y)) an(z))
= Fo(y)(1—Fo(z)) —nx (X %) "z oLlz) = 4,5, )
Kn2(¥, 2) := EZny(y)Zna(2)

= {Foly)(1 — Fo(2) - ey, o =iy, 2), 5oy

Now apply Lemma 6.3.1 and argue just as in the proof of Corollary 6.3.1 to
conclude

Corollary 6.3.3. (a). In addition to the conditions of Corollary 6.3.2,
assume that

(22) 1z’ (X X) 'z — ¢, [¢| <o
Then,
(23) Ky — [2i()dG()
where Zy is a Gaussian process in Ly( R, G) with the covariance function
(24) Ki(x, y) := Fo(x)(1 = Foy)) — clo(x)fo(y) Lo, x<y.
(b) Under the conditions of Corollary 6.3.2,
5 2
(25) K: — [IlYil|*dG

where Y, i3 a vector of p independent Gaussian processes in Lg(IR, G) with
the covariance matriz ro-Ipyp. o

Remark 6.3.4. Again, observe that the test statistic f(1 based on the
ordinary empirical of the residuals has an a.n.d. which is design dependent

whereas the a.n.d. of the test based on the weighted empiricals K is design
free. In fact, for p = 1, the limiting r.v. in (25) is the same as the one that
appears in the one sample location model. For G = Fo = N(0, 1) d.f,
Martynov (1976) has tabulated the distribution of this r.v.. Stephens (1976)
has also tabulated the distribution of this r.v. for G = Fy, dG = dGy =

{Fo(1 — Fo)} 1dF,, and for Fy = N(0, 1). For G = Fo, Fo = N(0, 1) d.f,
Stephens and Martynov’s tables generally agree up to the two decimal places,
though occasionally there is an agreement up to three decimal places. In any
case, for p = 1, one could use these tables to implement the test based on

f(z, at least asymptotically, whereas the test based on KI, being design
dependent, can not be readily implemented. For the sake of convenience we
reproduce some of the Stephens (1976, 1979) tables below.
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Table ITT
Fy = N(0, 1)
Ko~ | 0.10 025 .05 10
Ka(Fo) 237 196 165 135
Ka(Go) 1.541 1.281 1.088 897

In Table III, Ky(G) stands for the K, with G being the integrating

measure. Kz(Go is the K, with the Anderson—Darling weights. Table III
is, of course, useful only when p = 1. o

As far as the asymptotic power of the above Lj-tests is concerned, it is
apparent that Theorems 5.5.1, 5.5.3 and Lemma 6.3.1 can be used to deduce
the asymptotic power of these tests against fairly general alternatives. Here

we shall discuss the asymptotic behavior of only Kf, j=1,2 under the
heteroscedastic gross errors alternatives. More precisely, suppose that

(26) Fni= (1 —éni)Fo + 6niF1, 0< 6ni < 1, max; bni — 0,
F;a fixed df. Let
mip = 11_1/2 zi 6ni(F1 - Fo), mj = Si Axniani(Fl - Fo).
Lemma 6.3.2. Let (1.1.1) hold with en; having the d.f. Fpn; given by
26), 1 <i<n. Suppose that X satisfies (NX); (Fo, G) and (Fy, G) satisfy
5.5.68) — (5.5.70) and that

(27) f IF1—Fo|dG < a,

(a) If, in addition, (5.6a.10) and (5.6a.11) hold, then

£ o [(W3_ + m ; )fodGY2

(28) K= [{WS+m—f TR 124G + op(1)
provided

(29) 2 Y2 3; 65 = O(1).

(b) Without any additional conditions,
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(30) Ky = [IW° + mg— g, (W + M2 ) edG2 4 o (q)
(124G

provided

(31) 35 Axpini = O(1).

Proof. Apply Theorem 5.5.1 and (5.5.49) to D = n */?[1, 0, ..., 0],
Yni = eni, Hni = Fo, {Fai} given by (26) to conclude (a). Apply the same
results to D = AX and the rest of the entities as in the proof of (a) to
conclude (b). o

Now apply Lemma 6.3.1 to

(30) Zn = W° 4+ my — £, [(W® + m))f,dG
IfodG
Z := B(Fo) + a(F1—Fo) — o [{B(Fo) + a;(Fy — Fo)lfedG

[£3dG
where a;:= lim sup, n_I/ 2 ¥; 6ni, to obtain

Corollary 6.3.4. Under the conditions of Lemma 6.3.2(a),

K} - [ 724G, where . is as in (30). 0
Similarly, apply Lemma 6.3.1 to
(31) Zn — WO + my— f() I(W + mz)fodG’
(£24G
7. := B(Fq) + ay(Fy— Fo) — 1, [{B(Fo) + 32(F1 = Fo)}HodG

Jf odG
where a; = lim supy ¥; Axyibni, to obtain

Corollary 6.3.5. Under the conditions of Lemma 6.3.2(b),

m]

KZ—&. [11Z|%4G, where Z is as in (31).

An interesting choice of 4yi = p_l/ 2||Axni||. Another choice is

6ai =0 /2. Both a priori satisfy (26), (29) and (31). 0
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6.4. TESTING WITH UNKNOWN SCALE

Now consider (1.1.1) and the problem of testing H; of (6.1.4). Here
we shall discuss the modifications of f)j, f(,-, j=1, 2, of Sections 6.2, 6.3
that will be suitable for H;. With W9, W° as before, define

(1) Dy(a, u) := supy| Wi(ay, u)],
Dy(a, u) := supy| W°(ay, u)|,
Ki(a, u) == fiWS(ay, w)}?dG(y),
Kqa, ) := [ [W°(ay, u)|*dG(y), a>0, uekP.

Let (&, B) be estimators of (o, f), Dj and K; stand for D;(7, f) and

K;(@, f), respectively, j =1, 2. The following two theorems give the a.n.d.’s
of these statistics. Theorem 6.4.1 follows from Corollary 2.3.4 in a similar
fashion as does Theorem 6.2.1 from Corollaries 2.3.3 and 2.3.5. Theorem
6.4.2 follows from Theorems 5.5.8 in a similar fashion as does Theorem 6.3.2
from Theorem 5.5.1. Recall the conditions (Fo1) and (F(3) from Section 2.3.

Theorem 6.4.1. In addition to (1.1.1) and Hj, assume that (NX), (Fol),
(Fo3) and the following hold.

(2) (2) 23— 0)o™'| = 0y(1). (b) AT (B~ Al = Opl1).
Then,
D, = sup |Wi(t) + qo(t){n'/*Za(B—A) + 22 (5-0)F5 (1)}0 | + 0p(1),
and
Dy = sup [[W(t) + qo(t){A T (B=H) + 2/ %A%, -2 Y (5—0)F5 (1)} o
+op(1),
where now Wi(-) := W(oFol(+), B) and W(-) := W°(aFo (), ).

Theorem 6.4.2. In addition to (1.1.1) and H,, assume that (NX), (2),
(5.5.69) with F = Fy, and the following hold.

(3) Fo has a continuous density fo such that

(a) 0< [lyli ff(y)dG(y) <w, j=0,k=1,2 j=2,k=2
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(b) ii‘%‘ lim supp fflé(y+'m_1/2+s)dG(y) =ff15 dG(y), k=1, 2, 7€R.
(©) Lim [ Iy] foy(1+9)dC(y) = Iy] f(y)dC(y).

Then,

=h

[ 1W(ay, B) + fo(y){n'/*Za(B - By *(5 - o)y}o 4G (y)
+ Op(l);

1

Ko = [|W(oy, B) + fo(y){A™ (B~ )
+02A%, 045 — o)y}o Y %dG(y) + op(1).

Clearly, from these theorems one can obtain an analogue of Corollary

6.3.2 when (@, f) are chosen to be asymptotically efficient estimators.

As is the case in the classical least square theory or in the
M-estimation methodology, neither of the two dispersions Kj(a, u) and
Ks(a, u) can be used to satisfactorily estimate (o, f) by the simultaneous
minimization process. The analogues of the m.d. goodness-of-fit tests that

should be used are inf{K;(5, u); ueR’}, j = 1, 2. The methodology of
Section 5 may be used to obtain the asymptotic distributions of these
statistics in a fashion similar to the above. o

6.5. TESTING FOR SYMMETRY OF THE ERRORS

Consider the model (1.1.1) and the hypothesis Hs of symmetry of the errors
specified at (6.1.5). The proposed tests are to be based on ﬁjs, j=1,2,3,0f
(6.1.6), (6.1.7), K}(#), and inf{K}(t); teRP}, j = 1, 2, where

(1) Ki(®) = [{Wily, 0Pd6(), Kit) = [IW(, 1)I%dG(y), tek?,

with W] and W' asin (6.1.7) and (6.1.9). Large values of these statistics
are considered to be significant for H;.

Although the results of Chapters 2 and 5 can be used to obtain their
asymptotic behavior under fairly general alternatives, here we shall focus
only on the a.n.d.’s of these tests. To state these, we need some more
notation. For a d.f. F, define

(2) Fu(y):=F(y)-F(-y), vy20.

Then, with F ! denoting the usual inverse of a d.f. F, we have
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(3) F(t) =FH((1+1)/2),  -FJ() =F((A-1)/2), 0¢t¢l,
for all F that are continuous and symmetric around 0. Finally, let
(4) Wi(t) == WIET'(4), ), W (1) == W(FSL(1), ),

q'(t) = £(F (1)), 0<t¢lL.

We are now ready to state and prove

Theorem 6.5.1. In addition to (1.1.1), Hs and (NX), assume that F in
Hy and the estimator B satisfy (F1) and

(5) IAT(B- Bl = 05(1), under H.

Then,

(6) D= gup, IWi(t) +20°(t) '/ *EaA ATH(B— )| + 0p(1),
(7) Das = gup, IW'(1) + 20'(t) A(B = )| + op(1)

and

(8) Das = gup, IW'(t) +2a*(t) A (B— Bl + op(1).

Proof. The proof follows from Theorem 2.3.1 in the following fashion.
The details will be given only for (8), as they are the same for (7) and quite
similar for (6). Because F is continuous and symmetric around 0 and

because W'(-, -) = W'(--, +), Dss = oﬁ\ngW*(Fil(t), p). But, from the
definition (6.1.8) and (3), it follows that for a v € R?,

WHF(t), v)

= %; Axai{I(ens < P (HY)ecain) + (ens ¢ F(5h)ecamm) — 1}

(9) = S(5E, ) + S(5Y, ) — B Axa, 0<t<1,

where
S(t, u) := B Axa; I(ens < F1(t) + casu), 0<t <1,

is a p—vector of Sq—processes of (2.3.1) with Xpi = eni, Fni = F = H, ¢p3 =
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Axpj, u = A 1(v — f) and where the jth process has the weights {dni}
given by the jth column of AX. The assumptions about F and X imply
all the assumptions of Theorem 2.3.1. Hence (8) follows from (3.2.6), (5) and
(9) in an obvious fashion. o

Next, we state an analogous result for the Ly-distances.
Theorem 6.5.2. In addition to (1.1.1), Hs, (NX) and (5), assume that F

in Hs and the integrating measure G satisfy (5.3.8), (5.5.68), (5.5.70) and
(5.6a.13). Then,

(10)  Ki(B) = [(Wi(y) + 2£(y) 2"/ %%a(B - A)P4G(y) + 0p(1),

(11)  K3(B) = [IW'(y) + 21(y) A" (B- HII*AG(y) + op(1),
where W1i(-), W'(:) now stand for Wi(-, f), W'(-, ).

Proof. The proof follows from two applications of Theorem 5.5.2, once

with D=n 1/2[1, 0, ..., 0] and once with D = XA. In both cases, take
Yni and Fyu; of that theorem to be equal to eyi and F, 1 <i < m,
respectively. The Claim 5.5.2 justifies the applicability of that theorem
under the present assumptions. o

The next result is useful in obtaining the a.n.d.’s of the m.d. test
statistics. Its proof uses Theorem 5.5.2 and 5.5.4 in a similar fashion as

Theorems 5.5.1 and 5.5.3 are used in the proof of Theorem 6.3.1, and hence
no details are given. Let

K; := inf{K}(t); teR?}, j=1,2.

Theorem 6.5.3. Assume that (1.1.1), Hs, (NX), (5.3.8), (5.5.68),
(5.5.70) and (5.6a.13) hold.

(a) If, in addition, (5.6a.10) and (5.6a.11) hold, then

S _ o " [t Ot P2 112
(12) Ki=2 fo {Wiy) -1y j; W3dG ( fo 24G) 1 }24G + op(1).
(b) Under no additional assumptions,

(13) Ki=2f "W ) - 5) ) WG ( fomfzdc)—1||2dc;+op(1). 0
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To obtain the a.n.d.’s of the given statistics from the above theorem we
now apply Lemma 6.3.1 to the approximating processes. The details will be

given for Kg only as they are similar for Ki Accordingly, let
@ ®

(14) Zu(y) = W'(y) —f(y) [ WG (f £dG)™", n21, y20.
0 0

To determine the approximating r.v. for Kg we shall first obtain the
covariance matrix function for this Zy,, the computation of which is made
easy by rewriting Z, as follows.

Recall the definition of 9 from (5.6a.2) and define

[01]
ai(y) :=I(es<y) + I(es < ~y) — 1, yeR, & :=j; a;dy, 1<i<n;

a = (ay ..., om); @ :=(a,...., 0n); a:= j;mf2dG.
Then
(15) Za(y) = AX [a(y) —{(y)aa™], y20.

Now observe that under Hs, Ea = 0, Eay(x)ay(y) = 2 (1-F(y)), 0<x<
y, and, because of the independence of the errors,

(16) Ea(x)a(y) = 21-F()) Ipxp, 0¢x<y.
Again, because of the symmetry and the continuity of F and Fubini, for y>0,

Bau(y)o = f Eli(es < y)+1(ex € 3l € xp+(er < -x)-1] dx)
= [/ TFGRAY)+R(-5Ay)-F(y)+F(ch-3) +F(-xh-y)—F(-y)] ()

= 20-F){9ly) — YO} + [, 20-Fx)) d9(x)
=2 [ [9x) - O] dF(x) =t K(y), say.

The last equality is obtained by integrating the second expression in the
previous one by parts. From this and the independence of the errors, we
obtain

Eo(y)a = k(y) Ipxp, y20.
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Similarly,
L @ [11]
Eaa’ = Ipyp 4fo [, (-F(y) d(x)di(y) =: Tpxp 1(F,G), say.
From these calculations one readily obtains that under Hj, for 0 { x <y,
(17) Kn(x, y) := EZa(X)Za(y)
= [2(1-F(y)) - k(y)f(x)a "= k(x)(y)a "’ + 1(F,G)]Ipxp.

We also need the weak convergence of W' to a continuous Gaussian
process in uniform topology. One way to prove this is as follows. By (16),

(18) EW'()W'(3)" = 2(1 - F(y)) Tosp, 0¢x <y,
From the definition (6.1.9) and the symmetry of F,
(19)  W'(y) = Bi Axni{I(eni < y) - I(-eni < ¥)}
= %; Axni{I(eni < y) - F(y)} - Zi Axni{I(-eni < y) - F(y)}
+ %i Axyil(-eni = y)
(20) = #(y) — #(y) + Zi Axnil(-eni = y) , say, y20.

Now, let ¥’ := (Wy, ¥s, ..., ¥p) be a vector of independent Wiener
processes on [0, 1] such that #(0) = S, EX =0, and EW;(s)¥;(t) = sAt, 1<j<p.
Note that

EX(2(1-F(x)))M2(1-F()) = 2(1-F(y)) Ipxp, 0¢x<y.

From (18) and (19), it hence follows, with the aid of the L—F CLT and
the Cramer—Wold device, that under (NX), all finite dimensional

distributions of W" converge to those of W(2(1-F)).

To prove the tightness in the uniform metric, proceed as follows. From
(2(2 and the triangle inequality, because of (NX), it suffices to show that #{
and # are tight. But by the symmetry and the continuity of F,

{ ¥y, yeR} = { #i(y), yeR} = { #(F'(1)), 0<t<1}.

But, 7{(F_1) is obviously a p-vector of w.e.p.’s of the type W; specified at
(2.2a.33). Thus the tightness follows from (2.2a.35) of Corollary 2.2a.1. We
summarize this weak convergence result as

Lemma 6.5.1. Let F be a continuous d.f. that is symmetric around 0
and {eni, 1<i<n} bei.i.d. F r.v.’s. Assume that (NX) holds. Then,
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W'(-) 2 M2(1-F(-)))in (D0, u], &). o

The above discussion suggests the approximating process for the Z, of
(16) to be

(21) 2y) i= M2A-FEH) [ M20-F)G (f Pa6)™, po.

Straightforward calculations show that Kyu(x, y) = EZ(x)Z(y), 0<x<y, n>1.
This then verifies (i), (ii) and (iv) of Lemma 6.3.1 in the present case.
Condition (iii) is verified as in the proof of Corollary 6.3.1(b) with the help of
Lemma 6.5.1. To summarize, we have

Corollary 6.5.1. (a) Under the conditions of Theorem 6.5.3(a),

(22) Ki—2f MEO-FE)-O)S ME-FEG (f fae) ().

(b) Under the conditions of Theorem 6.5.3(b),
5 @ o2 . .
(23) Kz — 2 [ 121°dG(y), with Z given at (21). 0
0

Remark 6.5.1. The distributions of the limiting r.v.’s in (22) and (23)
have been studied by Martynov (1975, 1976) and Boos (1982) for some F
and G. An interesting G in the present case is G = ). But the
corresponding tests are not a.d.f.. Also because the F in Hg is unknown,
one can not use G = F or the Anderson—Darling integrating measures dG
= dF/{F(1-F)} in these test statistics.

One way to overcome this problem would be to use the signed rank
analogues of the above tests which is equivalent to replacing the F in the
integrating measure by an appropriate empirical of the residuals {Ynj—xnju;

1<j<n}. Let R}, denote the rank of |Yni-x,',iu| among {IYnj—x;jlll; 1
<j<n}, 1<i<n,and define

Zi(t, u) := n 2 5; I(RYy < nt) sgn(Yni-xasu),

Zi(t, u) := A % xni I(R%y < nt) sgn(Yni-Xnsu), 0<t<1,meRP.

The signed rank analogues of K?, Kg statistics, respectively, are Ki =
inf{Xy(u); ueR’}, K := inf{l5(u); ueRP}, where

n(w = LA OPa), L= 18 0l%, e,



208 GOODNESS—OF—FIT TESTS 6.5

with L € DI[0, 1]. If L(t) =t then K?, j =1, 2, are analogues of the
Cramer—Von Mises statistics. If L is specified by the relation dL(t) =
{1/t(1—t)}dt, then the corresponding tests would be the Anderson—Darling
type test of symmetry.

Note that if in (3.3.1) we put dyji = n_1/2, Xni = €ni, Fni = F, then Z3
of (3.3.1) reduces to Zj. Similarly, Z; corresponds to a p-vector of

Z3-processes of (3.3.1) whose jth component has dp; = (jth column of A)’xy;
and the rest of the entities the same as above. Consequently, from (3.3.17)
and arguments like those used for Theorem 6.5.3, we can deduce the
following

Theorem 6.5.4. Assume that (1.1.1), Hy and (NX) hold; L is a d.f. on
[0, 1], and F of Hs satisfies (F1), (F2).

(a) If, in addition, (5.6a.10) and (5.6a.11) hold, then

(2) A= [ -0 0 f ma'an ([ (@) P,
(b) Under no additional assumptions,

(25) RN LOBTYOY R PEATNCYE D REON
where q (t) == 2[(F Y((t+1)/2) —£(0)], 0 <t < 1. 0

Clearly this theorem covers L(t) =t case but not the case where dL(t)
= {1/t(1-t)}dt. The problem of proving an analogue of the above theorem jor
a general L is unsolved at the time of this writing. oo





