
CHAPTER 6

GOODNESS-OF-FIT TESTS FOR THE ERRORS

6.1. INTRODUCTION

Consider the model (1.1.1) and the goodness-of-fit hypothesis

(1) Ho: Fni = Fo, Fo a known continuous d.f..

This is a classical problem yet not much is readily available in literature.
Observe that even if Fo is known, having an unknown β in the model poses
a problem in constructing tests of HQ that would be implementable, at least
asymptotically.

One test of £Γ0 could be based on Di of (1.3.3). This test statistic is
suggested by looking at the estimated residuals and mimicking the one
sample location model technique. In general, its large sample distribution
depends on the design matrix. In addition, it does not reduce to the Kiefer
ίl959) tests of goodness-of—fit in the k-sample location problem when
(1.1.1) is reduced to this model. The test statistics that overcome these
deficiencies are those that are based on the w.e.p.'s V of (1.1.2). For
example, the two candidates that will be considered in this chapter are

(2) D 2 := supy |W0(y, ft|, D 3 := supy ||Wo(y, 0)\\,

where β is an estimator of β and,

(3) Wθ(y, t) := ( x ' x Γ ^ W y , t) - x ' l F0(y)}, y 6 R , t G Kp,

1' := (1, ...., l ) l x n .

Other classes of tests are based on K£(0χ) and i n ^ K ^ t ) , teKp}, where K£

is equals to the K χ of (1.3.2) with W replaced by W° in there.

Section 6.2a discusses the asymptotic null distributions (a.n.d.'s) of the
supremum distance test statistics for HQ when β is estimated arbitrarily
and asymptotically efficiently. Also discussed in this section are some
asymptotically distribution free (a.d.f.) tests for HQ. Some comments about
the asymptotic power of these tests appear at the end of this section. Section

6.2b discusses a smooth bootstrap distribution of D3.
Analogous results for tests of HQ based on L2-distances involving the

ordinary and weighted empirical processes appear in Section 6.3.
A closely related problem to HQ is that of testing the composite

hypothesis
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(4) Hi: F n i ( - ) = F0( /σ), σ > 0, F o aknownd.f..

Modifications of various tests of Ho and their asymptotic null
distributions are discussed in Section 6.4.

Another problem of interest is to test the composite hypothesis of
symmetry of the errors:

(5) Hs: Fni = F, 1 < i < n, n > 1; F a d.f. symmetric around 0.

This is a more general hypothesis than Ho. In some situations it may be of
interest to test H s before testing, say, that the errors are normally
distributed. Rejection of Hs would a prioή exclude any possibility of
normality of the errors. A test of Hs could be based on

(6) D l s : = s u p y | W ; ( y , £ ) | ,

where

(7) Wt(y, t) := n " 1 / 2 ΣJIίYni < y + x^t) - I(-Yn i < y - x ^

:= Hn(y, t) -1 + Hn(-y, t), y G R, y

with Hn as in (1.2.1). Other candidates are

(8) ί ) 2 s : = s u p y

D 3 S : = sup y l l ^ y , β)\\ =

where

(9) Vt:= AλT, ΛT 7 ^ (V;, ...., VS, with

Vj(y, t) := Vj(y, t) - Σ x n i j + Vj(-y, t), 1 < j < p, yeR, teRp.

Yet other tests can be obtained by considering various L2-norms involving

W"ϊ and W .̂ The asymptotic null distribution of all of these test statistics
is given in Section 6.5.

It will be observed that the tests based on the vectors W° and W* of
w.e.p.'s will have asymptotic distributions similar to their counterparts in
the k-sample location models. Consequently these tests can use, at least for
the large samples, the null distribution tables that are available for such
problems. For the sake of the completeness some of these table are
reproduced in the following sections.
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6.2. THE SUPREMUM DISTANCE TESTS

6.2a. Asymptotic Null Distributions.

To begin with, define, for 0 < t < 1, s e Rp,

(1) Wrft, s) := n ^ H n C P ^ t ) , s) - 1 } , W(t, s) := WofF^i), s).

Let

(2) Wt(t) := W!(tf fa W(t) := W(t, fa 0 < t < 1.

Clearly, if F o is continuous then the distribution of Dj, j = 1, 2, 3, is the

same as that of HWil^, sup{|W(t)|; 0 < t < 1}, sup{||W(t)||; 0 < t < 1},

respectively. Consequently, from Corollaries 2.3.3 and 2.3.5 one readilv
obtains the following Theorem 6.2a.l. Recall the conditions (F o l) and (NX)
from Corollary 2.3.1 and just after Corollary 2.3.2.

Theorem 6.2a. 1. Suppose that the model (1.1.1) and Ho hold. In

addition, assume that X and FQ satisfy (NX) and (Fol), and that β
satisfies

(3)

Then

(4) sup I Wi(t, ft - {W!(t, β) + qoM n1/2 ΈΏA A^Cβ-β)}] = o p (l ) ,

(5) βnp||W(t, β) - {W(t, β) + qo(t) A~\β-β)}\\ =

where qo := fo(Fo ) and the supremum is over 0 < t < 1.

Write Wt(t), W(t) for Wi(t, β), W(t, β), respectively. The following
corollary gives the weak limits of Wi and W under HQ.

Lemma 6.2a.2. Suppose that the model (1.1.1) and Hΰ hold. Then

(7) Wi ^ B, B a Brownian bridge in C[0, 1].

In addition, if X satisfies (NX), then,

(8) W =» B':=(Bi,....,Bp)

where Bu ...., Bv are independent Brownian bridges in C[0, 1].
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Proof. The result (7) is well known or may be deduced from Corollary
2.2a.2. The same corollary implies (8). To see this, rewrite

(9) W(t) = A Σ xni{l(eni < F^(t)) -1} = Ax' αn(t),

where αn(t) := (αni(t), ...., αnn(t))',

θni(t) := {I(eni < Fo^t)) -1}, 1 < i < n, 0 < t < 1.

Clearly, under J?o,

(10) EW = 0, Cov(W(s), W(t)) = (sΛt - st)I p x p, 0 < s, t < 1.

Now apply Corollary 2.2a.2 p times, jth time to the w.e.p. with the weights
and r.v.'s given as in (11) below, 1 < j < p, to conclude (8).

(11) weights d(j) = the j t h column of XA, the r.v.'s Xni Ξ eni, and F Ξ F O ,
1 < j < P,

See (2.3.33) and (2.3.34) for ensuring the applicability of Corollary 2.2a.2 to
this case. α

Remark 6.2a. 1. From (5) it follows that if β is chosen so that the

finite dimensional asymptotic distributions of {W(t) + qo(t) A""1(^ — β)\

0<t<l} do not depend on the design matrix then the a.n.d.'s of Dj, j = 2, 3,
will also not depend on the design matrix. The classes of estimators that
satisfy this requirment include M-, R- and m.d. estimators. Consequently,

in these cases, the a.n.d.'s of Dj, j = 2, 3, are design free.

On the other hand, from (4), the a.n.d. of Di depends on the design

matrix through n ' xnA. Of course, if xn equals to zero, then this
distribution is free from F o and the design matrix. o

Remark 6.2a.2. The effect of estimating the parameter β efficiently.
To describe this, assume that

(12) F o has an a.c. density fo with a.e. derivative f o satisfying

0 < / 0 : = /(fo/fo)2dFo<QD.

Define

(13) Sni : = - fo(e n i )/ fo(e n i ) , 1 < i < n; s n : = ( s n i , ..., Snn)',

and assume that the estimator β satisfies

(14) A-\β-β) = h1 '
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Then, the approximating processes in (4) and (5), respectively, become

(15) Wx(t) := W!(t) + qo(t) n 1 / 2 ϊnA /ό1 Ax'sn,

W(t) := W(t) + qoW /o1 Ax'sn, 0 < t < 1.

Using the independence of the errors, one directly obtains

(16) E WttoWfr) = {s(l-t) - n x ^ x ' x ) " 1 ^ qoίshoW/o1},

E W(s) W^t) = {s(l-t) - qoφqoW/o1} Ipxp, 0 < s < t < 1.

The calculations in (16) use the facts that Esn = 0, Eα n(t)s n ' = qo(t)Inχn

From (16), Theorem 2.2a.l(i) applied to the quantities given in (11),
and the uniform continuity of qo, which is implied by (12), it readily follows
that W A Z := (Zi, ..., Z p ) ' , where Zi, ..., Zp are continuous independent
Gaussian processes, each having the covariance function

(17) p(s, t) := s(l-t) - qo(s)qo(t)/ά\ 0 < s < t < 1.

Consequently,

(18) D2 =» sup{|Z(t)|; 0<t<l}, D3 => sup{||Z(t)||; 0<t<l}.

This shows that the a.n.d.'s of Dj, j = 2, 3, are design free when an
asymptotically efficient estimator of β is used in constructing the residuals

while the same can not be said about Di.
Moreover, recall, say from Durbin (1975), that when testing for HQ in

the one sample location model, the Gaussian process Zi with the covariance

function p appears as the limiting process for the analogue of Di. Note also

that in this case, Di = D2 = D3. However, it is the test based on D3 that
provides the right extension of the one sample Kolmogorov goodness-of—fit
test to the linear regression model (1.1.1) for testing HQ in the sense that it
includes the k-sample goodness-of-fit Kolmogorov type test of Kiefer
(1959). That is, if we specialize (1.1.1) to the k-sample location model, then

D3 reduces to the T ^ of Section 2 of Kiefer modulo the fact that we have

to estimate β.
The distribution of sup{|Zi(t)|; 0<t<l} has been studied by Durbin

(1976) when F o equals N(0, 1) and some other distributions. Consequently,
one can use these results together with the independence of Zi, ..., Zp to

implement the tests based on D2, D3 in a routine fashion. α
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Remark 6.2a.3. Asymptotically distribution free (a.d.f.) tests. Here we
shall construct estimators of β such that the above tests become a.d.f. for
testing HQ. TO that effect, write Xn and An for X and A to emphasize
their dependence on n. Recall that n is the number of rows in Xn. Let m
= m n be a sequence of positive integers, m n < n. Let Xm be mnχp matrix
obtained from some m n rows of Xn. A way to choose m n and these rows
will be discussed later on. Relable the rows of X n so that its first m n rows
are the rows of Xm and let {eni*, l<i<mn}, {Yni*; l<i<mn} denote the
corresponding errors and observations, respectively. Define

(19) Sni* := - fo(eni*)/fo(eni*), 1 < i < mn; sm* := (sni*, l<i<mn)',

Observe that under (12),

(20) ETm = 0, ETmTm = Jά1

Consider the assumption

(21) m n < n, m n —» <D such that

(Xn Xn) (Xπi Xm) (Xn Xn)

The assumptions (21) and (NX) together imply

(22) max Xni'AmAπ, x n i = o(l).
1 \ i xm

Consequently one obtains, with the aid of the Cramer-Wold LF-CLT, that

(23) Tm - j N(0, / ό ^

Now use {(x n i, Yni*); 1 < i < m n } to construct an estimator βm oί β
such that

(24) A

Note that, by (21) and (23), || A^Anl^ = 0(1) and, hence

(25) A " 1 ^ - β) = An1AmTm + o p ( l ) .

Therefore it follows that βm satisfies (3). Define

K*(t) := W(t) + A ί A.T. qo(t), 0 < t < 1.

From (5) and (25) it now readily follows that
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(26) sup IIW(t, β) - K*(t)|| = op(l).
U ^ t» ^ 1

We shall now show that

(27) K* => B, with B as in (8).

First, consider the covariance function of K*. By the independence of the
errors and by (12) one obtains that

E{I(eni < FoV)) - t}fo(enj*)/fo(eπj*) = 0, i*j, 1 < i < n, 1 < j < mn,

= qo(t), 1 < i=j < mn, 0<t<l.

Use this and direct calculations to obtain that

(28) EK*(s)K*(t) = s(l-t)IpX p

-/o1qo(s)qo(t)[2Ipχp-(xX)1/2(xlxm)"1(xήXn)1/2],

0 < s < t < 1.

Thus (21) implies that

(29) EK*(s)K*(t) - ^ s(l-t)IpXp, V 0 < s < t < 1.

Because of (8) and the uniform continuity of qo, the relative compactness of
the sequence {K*} is a priori established, thereby completing the proof of
(27). Consequently, we obtain the following

Corollary 6.2a.l. Under (1.1.1), i?0, (NX), (12), (21) and (24),

where Djm stand for the Dj with β=βm, j = 2, 3. α

It thus follows, from the independence of the Brownian bridges {Bj, 1
< j < p} and Theorem V.3.6.1 of Hajek and Sidak (1967), that the test that

rejects Ho when D2m > d is of the asymptotic size α, provided d is
determined from the relation

(30) 2 Σω

i (-l)J+ieVd2 = 1 - ( l - α ) 1 / p .

Let Γp stand for the the limiting r.v. of D3m. The distribution of Γp

has been tabulated by Kiefer (1959) for 1 < p < 5. Delong (1983) has also
computed these tables for 1 < p < 7. The following table is obtained from
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Kiefer for 1 < p < 5 and Delong for p = 6, 7, for the sake of completeness.
The last place digit is rounded from their entries.

°\
.001

.005

.01

.02

.025

.05

.10

.15

.20

.25

1

1.9495

1.7308

1.6276

1.5174

1.480

1.3581

1.2239

1.1380

1.0728

1.0192

2

2.1516

1.9417

1.8427

1.7370

1.702

1.5838

1.4540

1.3703

1.3061

1.2530

3

2.3030

2.0977

2.0009

1.8974

1.8625

1.7473

1.6196

1.5370

1.4734

1.4205

4

2.4301

2.2280

2.1326

2.0305

1.9961

1.8823

1.7559

1.6740

1.6107

1.5579

5

2.5422

2.3424

2.2480

2.1470

2.116

2.0001

1.8746

1.7930

1.730

1.6773

6

2.6437

2.445

2.3525

2.252

2.217

2.1053

1.981

1.900

1.8352

1.785

7

2.7373

2.540

2.4525

2.350

2.315

2.2031

2.0788

1.9977

1.9349

1.8825

Table 1: Values d such that P(Γp > d) ~ a for 1 < p < 7. Obtained from
Kiefer (1959) & Delong (personal communication).

Note that for p = 1 , E>2m and D 3 m are the same tests and d of (30) is the
same as the d of column 1 of Table 1 for various values of α.

The entries in Table 1 can be used to get the asymptotic critical level

of D 3 m for 1 < p < 7. Thus for p = 5, a = .05, the test that rejects Ho

when D 3 m > 2.0001 is of the asymptotic size .05, no matter what F o is
within the class of d.f.'s satisfying (12).

Next, to make Dptest a.d.f., let r = r n be a sequence of positive
integers, r n < n, r n —> α>. Let XΓ denote the r n χp matrix obtain from
some r n rows of Xn. Relable the rows of Xn so that the first r n rows are

in XΓ and let Y°, e° denote the corresponding Yi's and ei's. Let

AΓ = (XrXrΓ 1 / 2 Assume that
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(31) (i) Hn^Arll = 0(1), and

(ii) I nΞnίxίXr)"1^ - 2rnϊή(XrXI Γ
1ϊrI = o(l).

Let βτ be an estimator of β based on {(xni> Yni), 1 < i < rn} such that

(32) k~\βτ -β) = Ίτ + op(l), T r := J ^ A ^ s ?

where s£i =-f(e£i)/f(eSi), 1 < i < rn, and s? = (sni, 1 < i < rn) . Define

K*(t) := Wj(t) + n 1 / 2 ϊήA r Trqo(t), 0 < t < 1.

Similar to (28), we obtain, for s < t, that

EK*(s)K*(t) = s(l -1) - Jo1qo(s)qo(t){ϊή(xίXr)"1[nin - 2rnϊΓ]}

Argue as for Corollary 6.2a. 1 to conclude

Corollary 6.2a.2. Under (1.1.1), Ho, (NX), (12), (31) and (32),

(33) D1Γ

where Ό\τ is the Ώγ with β=βτ π

Remark 6.2a.4. Assumptions (21) and (31). To begin with note that if

(34) limn n'^XnXn) exists and is positive definite,

then (21) is equivalent to

(35) nmn1 —4 2.

If, in addition to (34), one also assumes

(36) limn xn exists and is finite,

then (31) is equivalent to

(37) nrή1 —> 2.

There are many designs that satisfy (34) and (36). These include the one
way classification, randomized block and the factorial designs, among others.
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The choice of mn and rn rows is, of course, crucial, and obviously,
depends on the design matrix. In the one way classification design with p
treatments, nj observations from the jth treatment, it is recommended to
choose the first mn j = [nj/2] observations from the jth treatment, 1 < j < p,
to estimate β. Here mn = m n i + ... + mnp = [n/2]. One chooses rn j =
πinj, 1 < j < P, rn = Σj rn j = [n/2]. The choice of mn and rn is made
similarly in the randomized block design and other similar designs. If one
had several replications of a design, where the design matrix satisfies (34)
and (36), then one could use the first half of the replications to estimate β
and all replications to carry out the test.

Thus, in those cases where designs satisfy (34) and (36), the above
construction of the a.d.f. tests is similar to the half sample technique in the
one sample problem as found in Rao (1972) or Durbin (1976).

Of course there are designs of interest where (34) and (36) do not hold.
/ o

An example is p = 1, xni = i. Here, XnXn = O(n ). If one decides to
choose the first mn(rn) xi's, then (21) and (31) are equivalent to requiring

O O A. A

(mn/n) —» 1/2 and (rn/n) —» 1/2. Thus, here D2m or D3m would use

79% of the observations to estimate β while DiΓ would use 71%. On the

other hand, if one decides to use the last mn(rn) xi's, then D2, D3 will use
the last 21% observations while Di will use the last 29% observations to
estimate β. Of course all of these tests would be based on the entire sample.

In general, to avoid the above kind of problem, one may wish to use,
from the practical point of view, some other characteristics of the design
matrix in deciding which mn, rn rows to choose. One criterion to use may
be to choose those mn(rn) rows that will approximately maximize (mn/n)
((rn/n)) subject to (21) ((31)). D

Remark 6.2a.5. Construction of βm and βr If FQ is a d.f. for which
the maximum likelihood estimator (m.l.e.) of β has a limiting distribution
under (NX) and (12) then one should use this estimator based on rn (mn)

observations {(x'i, Yi)} for E>i (D2 or D3). For example, if F o is the

N(0,l) d.f., then the obvious choice for & and βm are the least squares
estimators:

βτ = (Xr-X*) ΛΓYΓJ Pπi = (^πAra) -*Mn*m

Of course there are many d.f.'s Fo that satisfy the above conditions,
but for which the computation of m.l.e. is not easy. One way to proceed in
such cases is to use one step linear approximation. To make this precise, let

βm be an estimator of β based on {(xni, Yni), 1 < i < Hin} such that

(38) λ
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Define

(39) ^o(y) := -to(y)/fo(y), y e R;

Sni := WYni - xήiAn), 1 < i < m n; sm := ( s n i , l<i<m n) ';

An = An "t" -M) Am Am XmSmj

Vl(y, t) = A m . ? x n i I(Yn i < y + xήit), y e It, t ε Rp.
Then

From this and (2.3.37), applied to {(xni, Yni), 1 < i < mn}, one readily
obtains

Corollary 6.2a.3. Assume that (1.1.1) and HQ hold. In addition,
assume that F o is strictly increasing, satisfies (12) and is such that ψo is a

finite linear combination of nondecreasing bounded Junctions, X and {βm}

satisfy (NX) and (38). Then {βm} of (39) satisfies (24) for any sequence
m n —> a), as n —» OD.

Proof. Clearly,

Am (βm — β) = Am (ĵ n — β) + IQ AmXmsm.

But, integration by parts and (2.3.37) yield

; m - sm} = /^o(y){V;(dy, ~β) - V^dy, β)}

β) /fo(y)dMy) + oP(i)

The above result is useful, e.g., when Fo is logistic, Cauchy or double
exponential. In the first case m.l.e. is not easy to compute but Fo has finite

second moment. So take βm to be the l.s.e. and then use (39) to obtain the

final estimator to be used for testing. In the case of Cauchy, βm may be
chosen to be an R-estimator.

Clearly, there is an analogue of the above corollary involving
that would satisfy (31).
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6.2b. Bootstrap Distributions

In this subsection we shall obtain a weak convergence result about a
bootstrapped w.e.p.'s and then apply this to yield bootstrap distributions of
some of the above tests.

Let (1.1.1) with eni = βi and fΓ0 hold. Let Eo and Po denote the
expectation and probability, respectively, under these assumptions. In
addition, throughout this section we shall assume that (Fol), (F02) and (NX)
hold.

Recall the definition of W, W from (6.2a.l), (6.2a.2). Let β be an
M-estimators of β corresponding to a bounded nondecreasing right
continuous score function *φ such that

(1)

Upon specializing (4.2a.8) to the current setup one readily obtains

(2) A " 1 ^ - β) = -K Σi Axni Hei) + op(l), (Po).

where K := 1/Jfo dφ.
Let the approximating process obtained from (6.2a.5) and (2) be

denoted by W, i.e.,

(3) W(t) := Σi Axni{I(ei < F^(t)) - t - K qo(t) #et)}, 0<t<l.

Define

(4) σ̂  := EoV2(ei),

go(t) := E0{I(ei < Fό1^)) - t} V<ei)

= /l(x < P?(t)) tfx) dFo(x), 0 < t < 1,

and, for 0 < t < u < 1,

(5) />0(t, u) := t(l-u) - K [qo(t)go(u) + go(t)qO(π)] + ^qo(t)qo(u)σ2.

Note that

(6) C0(t, u) := E o W t M u ) 7 } = po(t, u)I p x p , 0 < t < u < 1.

Let So := (ίfoh •••) Go?)' be a p-vector of independent Gaussian processes
each having the covariance function pO Thus, E^o(t)^o(u)7 Ξ Co(t, u).

Since po is continuous, (?oe{£[O, 1]}P. Moreover, from Corollary 2.2a.l
applied p time, j t h time to the entities Xni = ei, Fni = F o and dni Ξ (i,j)th
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entry of AX, l<j<p, l<i<n, and from the uniform continuity of qo it readily
follows that

(7) W => 60 in [{D[0, I]}1

Now, let fn be a density estimator based on {eni :=Yni - XniA l<i<n}

and F n be the corresponding d.f.. Let {eni; l<i<n} represent i.i.d. F n

r.v.'s, i.e., {eni; l<i<n} is a random sample from the population F n .

Because F n is continuous, the resampling procedures based on it are usually
called smooth bootstrap procedures. Let

(8) Yni : = Xnij? + βni, 1 < i < n.

Define the bootstrap estimator β to be a solution seKp of the equation

(9) Σi Axni {^Yni - XniS) - En^n l ) } = 0.

where En is the expectation under F n . Let P n denote the the bootstrap

probability under F n . Finally, define

(10) £*(t, u) := Σi Axni I(eni < K\t) + xήiAu), 0 < t < 1, π e Rp,

and the vector of bootstrap w.e.p.'s

(11) W*(t) := Σi Axni {I(Yni - xήi^* < Fn^t)) - t}, 0 < t < 1.

We also need

(12) W*(t) := Σi Axni{I(eni < Fή^t)) - t}, 0 < t < 1.

Our goal is to show that W* converges weakly to QQ in [{D[0, l]}p,y], a.s..
Here a.s. refers to almost all error sequences {e\; i > 1}. We in fact have the
following

Theorem 6.2b.l. In addition to (1.1.1), ff0, (Fol), (F02), (NX) and (1),
assume that 'φ is a bounded nondecreasing right continuous score function
and that the following hold.

(13) For almost all error sequences {e\; i>l}, fn(x)>0 for almost αZ/x6R, n>l.

(14) | | ίn-fo | | β — 0, a.s., (P.).

Then, V 0 < B < α>,

(15) sup | | * ( t , u) - ^ ( t , 0) - uf n (F^(t)) | | = op(l), (Pn), a.s.,
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where the supremum is over 0 < t < 1, ||u|| < B.
Moreover, for almost all error sequences {e\\ i > 1},

(16) k\β -β) = -knΣi A x n i ί ^ i ) - Eπ^e^)} + op(l), (Pn),

and

(17) W* * g0 in [{D[0, 1 ] }V] ,

where kn := 1 / Γfn d^

Proof. Fix an error sequences {ei; i > 1} for which

(14*) fn(x) > 0, for almost all xεK, and ||fn - fo|| —» 0.

The following arguments are carried out conditional on this sequence.
Observe that «S*(t, u) is a p-vector of w.e.p.'s Sd(t, u) of (2.3.1)

whose j t h component has various underlying entities as follows:

( 1 8 ) X n i = e n i , F n i = F n , C n i = A x n i , d n i = a ί . x X n i , l < i < n

where, as usual, a(j) = j t h column of A, 1 < j < p.
Thus, (15) follows from p applications of Theorem 2.3.1, j t h time

applied to the above entities, provided we ensure the validity of the
assumptions of that theorem. But, fo uniformly continuous and (14) readily

implv that {fn, n > 1} satisfies (2.3.3a,b). In view of (2.3.33), (2.3.34) and
(NX), it follows that all other assumptions of Theorem 2.3.1 are satisfied.
Hence, (15) follows from (2.3.6). In view of (13) we also obtain, from (2.3.7),

(19) sup ||5o*(χ, u) - *o*(X) o) - πfn(x)|| = op(l), (Pn),

where 5°*(x, u) = «S*(Fn(x), π) and where the supremum is over XGR, | |U| |<B.
Now, (16) follows from (19) in precisely the same fashion as does (4.2a.8)
from (2.3.7).

From (11), (15), (16) and (31) below, we readily obtain that, under P n ,

(20) W*(t) = Σi Axni{I(eni < F ή ^ ) ) - t- ^n

+ op(l),

where qn := ^(Fή 1 ) .

In analogy to (4) and (5), let gn, pn stand for g0, po after F o is

replaced by F n in these entities. Thus

(21) gπ(t) := En{I(e^i < Fή1^)) - t} V<eni)

= / l ( x < Fn^t)) ^<x) dFn(x), 0 < t < 1,
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and, for 0 < t < u < 1,

(22) pn(t, u) := t(l-u) - Mqn(t)gn(u)+gn(t)qn(u)] + «ίίqn(t)qn(u)σn.

where σl := E n [^e n i ) - E n ^ e n i ) ] 2 .

Let W*(t) denote the leading r.v. in the r.h.s. of (20). Observe that,

(23) Cn(t, u) := En{W*(t)W*(u)'} = pΏ{t, u) I p x p , 0 < t < u < 1.

(24) Claim: pn(t, u) —» po(t, u), V 0 < t < u < 1.

To prove (24), note that (14*) and Scheffe's Theorem (Lehmann, 1986,
p573) imply that for the given error sequence {ei i > 1},

(25) δn := | |F n - P 0 | | B - 0,

which, together with the continuity of Fn, yields

(26) w p β $ t S i | F β ( P Λ t ) ) - t | — 0.

Also, observe that

ί Λ -fo(FΛt))| < || fπ -fβ||B - 0,

by (14*), and that,

IfoίFn^t)) - fo(F~Q\t)) I Ξ I qo(F0(F^(t))) - qo(t) |, V 0 < t < 1.

Hence, by (26) and the uniform continuity of qo, which is implied by (F o l),

(27) sup o ί t ί i | q n ( t ) -qo( t ) | - ^ 0.

Next, let gn(t) = J l ( F n ( x ) < t ) φ ) f o ( x ) dx, 0 < t < 1. Upon

rewriting gn(t) = J l ( F n ( x ) < \)ψ(x)in(x) dx, from (14*), Scheffe's Theorem

(Lehmann: 1986, p 573) and the boundedness of ψ, we readily obtain that

?π(t) " gn(t) I < / 1 fπ(x) - fo(x) I dx - ^ 0.

But, the inequality F0(x) - ί n < Fn(x) < F0(x) + ί n for all x, implies that

|gn(t) " gθ(t)| < ll^ll^ / l ( F 0 ( x ) - in < t < Fo(x) + δn) dF0(x),

< ll^ll 25 n , v o < t < l .
00

Hence, by (25),
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(28) s u p o ί t ί i | g n ( t ) - g o ( t ) | -4 0.

Again by the boundedness of ψ, (14*) and (25), one readily concludes that

(29) kn —ι K, σl - * σ2.

Claim (24) now readily follows from (27) - (29).

Now recall (12) and rewrite W* as

(30) W*(t) = W*(t) - kn qn(t) Σi Axni [fle^) - E ^

Observe that because

Enpi Axni Me*i) - En^elOHI2 = p σ2,

by (29) and the Markov inequality it follow that

(31) p i Axni [<ψ{eni) - En^OlH = Op(l), (Pn).

Apply Corollary 2.2a.l p times, j t h time to the entities given at (18), to
conclude that

lim lim supn Pn( sup | W*(t) - W*(s) | > η) = 0.
O |t-s|<77

This together with (31), (30), (27) and the uniform continuity of F o implies

that the sequence of processes {W*} is tight in the uniform metric ^ and

all its subsequential limits must be in {C[0, 1]}P. Now, (17) follows from
this, Claim (24), (20), (13), (14) and (6). α

Remark 6.2b. 1. One of the main consequences of (17) is that one can
A *

use the bootstrap analogue of D3, v.i.z., D3 := sup{||W*(t)||, 0<t<l} to
carry out the test Ho. Thus an approximation to the the null distribution of

D3 is obtained by the distribution of D3 under P n . In practice it means to

obtain repeated random samples of size n from F n , compute the frequency

distribution of D3 from these samples and use that to approximate the null

distribution of D3. At least asymptotically this converges to the right

distribution. Obviously the smooth bootstrap distributions for Di, E>2 can be
obtained similarly.

Reader might have realized that the conclusion (17) is true for any

sequence of estimators {/?}, {β } satisfying (2) and (16). D
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6.3. L2-DISTANCE TESTS

Let K° and K2, respectively, stand for the Ki and K of (5.2.5) and

(5.2.7) after the d.f.'s {Hni} there are replaced by Fo. Thus, for GeDI(R),

(1) K Ϊ ( t ) : = / { W ϊ(y,t)}2dG(y),

KS(t):=/| |W°(y,t) | | 2dG(y), t e Rp,

where W° is as in (6.1.3) and

(2) W?(y, t) := n^2[Έa(γ, t) - F0(y)], y e B, t € Rp.

Let β be an estimator of β and define the four test statistics

(3) K* := inf {Kj(t); t e Rp}, Kj := K^β), j = 1, 2.

The large values of these statistics are significant for testing Ho.

We shall first discuss the a.n.d.'s of K], j = 1, 2. Let W°( ), W°( )

stand for WΪ( ,j3) and W°( ,/3).

Theorem 6.3.1. Assume that (1.1.1), Ho, (NX), (5.5.68) - (5.5.70)
with F = Fo hold.

(a) //, in addition, (5.6a.lO) and (5.6a.ll) hold, then

(4) Kί - / {Wί(jr) - f.(y)
J fodG

(b) Under no additional assumptions,

(5) K*2 = /||W°(y) -fo(y)
J f odG

Proof. Apply Theorems 5.5.1 and 5.5.3 twice, once with D = n ' (1,
0, ..., 0] and once with D = XA, and the rest of the entities as follows:

(6) Yni Ξ e n i, H n i Ξ F 0 = F n i , G n Ξ G.

The theorem then follows from (5.5.28), (5.6a.5), (5.6a.l2) and some algebra.
See also Claim 5.5.2. α

Remark 6.3.1. Perhaps it is worthwhile repeating that (5) holds
without any extra conditions on the design matrix X. Thus, at least in this
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* *

sense, K2 is a more natural statistic to use than Ki for testing Ho.

A consequence of (4) is that even if βι of (5.2.4) is asymptotically

non—unique, Ki asymptotically behaves like a unique sequence of r.v.'s.
Moreover, unlike the Di-statistic, the asymptotic null distribution of Ki
does not depend on the design matrix among all those designs that satisfy the
given conditions.

The assumptions (5.6a.lO) and (5.6a.ll) are restrictive. For example,
in the case p = 1, (5.6a.lO) translates to requiring that either x\χ > 0 for all

i or xii < 0 for all i. The assumption (5.6a.ll) says that x Φ 0 or can not

converge to 0. Compare this with the fact that if x s 0 then the asymptotic

distribution of Di does not depend on the preliminary estimator β. π

Next, we need a result that will be useful in deriving the limiting
distributions of certain quadratic forms involving w.e.p.'s. To that effect, let

(K, G) be the equivalence classes of measurable functions h: R to Rp such

that | h | * := J||h|| dG < αo. The equivalence classes are defined in terms of

the norm | | G In the following lemma, {ai; i > 1} is a fixed orthonormal

basis in L2(R, G).

Lemma 6.3.1. Let {Zn, n > 1} be a sequence of p-vector stochastic
processes with EZn = 0, Cov(Zn(x), Zn(y)) := Kn(x, y) = ((Kni j(x, y))),
1 < i, j < p, x, y e R. In addition, assume the following:

There is a covariance matrix Junction K(x, y) = ((Kij(x, y))), and a
p-vector mean zero covariance-K Gaussian process Z such that

p p

(i) (a) .Σ /K n j j (x, x)dG(x) < o , n > 1. (b) .Σ /KJJ(X, x)dG(x) < ».

(ii) .Σt /K n j j (x, x)dG(x) - , lt /Kjj(x, x)dG(x).

(iii) For every m > 1,

σ zήaidG,..., ΓzήamdG) —* ( Γz'aidG, ..., Γz'amdG);

(iv) For each i > 1,

E(/zήaidG)2-»E

Then, Zn, Z belong to L?(R, G), and

(7) Zn => Z m La(R, G).
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Proof: In view of Theorem VI.2.2 of Parthasarthy (1967) and in view
of (iii), it suffices to show that for any e > 0, there is an N (= Ne) such
that

(8) s u p n E ^ N ( / z ή a i d G ) 2 < e.

Because of the properties of {ai}, Fubini and (i),

(9) lmi /κ n j j (x, x)dG(x) = E|Z n |I = £ E(/z; a idG) 2,

(10) lmi /Kjjίx, x)dG(x) = E | Z | 2 = . | i E ( / z ' a i d G ) 2 .

Thus, to prove (8), it suffices to exhibit an N such that

(11) supn . | N E ( / z ; a i d G ) 2 < e.

By (ii), (9) and (10), there exists Nie such that

(12) I E ( j X a i d G ) 2 < % E(fzΆiάG)2 + e/3, n > Nie.

By (i)(b) and (10), there exists N(= N«) such that

(13) | H E ( / z ' a i d G ) 2 < e / 3 .

By (iv), there exists N2e such that

(14) ^ E ( / z ' a i d G ) 2 < .^H E ( / z U i d G ) 2 + e/3, n > N2e.

Therefore, from (12) - (14), with N = Ne := NlfVN2e ,

+ c/3 < c.

Use (i)(a) to take care of the case n < Ne. This proves the result. o

Remark 6.3.2. Millar (1981) contains a special case of the above lemma
where p = 1, Zn is the standardized ordinary e.p. and Z is the Brownian
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bridge. The above lemma is an extension of Millar's result to cover more
general processes like the w.e.p.'s under general independent setting. In
applications of the above lemma, one may choose {a j to be such that the
support Si of ai has G(Si) < α>, i > 1 and such that {ai} are bounded, D

Corollary 6.3.1. (a) Under the conditions of Theorem 6.3.l(a),

(15) K* -* f {B(F0) - fo ί*(Fo)fodG}2 d G = : ^ ( s a y )

JfodG

(b) Under the conditions of Theorem 6.3.l(b),

κ*2 -j /iiacp.)-fo i^o) f o dG | | 2 = : ^ ( s a y )

J dG

Here B, B are is as in (6.2a.7), (6.2a.8).

Proof: (b) Apply Lemma 6.3.1, with ai as in the Remark 6.3.2 above,

to

Z n = wo_lW!fodG. fθ ) z = B ( F o ) _ ί * ( F o ) f o d G . f o

Jf?dG Jf?dG

Direct calculations show that EZn = 0 = EZ, and V x, y € R ,

Kn(x, y) := EZn(x)Z;(y) = I p φ i(x, y) = K(x, y) =: EZ(x)Z(y),

where, for x, y e K ,

φc, y) := k(x, y) - a'^y)J'k(x, s) dφ) - ^ίf0(y)fί(γ) s)

k(x,y):=Fo(xΛy)-Fo(x)Fo(y), tfx) = / fodG, a = #»).
- t D

Therefore, (5.5.68), (5.5.69) imply (i), (ii) and (iv). To prove (iii), let
λi, ..., λm be real numbers. Then,

dG - 1 ^ 1 • / b d^ =: h(W°), (say),

where b := J5 λjaj. Because ψ and bdG are finite measures, h(W°) is a

uniformly continuous function of W°. Thus by Lemma 6.2a.2 and Theorem
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5.1 of Billingsley (1968), h(W°) —> h(B(F0)), under Ho and (NX). This
d

then verifies all conditions of Lemma 6.3.1. Hence Zn =* Z in L2(K, G). In

particular J| |Zn | |2dG —> J||Z||2dG. This and (5) proves (16). The proof of
d

(15) is similar. α

Remark 6.3.3. The r.v. Ui can be rewritten as

JfodG

Recall that Ui is the same as the limiting r.v. obtained in the one sample
location model. Its distribution for various G and Fo has been
theoretically studied by Martynov (1975). Boos (1981) has tabulated some

critical values of Ui when dG = {F0(l — Fo)}~ dF0 and F o = Logistic.
From Anderson—Darling or Boos one obtains that in this case

U, = / V(t)(t(l -1))"1* - βt/iWdt)2 = Σ N2/j(j + 1)
•̂  0 0 J — ^

where {Nj} are i.i.d. N(0, 1) r.v.'s. From Boos (Table 3), one obtains the
following

Table Π

a

tα

.005

1.710

.01

1.505

.025

1.240

.05

1.046

In Table II, tα is such that P(ϋ"i > tα) = α. For some other tables see
Stephens (1979).

The r.v. £3*2 can be rewritten as

ϋ 2 :=
JfodG

which is a sum of p independent r.v.'s identically distributed as Ui. The
distribution of such r.v.'s does not seem to have been studied yet. Until the

distribution of U2 is tabulated one could use the independence of the
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summands in U2 and the bounds between the sum and the maximum to
obtain a crude approximation to the significance level.

For p = 1, the a.n.d. of Ki and K2 is the same but the conditions under

which the results for Ki hold are stronger than those for K2. α

The next result gives an approximation for Kj, j = 1, 2. It also follows
from Theorem 5.5.1 in a fashion similar to the previous theorem, and hence
no details are given.

Theorem 6.3.2. Assume that (1.1.1), # 0 , (NX), (5.5.68) - (5.5.70)
with F Ξ F 0 and (6.2a.3) hold. Then,

(17) Ki = /[W%r) + n 1 ' 2 xA A " 1 ^ - /7)fo(y)]2dG(y) + op(l).

K2 =

From this we can obtain the asymptotic null distribution of these

statistics when β is estimated efficiently for the large samples as follows.
Recall the definition of {si} from (6.2a.l3) and let

7i(y) := I(eι < y) - F0(y) + nx'ίx'x)" 1^ βiifr

αi(y) := I(βi < y) - F0(y) + SiJ^foίy), § 1 < i < n, y e R,

α = (αi,.... αn) , 7 = (Ti, - , 7n)

Also, define

(19) Znl(y) := Wfly) + n^x'AAx's/ό^y) = n~1/2J i7i(y)

Zn2(y) := W°(y) + AX's/ΛoCy) = Ax' α(y), y e R.

From Theorem 6.3.2 we readily obtain the

Corollary 6.3.2. Assume that (1.1.1), #o, (NX), (5.5.68) - (5.5.70)
with F = Fo, (6.2a.l2) and (6.2a.l4) hold. Then,

(20) K, =

(21) K2 = / | | Z n 2 | | 2 d G

Next, observe that for y < z,
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Knl(y, z) := Cov(Znl(y), Znl(z))

= F0(y)(l-F0(z)) -

Kn2(y, z) := EZn2(y)zή2(z)

= {F0(y)(l - Fo(z)) - M Σ ] M z l } i p φ = : r o ( y,

Now apply Lemma 6.3.1 and argue just as in the proof of Corollary 6.3.1 to
conclude

Corollary 6.3.3. (a). In addition to the conditions of Corollary 6.3.2,
assume that

(22) n x ' ί x ' x ) " 1 ! — c, | c | < QD.

Then,

(23) K!
d

where Z\ is a Gaussian process in L2( θί, G) with the covaήance function

(24) Ktfx, y) := F0(x)(l - F0(y)) - cfo(x)fo(y) h\ x < y.

(b) Under the conditions of Corollary 6.3.2,

(25) K 2 - ^ / | | r 0 | | 2 d G

where YQ is a vector of p independent Gaussian processes in L2(R, G) with
the covaήance matήx Γo Ipxp. •

Remark 6.3.4. Again, observe that the test statistic Ki based on the
ordinary empirical of the residuals has an a.n.d. which is design dependent

whereas the a.n.d. of the test based on the weighted empiricals K2 is design
free. In fact, for p = 1, the limiting r.v. in (25) is the same as the one that
appears in the one sample location model. For G = F o = N(0, 1) d.f.,
Martynov (1976) has tabulated the distribution of this r.v.. Stephens (1976)
has also tabulated the distribution of this r.v. for G = Fo, dG = dGo =

{F0(l - F0)}"1dF0, and for F o = N(0, 1). For G = Fo, F o = N(0, 1) d.f.,
Stephens and Martynov's tables generally agree up to the two decimal places,
though occasionally there is an agreement up to three decimal places. In any
case, for p = 1, one could use these tables to implement the test based on

K2, at least asymptotically, whereas the test based on Ki, being design
dependent, can not be readily implemented. For the sake of convenience we
reproduce some of the Stephens (1976, 1979) tables below.
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Table m

Fo = N(0,1)

0.10 .025 .05 .10

K 2(F 0)

K 2(G 0)

.237

1.541

.196

1.281

.165

1.088

.135

.897

In Table IΠ, K2(G) stands for the K2 with G being the integrating

measure. K2(Go) is the K2 with the Anderson—Darling weights. Table III
is, of course, useful only when p = 1. D

As far as the asymptotic power of the above L2~tests is concerned, it is
apparent that Theorems 5.5.1, 5.5.3 and Lemma 6.3.1 can be used to deduce
the asymptotic power of these tests against fairly general alternatives. Here

we shall discuss the asymptotic behavior of only Kj, j = 1, 2 under the
heteroscedastic gross errors alternatives. More precisely, suppose that

(26) F n i = (1 - ί n i )F 0 + ίniFi, 0 < δni < 1,

a fixed d.f. Let

:= n " 1 / 2 - Fo), m2 :=

0,

- Fo).

Lemma 6.3.2. Let (1.1.1) hold with eni having the d.f. Fni given by
(26), 1< i < n. Suppose that X satisfies (NX); (Fo, G) and (Fh G) satisfy
(5.5.68) - (5.5.70) and that

(27) / | F 1 - F 0 | d G < α » ,

(a) //, in addition, (5.6a.lO) and (5.6a.ll) hold, then

(28)

provided

(29)

*t = f {
J

- f 0
J f o d G

n" 1 / 2 Σi όni = 0(1).

(b) Without any additional conditions,
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(30) K2 = /||W° + m2-f0 ί(W° +m 2 ) fodG | | 2 d G + ^

j{ o dG

provided

(31) ΣiAx n i ί n i = O(l).

Proof. Apply Theorem 5.5.1 and (5.5.49) to D = n~1 / 2[l, 0, ..., 0],
Yni = eni, Hni = Fo, {Fni} given by (26) to conclude (a). Apply the same
results to D = AX and the rest of the entities as in the proof of (a) to
conclude (b). •

Now apply Lemma 6.3.1 to

(30) Zn := W° + m i - fi o ΐ ,
JfodG

Z := B(Fo) + a i ( F l - Fo) - fo ί W ) + a i ( F t - Fo)}fodG

JfodG

where ai := lim supn n ' Σ\ #ni> to obtain

Corollary 6.3.4. Under the conditions of Lemma 6.3.2(a),

K* —» J z 2 d G , where Z is as in (30).

Similarly, apply Lemma 6.3.1 to

(31) Z n : = W + m 2 f o
JfodG

Z:= , ) ^ 2 >

JfodG

where a2 = lim supn Σi Axniίni, to obtain

Corollary 6.3.5. Under the conditions of Lemma 6.3.2(b),

K 2 - ^ / | | Z | | 2 d G , where Z is as in (31). α

An interesting choice of δn\ = p~ ' ||Axni||. Another choice is

ίni = n~1 / 2. Both a priori satisfy (26), (29) and (31). D
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6.4. TESTING WITH UNKNOWN SCALE

Now consider (1.1.1) and the problem of testing Hi of (6.1.4). Here

we shall discuss the modifications of Dj, Kj, j = 1, 2, of Sections 6.2, 6.3

that will be suitable for Hi. With W°, W° as before, define

(1)

D 2 (a,π):=sup y |W°(ay,u) |,

Krfa, n) := /{W^(ay, u)}2dG(y),

K2(a, u) := /1|W°(ay, n)||2dG(y), a > 0, u e Rp.

Let (σ, $) be estimators of (σ, 0), Dj and Kj stand for Dj(σ, β) and

Kj(σ, β), respectively, j = 1, 2. The following two theorems give the a.n.d.'s
of these statistics. Theorem 6.4.1 follows from Corollary 2.3.4 in a similar
fashion as does Theorem 6.2.1 from Corollaries 2.3.3 and 2.3.5. Theorem
6.4.2 follows from Theorems 5.5.8 in a similar fashion as does Theorem 6.3.2
from Theorem 5.5.1. Recall the conditions (Fol) and (F03) from Section 2.3.

Theorem 6.4.1. In addition to (1.1.1) and Hu assume that (NX), (Fol),
(F03) and the following hold.

(2) (a) In^σ-σJ^I-OpCl). (b) flA^-flH = Op(l).

Then,

D t = sup IW,(t) + qo(t){n1/2ϊ;>(£-# + n 1 / 2(σ -σ)Fo1(t)}σ~1| +

and

D2 = sup ||W(t) + qoί tJ ίA" 1 ^^) + n1/2A5En n 1 / 2 (5 -σ)Fo1(t)}σ"1 | |

where now Wj(-) := W^σFo^ ), β) and W( ) := ^ ( σ F o ^ ), β)

Theorem 6.4.2. In addition to (1.1.1) and Hi, assume that (NX), (2),
(5.5.69) with F = Fo, and the following hold.

(3) Fo has a continuous density U such that

(a) 0 < βγ\ J %)dG(y) < ., j = 0, k = 1, 2; j = 2, k = 2.
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(b) lim Urn supn / % + τ n 1/2+s)dG(y) =f§ dG(y), k = 1, 2, τ€R.

(c) l im/ |y |fo(y(l+s))dG(y) = / |y| fo(y)dG(y).lim

Then,

Ki = f[WΪ(σy, β)

, β)

Clearly, from these theorems one can obtain an analogue of Corollary

6.3.2 when (σ, β) are chosen to be asymptotically efficient estimators.
As is the case in the classical least square theory or in the

M-estimation methodology, neither of the two dispersions Ki(a, u) and
K^a, π) can be used to satisfactorily estimate (σ, β) by the simultaneous
minimization process. The analogues of the m.d. goodness-of-fit tests that

should be used are inf{Kj(σ, π); ueKp}, j = 1, 2. The methodology of
Section 5 may be used to obtain the asymptotic distributions of these
statistics in a fashion similar to the above. D

6.5. TESTING FOR SYMMETRY OF THE ERRORS

Consider the model (1.1.1) and the hypothesis Hs of symmetry of the errors

specified at (6.1.5). The proposed tests are to be based on DJS, j = 1, 2, 3, of

(6.1.6), (6.1.7), Kj(jfiT), and inf{K|(t); teRp}, j = 1, 2, where

(1) Kl(t) := /{Wl(y, t)}2dG(y), K^(t) := / ^ ( y , t)||2dG(y),

with Wj and W* as in (6.1.7) and (6.1.9). Large values of these statistics
are considered to be significant tor Hs.

Although the results of Chapters 2 and 5 can be used to obtain their
asymptotic behavior under fairly general alternatives, here we shall focus
only on the a.n.d.'s of these tests. To state these, we need some more
notation. For a d.f. F, define

(2) F + (y) :=F(y)-F(-y), y > 0.

Then, with F~ denoting the usual inverse of a d.f. F, we have
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( 3 ) F + ^ t ) = F ^ ( l + t ) ^ ) , - F + ^ t ) = F 1 ( ( l - t ) / 2 ) , 0 < t

for all F that are continuous and symmetric around 0. Finally, let

(4) w!(t) := WKFTV), 0), W*(t) := W^FT^t), β),

q+(t) := fCFT^t)), 0 < t < 1.

We are now ready to state and prove

Theorem 6.5.1. In addition to (1.1.1), H8 and (NX), assume that F in

Hs and the estimator β satisfy (Fl) and

(5) \\k\β-0)11 = 0^1), under Hs.

Then,

(6) Da = sup I W*i(t) + 2q*(t) n ^ i U A'Xβ-β)] + o p(l),

(7) D2 S = ^ IW*(t) + 2q*(t) A-\β

and

(8) D3 S = o | u ? i ||W*(t) + 2q*(t) A-\β

Proof. The proof follows from Theorem 2.3.1 in the following fashion.
The details will be given only for (8), as they are the same for (7) and quite
similar for (6). Because F is continuous and symmetric around 0 and

because W^-, •) = W*(- , •)> D 3 s = sup W ^ F ^ t ) , β). But, from the
d OSt^l

definition (6.1.8) and (3), it follows that for a v e Rp,

W W ^ t ) , y)

= Σi Axni{I(eni < F ^ φ + ώ u ) + I(e n i < F " 1 ^ ) ^ ^ ) - 1 }

(9) = S ( ^ , n) + S ( ^ , n) - Σi Axni, 0 < t < 1,

where

S(t, u) := Σi Ax n i I(e n i < F - 1 (t) + cήiu), 0 < t < 1,

is a p—vector of Sd—processes of (2.3.1) with Xni = eni, Fni = F = H, cni =
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Axni, π = A (v — β) and where the j t h process has the weights {dni}
given by the j t h column of AX. The assumptions about F and X imply
all the assumptions of Theorem 2.3.1. Hence (8) follows from (3.2.6), (5) and
(9) in an obvious fashion. D

Next, we state an analogous result for the L2-distances.

Theorem 6.5.2. In addition to (1.1.1), #s> (NX) and (5), assume that F
in Hs and the integrating measure G satisfy (5.3.8), (5.5.68), (5.5.70) and
(5.6a. 13). Then,

(10) Kΐ(ft = / [Wl(y) + 2f(y) n 1 ' 2 ^ - β)]2άG(y) + op(l),

(11) K+

2(β) = J||W*(y) + 2f(y) A \β-1

lίΛere W"ϊ( ), W*( ) now stand for W|( , β), W*( , β).

Proof. The proof follows from two applications of Theorem 5.5.2, once

with D = n" ' [1, 0, ..., 0] and once with D = XA. In both cases, take
Yni and Fni of that theorem to be equal to eni and F, 1 < i < n,
respectively. The Claim 5.5.2 justifies the applicability of that theorem
under the present assumptions. α

The next result is useful in obtaining the a.n.d.'s of the m.d. test
statistics. Its proof uses Theorem 5.5.2 and 5.5.4 in a similar fashion as
Theorems 5.5.1 and 5.5.3 are used in the proof of Theorem 6.3.1, and hence
no details are given. Let

K := inf{Kj(t); teKp}, j = 1, 2.

Theorem 6.5.3. Assume that (1.1.1), Hs, (NX), (5.3.8), (5.5.68),
(5.5.70) and (5.6a. 13) hold.

(a) //, in addition, (5.6a.lO) and (5.6a.ll) hold, then

(12) Ki = 2 f "{w^y) -f(y)/"wϊfdG ( / V d G Γ ^ d G + op(l).
0 0 0

(b) Under no additional assumptions,

(13) K2 = 2 f *||W*(y) - f(y) Γ"w*fdG
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To obtain the a.n.d.'s of the given statistics from the above theorem we
now apply Lemma 6.3.1 to the approximating processes. The details will be

s s
given for K2 only as they are similar for Ki. Accordingly, let

(14) Zn(y) := W+(y) - f(y) f "VfdG ( Γ VdG)" 1 , n > 1, y > 0.
•Ό Ό

To determine the approximating r.v. for K2 we shall first obtain the
covariance matrix function for this Zn, the computation of which is made
easy by rewriting Zn as follows.

Recall the definition of ^ from (5.6a.2) and define

<*i(y) : = I( e i i y) + I( e i i ~y) " 1> ye"^) &i := Γ αi d^, I < i < n;

Ό
GO

α' := (αi, ..., αn); α' := (άi, ...., αn); a := f

Then

(15) Zn(y) = AX' [α(y) - f(y)α a" 1 ], y > 0.

Now observe that under Hs, Ea = 0, Έaι(x)aι(y) = 2 (l-F(y)), 0 < x <
y, and, because of the independence of the errors,

(16) Eα(x)α(y) = 2(1-F(y)) I p x p , 0 < x < y.

Again, because of the symmetry and the continuity of F and Fubini, for y>0,

< -x)-l] dtfx)
0

Q0

= / [F(xΛy)+F(-xΛy)-F(y)+F(xΛ-y)+F(-χΛ-y)-F(-y)]

f"= 2 f"[Hχ) - φ)] dF(x) =: k(y), say.

The last equality is obtained by integrating the second expression in the
previous one by parts. From this and the independence of the errors, we
obtain

Eo(y)α' = k(y) I p x p , y > 0.
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Similarly,

Eαα' = I p x p 4 / " f"(l-F(y)) <MKx)<MKy) =: I p x p r(F,G), say.

From these calculations one readily obtains that under Hs, for 0 < x < y,

(17) Kn(x, y) := EZn(x)Z;(y)

= [2(1-F(y)) - KvΆxW1- HXΆYW1 * r(F,G)]Ipxp.

We also need the weak convergence of W* to a continuous Gaussian
process in uniform topology. One way to prove this is as follows. By (16),

(18) EW+MW^y)' = 2(1 - F(y)) I p x p , 0 < x < y,

From the definition (6.1.9) and the symmetry of F,

(19) W ( y ) = Σi Ax n i {I(e n i < y) - I(-e n i < y)}

= Σi Ax n i {I(e n i < y) - F(y)} - Σi Ax n i {I(-e n i < y) - F(y)}

+ Σi Ax n i l(-e n i = y)

(20) = ftfy) - %{y) + Σi Ax n i l (-e n i = y) , say, y > 0.

Now, let Ή' := (IVι, #2, ..., ^ p ) be a vector of independent Wiener
processes on [0, 1] such that Jf(O) = 0, E* = 0, and E^j(s)^j(t) = sΛt, l<j<p.
Note that

E^2(l-F(x)))^2(l-F(y)))' = 2(1-F(y)) I p x p , 0 < x < y.

From (18) and (19), it hence follows, with the aid of the L-F CLT and
the Cramer—Wold device, that under (NX), all finite dimensional

distributions of W* converge to those of )f(2(l-F)).
To prove the tightness in the uniform metric, proceed as follows. From

(20) and the triangle inequality, because of (NX), it suffices to show that Wί
and W2 are tight. But by the symmetry and the continuity of F,

{ * ( y ) , yeK} = {*5(y), yeR} = { ^ ( F " 1 ^ ) ) , o<tα}.

But, W\(F~ ) is obviously a p-vector of w.e.p.'s of the type Wd specified at
(2.2a.33). Thus the tightness follows from (2.2a.35) of Corollary 2.2a.l. We
summarize this weak convergence result as

Lemma 6.5.1. Let F be a continuous d.f. that is symmetric around 0
and {eni, l<i<n} bei.i.d. F r.v. 's. Assume that (NX) holds. Then,
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The above discussion suggests the approximating process for the Zn of
(16) to be

(21) Z(y) := *(2(l-F(y)))-f(y)/ o>2(l-F))fdG ( J ^ d G ) " 1 , y>0

Straightforward calculations show that Kn(x, y) = EZ(x)Z(y), 0<x<y, n>l.
This then verifies (i), (ii) and (iv) of Lemma 6.3.1 in the present case.
Condition (iii) is verified as in the proof of Corollary 6.3.l(b) with the help of
Lemma 6.5.1. To summarize, we have

Corollary 6.5.1. (a) Under the conditions of Theorem 6.5.3(a),

(22) K't - f 2/o

t"[?)'1(2(l-F(y)))-f(y)/o

tDy1(2(l-F))fdG ( / ^ d G Γ ^ d G f r ) .

(b) Under the conditions of Theorem 6.5.3(b),

(23) K2 —• 2 f ||Z||2dG(y), with Z given at (21). π
d *Ό

Remark 6.5.1. The distributions of the limiting r.v.'s in (22) and (23)
have been studied by Martynov (1975, 1976) and Boos (1982) for some F
and G. An interesting G in the present case is G = λ. But the
corresponding tests are not a.d.f.. Also because the F in Hs is unknown,
one can not use G = F or the Anderson—Darling integrating measures dG
= dF/{F(l-F)} in these test statistics.

One way to overcome this problem would be to use the signed rank
analogues of the above tests which is equivalent to replacing the F in the

integrating measure by an appropriate empirical of the residuals {Ynj-xnju;

1 < j < n} Let Rtu denote the rank of |Yni-Xniu| among {|Ynj-xnju|; 1
< j < n}, 1 < i < n, and define

, u) := n" 1 / 2 Σi I(Rtu < nt) sgn(Yni-xήiu),

lS(t, u) := A Σi x n i I(Rtu < nt) sgn(Yni-Xπiu), 0 < t < 1, u e Rp.

s s s

The signed rank analogues of Ki, K2 statistics, respectively, are κ\ :=

^π); ueRp}, JC? := inf{r2(u); u€Kp}, where

i(u) := f\z\{t, u)]2dL(t), *2(u) := / ^ ( t , π)||2dL(t), u e Rp,
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with L G DI[0, 1]. If L(t) = t then £j, j =1, 2, are analogues of the
Cramer—Von Mises statistics. If L is specified by the relation dL(t) =
{l/t(l—t)}dt, then the corresponding tests would be the Anderson—Darling
type test of symmetry.

Note that if in (3.3.1) we put d n i = n"1/2, Xn i Ξ en i, F n i = F, then Zd

of (3.3.1) reduces to t\. Similarly, ί^ corresponds to a p-vector of

Zd-processes of (3.3.1) whose j t h component has dni = ( j t h column of A)'xni
and the rest of the entities the same as above. Consequently, from (3.3.17)
and arguments like those used for Theorem 6.5.3, we can deduce the
following

Theorem 6.5.4. Assume that (1.1.1), Hs and (NX) hold] L is a d.f. on
[0, 1], and F of Hs satisfies (Fl), (F2).

(a) //, in addition, (5.6a.lO) and (5.6a.ll) hold, then

(24) jtf -j / Vi(t) - q+(t)/ V, q+dL
α •'o 0

(b) Under no additional assumptions,

(25) A - /o W ) -q*(t)/QVq*dL ^

where q*(t) := 2[f(F'"1((t+l)/2) -f(0)], 0 < t < 1. α

Clearly this theorem covers L(t) = t case but not the case where dLίt)
= {l/t(l—t)}dt. The problem of proving an analogue of the above theorem Jor
a general L is unsolved at the time of this writing. DD




