U-STATISTICS AND DOUBLE STABLE INTEGRALS

Joop Mijnheer Leiden University and University of North Carolina

Summary

We derive the tail behaviour of the double stable integral

$$I(h) = \iint_{0}^{11} h(x, y) X(dx) X(dy),$$

where X is a completely asymmetric stable process.

1. Introduction. First we shall show the relation between the double stable integral and a simple U-statistic. Let $\{X(t): 0 \le t < \infty\}$ be a completely asymmetric stable process with characteristic exponent $\alpha \in (0, 1)$ and $\beta = 1$. For the theory of stable distributions we refer to Gnedenko-Kolmogorov [GK 54], Breiman [Bre 68] or Feller[Fel 71]. A summary can be found in Mijnheer [Mij 75]. We use the notation as used in [Mij 75]. See [Mij 75] section 3.2 for a review of properties of stable processes. The random variables X_i , i = 1, 2, ... are i.i.d. and

have the same distribution as X(1). $X \stackrel{d}{=} Y$ means that X and Y have the same distribution. $X \in D(\alpha, \beta)$ (resp. $D_N(\alpha, \beta)$) means that X belongs to the domain of (resp. normal) attraction of the stable distribution with parameters α and β . Then we have

$$n^{-2/\alpha} \sum_{\substack{i=1\\ i\neq j}}^{n} \sum_{\substack{i=1\\ i\neq j}}^{n} X_{i}X_{j} \stackrel{d}{=} n^{-2/\alpha} \sum_{\substack{i\neq j}}^{n} \{X(i) - X(i-1)\} \{X(j) - X(j-1)\}$$
$$\frac{d}{2} \sum_{\substack{i\neq j}}^{n} \{X(in^{-1}) - X((i-1)n^{-1})\} \{X(jn^{-1}) - X((j-1)n^{-1})\}.$$

This quadratic form is in a natural way related to the double stable integral

$$I(h) = \iint_{0}^{11} h(x, y) X(dx) X(dy)$$
(1.1)

where the function *h* is given by

$$h(x, y) = \begin{cases} 1 & 0 \le x, y \le 1 \text{ and } x \ne y \\ 0 & \text{otherwise} \end{cases}$$
(1.2)

The existence of double stable integrals is proved in Szulga and Woyczynski [SW 83]. Easy to investigate are integrals where the function h is of the type

$$h(x, y) = \phi(x)\phi(y). \qquad (1.3)$$

For Wiener--Ito integrals we can restrict ourselves to functions h of this particular structure. See Denker [Den 85], lemma 2.2.3. In Section 3 we derive the tail behaviour of the integral (1.1) in the case h is defined by (1.2). In Section 4 we give the behaviour when h satisfies (1.3).

$$\sum_{i=1}^{n} \sum_{\substack{j=1\\ i\neq j}}^{n} X_{i}X_{j}$$
 is a (simple) example of a U-statistic. These U-statistics have

been introduced by Hoeffding [Hoe 48]. For the general theory of U-statistics see Serfling [Ser 80], Shorack and Wellner [SW 86] and a review of Dehling [Deh 85].

Next we summarize the limit behaviour of the mentioned U-statistic. We distinguish several cases.

Case I. X_i has a finite second moment. $EX_1 = \mu$ and $\sigma^2(X_1) = \sigma^2$.

Case Ia. The non-degenerate case: $\mu \neq 0$. We write $X_i = \mu + \sigma U_i$, i = 1,2, ...where U_i , i = 1,2, ... are i.i.d. with $EU_i = 0$ and $\sigma^2(U_i) = 1$. Then we have

$$Y_{n} = n^{-1} (n-1)^{-1} \sum_{i \neq j} X_{i} X_{j}$$

= $\mu^{2} + 2n^{-1} \mu \sigma \sum U_{i} + \sigma^{2} n^{-1} (n-1)^{-1} \left\{ (\sum U_{i})^{2} - \sum U_{i}^{2} \right\}.$ (1.4)

This implies

$$n^{1/2}(Y_n - \mu^2) = 2\mu\sigma n^{-1/2}(\sum U_i) + \sigma^2(n-1)^{-1}n^{-1/2}\left\{ \left(\sum U_i\right)^2 - \sum U_i^2 \right\}.$$
 (1.5)

It follows from the central limit theorem that the first term on the right hand side of (1.5) has a normal limit distribution with expectation 0 and variance $(2\mu\sigma)^2$. The second term on the right converges in probability to 0 for $n \to \infty$, by the central limit theorem and the law of large numbers.

Case Ib. In the **degenerate** case, i.e. $\mu = 0$, we have

MIJNHEER

$$Y_{n} = \sigma^{2} n^{-1} (n-1)^{-1} \left\{ \left(\sum U_{i} \right)^{2} - \sum U_{i}^{2} \right\}.$$
 (1.6)

Thus

$$nY_{n}\sigma^{-2} = (n-1)^{-1}n\left\{ \left(n^{-1/2}\sum U_{i}\right)^{2} - n^{-1}\sum U_{i}^{2}\right\}$$
(1.7)

which converges by the central limit theorem and the law of large numbers to a random variable $\chi_1^2 - 1$, where χ_1^2 has a chi-square distribution with one degree of freedom.

Case II. Let $X_1 \in D(\alpha, \beta)$ with $1 < \alpha < 2$. Then $\mu = EX_1$ exists and we can write $X_i = \mu + \sigma U_i$, where $EU_i = 0$ and σ is some scale parameter. (Remark that the variance of X_1 is infinite.)

Case IIa. In the non--degenerate case we have (1.4). Now there exists a slowly varying function h such that $n^{-1/\alpha}h^{-1}(n)\sum_{i=1}^{n}U_{i}$ converges in distribution to a sta-

ble random variable with distribution function $F(\cdot; \alpha, \beta)$. We write

$$h^{-1}(n) n^{1-1/\alpha} (Y_n - \mu^2) = 2\mu \sigma h^{-1}(n) n^{-1/\alpha} \sum_{i=1}^n U_i + n^{-1/\alpha} (n-1)^{-1} h^{-1}(n) \sigma^2 \left\{ (\sum U_i)^2 - \sum U_i^2 \right\} (1.8)$$

Thus the first term on the right hand side has a stable limit distribution. Since 1 $< \alpha < 2$ it follows that $n^{-1/\alpha} (n-1)^{-1} h^{-1} (n) (\sum U_i)^2$ converges to 0 in probability. The random variable $U_i^2 \in D(\alpha/2, 1)$; thus there exists a slowly varying function h_1 such that $n^{-2/\alpha} h_1^{-1} (n) \sum U_i^2$ converges in distribution to a stable random variable with distribution function $F(\cdot; \alpha/2, 1)$. Hence it follows that $n^{-1/\alpha} (n-1)^{-1} h^{-1} (n) \sum U_i^2$ converges in probability to 0.

General U-statistics in this case are considered in Malevich and Abdalimov [MA 77]. For many random variables $X_i \in D(\alpha, \beta)$ we can choose $h_1 = h^2$. But this is not in general true. From now on we restrict ourselves to those random

variables in the domain of attraction where we have $h_1 = h^2$. Case IIb. In the degenerate case we have

$$\sum_{i\neq j} \sum_{X_i} X_i X_j = \sigma^2 \left\{ \left(\sum U_i \right)^2 - \sum U_i^2 \right\}.$$

As in Case IIa and with the assumption made above, we have that the distribution of $n^{-1/\alpha}h^{-1}(n)\sum U_i$ converges weakly to $F(\cdot; \alpha, \beta)$ and the distribution of $n^{-2/\alpha}h^{-2}(n)\sum U_i^2$ to $F(\cdot; \alpha/2, 1)$. Thus the statistics $\sigma^{-2}n^{-2/\alpha}h^{-2}(n)\sum_{i\neq j}X_iX_j$ converge in distribution to the random variable $S_{\alpha}^2 - S_{\alpha/2}$, where S_{α} and $S_{\alpha/2}$ are <u>dependent</u> stable random variables with distribution functions $F(\cdot; \alpha, \beta)$ and $F(\cdot; \alpha/2, 1)$.

This is a special case of a theorem on products of stable random variables. See Avram and Taqqu [AT 86].

We delete the case $\alpha = 1$ for well-known normalizing difficulties.

Case III. $X_1 \in D(\alpha, \beta)$ with $0 < \alpha < 1$. The random variable X_1 has no finite expectation. This case is the same as Case IIb.

2. The Characteristic Function. In this section we consider i.i.d. positive random variables $X_1, X_2, ...$ with common distribution function G given by

$$1 - G(x) = x^{-\alpha} \quad x > 1 \quad 0 < \alpha < 1.$$
 (2.1)

Thus we have $X_1 \in D_N(\alpha, 1)$. Let $U_1, U_2, ...$ be i.i.d. uniformly distributed on (0,1). Thus $G^{-1}(U_1) \stackrel{d}{=} X_1$. Then we have

$$T_{n} = \sum_{i \neq j} \sum_{i \neq j} X_{i} X_{j} \stackrel{d}{=} \left\{ \sum_{i=1}^{n} G^{-1}(U_{i}) \right\}^{2} - \sum_{i=1}^{n} \left\{ G^{-1}(U_{i}) \right\}^{2}$$
$$\stackrel{d}{=} \left\{ \sum_{i=1}^{n} U_{i}^{-1/\alpha} \right\}^{2} - \sum_{i=1}^{n} U_{i}^{-2/\alpha}$$
$$= \left\{ \sum_{i=1}^{n} U_{(i)}^{-1/\alpha} \right\}^{2} - \sum_{i=1}^{n} U_{(i)}^{-2/\alpha},$$

where $U_{(1)} < , ..., < U_{(n)}$ a.s.

$$= 2U_{(1)}^{-1/\alpha} \left\{ \sum_{i=2}^{n} U_{(i)}^{-1/\alpha} \right\} + \left\{ \sum_{i=2}^{n} U_{(i)}^{-1/\alpha} \right\}^{2} - \sum_{i=2}^{n} U_{(i)}^{-2/\alpha}.$$

Given $U_{(1)} = u$ we have

$$T_{n} | U_{(1)} = u \stackrel{\underline{d}}{=} 2u^{-1/\alpha} \{ \sum_{i=2}^{n} \overline{U}_{i} \stackrel{-1/\alpha}{=} \} + \{ \sum_{i=2}^{n} \overline{U}_{i} \stackrel{-1/\alpha}{=} \}^{2} - \sum_{i=2}^{n} \overline{U}_{i} \stackrel{-2/\alpha}{=}$$
(2.2)

where $\overline{U}_2, ..., \overline{U}_n$ are i.i.d. and uniformly distributed on (u,1). \overline{U}_2 has a finite expectation and finite variance. We have for $u \downarrow 0$

$$\mu := E\overline{U}_2^{-1/\alpha} = (1-u)^{-1}\alpha (1-\alpha)^{-1} (u^{-(1-\alpha)/\alpha} - 1)$$
(2.3)

$$\sim (1-u)^{-1}\alpha (1-\alpha)^{-1} u^{-1/\alpha} + 1$$

and

$$\sigma^{2} := E\overline{U}_{2}^{-2/\alpha} = (1-u)^{-1}\alpha(2-\alpha)^{-1}(u^{-(2-\alpha)/\alpha}-1)$$
(2.4)
~ $(1-u)^{-1}\alpha(2-\alpha)^{-1}\upsilon^{-2/\alpha+1}.$

This implies that

$$\sigma^2(\overline{U}_2^{-1/\alpha}) \sim \sigma^2 \quad \text{for} \quad u \downarrow 0.$$

Given $U_{(1)} = u$, the random variable

$$V_{n-1} = \left(\sum_{i=2}^{n} \overline{U}_{i}^{-1/\alpha}\right)^{2} - \sum_{i=2}^{n} \overline{U}_{i}^{-2/\alpha}$$
(2.5)

is again a U-statistic. Define, for $i = 1, ..., n Y_i = \overline{U_i}^{1/\alpha} - \mu$. Then we have

$$V_{n-1} = EV_{n-1} + \mu (n-2) \sum_{i=2}^{n} Y_i + \sum_{\substack{i=2\\i \neq j}}^{n} \sum_{j=2}^{n} Y_i Y_j.$$
(2.6)

One easily computes for small u

$$E2n^{-2/\alpha}u^{-1/\alpha}\left(\sum_{i=2}^{n}\overline{U_{i}}^{1/\alpha}\right) \approx 2\alpha (1-\alpha)^{-1} (nu)^{-2/\alpha+1},$$
$$En^{-2/\alpha}V_{n-1} \approx \alpha^{2} (1-\alpha)^{-2} (nu)^{-2/\alpha+2},$$

260

$$\sigma^{2} \left(2u^{-1/\alpha} n^{-2/\alpha} \left(\sum_{i=2}^{n} \overline{U_{i}}^{1/\alpha} \right) \right) \approx 4\alpha \left(2 - \alpha \right)^{-1} (nu)^{-4/\alpha+1},$$
$$\sigma^{2} \left(n^{-2/\alpha} \mu \left(n - 2 \right) \sum_{i=2}^{n} Y_{i} \right) \approx c \left(nu \right)^{-4/\alpha+3}, \text{ for some constant c}$$

and

$$\sigma^2 \left(n^{-2/\alpha} \sum_{\substack{i=2\\i\neq j}}^n \sum_{j=2}^n Y_i Y_j \right) \approx (nu)^{-4/\alpha+2}.$$

We shall derive the characteristic function $(cf.) f^*$ of the limit distribution of

$$n^{-2/\alpha}T_{n}^{*} = 2n^{-2/\alpha}U_{(1)}^{-1/\alpha}\sum_{i=2}^{n}\overline{U_{i}}^{-1/\alpha} + n^{-2/\alpha}EV_{n-1}.$$
 (2.7)

In section 3 we shall give an estimate for the difference of this cf. f^* and the cf. f of the double stable integral for small values of the argument. For technical reasons we restrict ourselves to the case $\frac{1}{2} \le \alpha < 1$. See section 3.

One easily obtains that $n U_{(1)}$ converges for $n \to \infty$, in distribution to the exponential distribution. For $k_n \to \infty$ and $k_n = o(n)$ for $n \to \infty$ we have

$$P((nk_n)^{-1} < U_{(1)} < n^{-1}k_n) \to 1$$
(2.8)

for $n \to \infty$.

Take t > 0

$$Ee^{itn^{-2/\alpha}T_n^*} = E_{U_{(1)}} \left\{ Ee^{itn^{-2/\alpha}T_n^*} \mid U_{(1)} \right\}$$
$$= n \int_0^1 (1-u)^{n-1} \left\{ Ee^{itn^{-2/\alpha}T_n^*} \mid U_{(1)} = u \} du.$$

From (2.7) we have

$$E\left(e^{itn^{-2/\alpha}T_{n}^{*}} \mid U_{(1)} = u \right) = Ee^{2itn^{-2/\alpha}u^{-1/\alpha}\sum_{j=2}^{n}\overline{U}_{j}^{-1/\alpha}}e^{itn^{-2/\alpha}n(n-1)\mu^{2}}$$

$$= e^{itn^{-2/\alpha}n(n-1)\mu^2} \left\{ E e^{2itn^{-2/\alpha}\overline{U}_2^{-1/\alpha}} \right\}^{n-1},$$

where

$$Ee^{2itn^{-2/\alpha}u^{-1/\alpha}\overline{U}_2^{-1/\alpha}} = (1-u)\int_{u}^{1}e^{2itn^{-2/\alpha}u^{-1/\alpha}y^{-1/\alpha}}dy.$$

Consider the integral

$$I = (1-u)^{-1} \int_{u}^{1} (e^{2itn^{-2/\alpha}u^{-1/\alpha}y^{-1/\alpha}} - 1) dy$$

= $(1-u)^{-1} \alpha 2^{\alpha} t^{\alpha} n^{-2} u^{-1} \int_{2n^{-2/\alpha}u^{-1\alpha}t}^{2n^{-2/\alpha}t} (e^{i\nu} - 1) \nu^{-1-\alpha} d\nu.$

This integral is well-known in the derivation of the characteristic function of a stable random variable. We define

$$\phi(x) = \int_{0}^{x} (e^{iv} - 1) v^{-1 - \alpha} dv. \qquad (2.9)$$

We have

$$\phi(\infty) = -\alpha^{-1} \Gamma(1-\alpha) e^{-\pi i (\alpha/2)}. \qquad (2.10)$$

See Laha and Rohatgi [LR79] p. 333. Thus

$$f^{*}(t) = \lim_{n \to \infty} E e^{itn^{-2/\alpha}T_{n}^{*}}$$

$$= \lim_{n \to \infty} n \int_{(nk_{n})^{-1}}^{k_{n}n^{-1}} (1-u)^{n-1} (1+l)^{n-1} e^{it\alpha^{2}(1-\alpha)^{-2}(un)^{-2/\alpha+2}} du$$

$$= \lim_{n \to \infty} \int_{k_{n}^{-1}}^{k_{n}} e^{-nu} e^{nI} e^{it\alpha^{2}(1-\alpha)^{-2}(un)-2/\alpha+2} dnu \qquad (2.11)$$

$$= \int_{0}^{\infty} e^{-\gamma} e^{it\alpha^{2}(1-\alpha)^{-2}y^{-2/\alpha+2}} e^{\alpha 2^{\alpha}t^{\alpha}y^{-1}\phi(2ty^{-2/\alpha})} dy.$$

3. Tail Behaviour of the Stable Integral. In order to obtain the behaviour of the tail of the double stable integral we need the expansion of its cf. f near the

origin. We rewrite the cf. f^* given in (2.11). Let

$$\phi_1(x) = \int_0^\infty (\cos v - 1) v^{-1 - \alpha} dv \qquad (3.1)$$

$$\phi_2(x) = \int_0^x \sin v \ v^{-1-\alpha} dv \tag{3.2}$$

and let the function g_t be defined by

$$g_{t}(y) = \begin{cases} e^{-y} e^{\alpha 2^{\alpha} t^{\alpha} y^{-1} \phi_{1}(2t y^{-2/\alpha})} for & 0 < y < \infty \\ 0 & else \end{cases}$$
(3.3)

Then $\phi_1(\infty)$ and $\phi_2(\infty)$ follow from (2.10). We have

$$f^{*}(t) = \int_{0}^{\infty} e^{it\alpha^{2}(1-\alpha)^{-2}y^{-2/(\alpha+2)}} e^{i\alpha 2^{\alpha}t^{\alpha}y^{-1}\phi_{2}(2ty^{-2/\alpha})} g_{t}(y) \, dy.$$
(3.4)

Since for $y > (2t)^{\alpha/2}$ both $2^{\alpha}t^{\alpha}y^{-1}$ and $2ty^{-2/\alpha}$ are small, we easily obtain

$$\int_{(2t)^{\alpha/2}}^{\infty} g_t(y) \, dy = \int_{(2t)^{\alpha/2}}^{\infty} e^{-y} dy + O(t^{\alpha})$$
(3.5)

for $t_{\downarrow}0$. Obviously we have

$$\int_{0}^{\alpha 2^{\alpha} t^{\alpha}} g_t(y) \, dy = O(t^{\alpha}) \tag{3.6}$$

for $t \ 0$. Then

$$\int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} g_t(y) \, dy = \int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} \left\{ 1 - y + \alpha 2^{\alpha} t^{\alpha} y^{-1} \phi_1(2ty^{12/\alpha}) \right\} dy + \text{error.}$$
(3.7)

Using the definition of ϕ_1 and by partial integration we obtain

$$\alpha \int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} y^{-1} \phi_1(2ty^{-2/\alpha}) \, dy = 2 \int_{1}^{\alpha^{-2/\alpha} 2^{-1} t^{-1}} z^{-1} \phi_1(z) \, dz$$
$$= 2 \phi_1(\alpha^{-2/\alpha} 2^{-1} t^{-1}) \log(\alpha^{-2/\alpha} 2^{-1} t^{-1}) + O(t^{\alpha}) \text{ for } t \downarrow 0.$$

With similar calculations as above we show that the error in the right hand side

MIJNHEER

of (3.7) is $O(t^{\alpha})$ for $t_{\downarrow}0$. Combining the results in (3.5), (3.6) and the result above, we obtain

$$\int_{0}^{\infty} g_{t}(y) \, dy = 1 + 2^{1+\alpha} t^{\alpha} \phi_{1}(\alpha^{-2/\alpha} 2^{-1} t^{-1}) \log(t^{-1}) + O(t^{\alpha})$$

for $t \downarrow 0$.

For the expansion of f^* we have to distinguish two cases: $\frac{1}{2} \le \alpha < 1$ and $0 < \alpha < \frac{1}{2}$. As mentioned before, we only consider the case $\frac{1}{2} \le \alpha < 1$. See after (3.11). Now we have $t^{\alpha/(2(1-\alpha))} < t^{\alpha} < t^{\alpha/2}$.

$$f^{*}(t) = \int_{0}^{\infty} e^{it\alpha^{2}(1-\alpha)^{-2}y^{-2/\alpha+2}} e^{i\alpha 2^{\alpha}t^{\alpha}y^{-1}\phi_{2}(2ty^{-2/\alpha})} g_{t}(y) \, dy$$
$$= \int_{0}^{\alpha 2^{\alpha}t^{\alpha}} + \int_{\alpha 2^{\alpha}t^{\alpha}}^{(2t)^{\alpha/2}} + \int_{\alpha 2^{\alpha}t^{\alpha}}^{\infty} = I_{1} + I_{2} + I_{3}.$$

Obviously we have

$$I_1 = O(t^{\alpha}) \quad \text{for } t \neq 0,$$

For $y > (2t)^{\alpha/2}$ we have that $ty^{-2/\alpha+2}$, $2^{\alpha}t^{\alpha}y^{-1}$ and $2ty^{-2/\alpha}$ are small. Expansion of the integrand gives

$$I_{3} = \int_{(2t)^{\alpha/2}}^{\infty} e^{-y} dy + O(t^{\alpha}) \text{ for } t \downarrow 0.$$

 I_2 is the most interesting part. We have

$$I_{2} = \int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} \left\{ 1 + it\alpha^{2} (1-\alpha)^{-2} y^{-2/\alpha+2} + i\alpha 2^{\alpha} t^{\alpha} y^{-1} \phi_{2} (2ty^{-2/\alpha}) \right\} g_{t}(y) \, dy \qquad (3.9)$$

+ error.

For $\alpha \ge \frac{1}{2}$ we have

$$t \int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} y^{-2/\alpha+2} dy = O(t^{\alpha}).$$

And, as in computation of the integral of g_t , we have

$$\alpha t^{\alpha} \int_{\alpha 2^{\alpha} t^{\alpha}}^{(2t)^{\alpha/2}} y^{-1} \phi_2(2ty^{-2/\alpha}) \, dy = 2t^{\alpha} \phi_2(\alpha^{-2/\alpha} 2^{-1} t^{-1}) \log (\alpha^{-2/\alpha} 2^{-1} t^{-1}) + O(t^{2\alpha}).$$

One easily shows that the error on the right hand side of (3.9) is also $O(t^{\alpha})$ for $t \downarrow 0$. Combining the foregoing results, one obtains in the case $\frac{1}{2} \le \alpha < 1$

$$f^{*}(t) - 1 = ct^{\alpha} \log(t^{-1}) + O(t^{\alpha})$$
(3.10)

for $t \downarrow 0$. We have

$$f(t) - f^{*}(t) = \lim_{n \to \infty} E_{U_{(1)}} \left[E \left\{ e^{itn^{-2/\alpha}T_{n}} \middle| U_{(1)} \right\} - E \left\{ e^{itn^{-2/\alpha}T_{n}^{*}} \middle| U_{(1)} \right\} \right]$$
$$= \lim_{n \to \infty} E_{U_{(1)}} \left[E^{2itn^{-2/\alpha}U_{(1)}^{-1/\alpha}\sum_{j=2}^{n} \overline{U}_{j}^{-1/\alpha}} \left\{ e^{itn^{-2/\alpha}V_{n-1}} - e^{itn^{-2/\alpha}EV_{n-1}} \right\} \middle| U_{(1)} \right].$$

Applying the inequality

$$\left|e^{ix}-e^{iy}\right| \le |x-y|$$

and similar calculations as above, we obtain, for $\frac{1}{2} \le \alpha < 1$,

$$|f(t) - f^{*}(t)| = O(t^{\alpha}) \text{ for } t \downarrow 0.$$

This implies the following expansion for f

$$f(t) - 1 \sim ct^{\alpha} \log(1/t)$$
 (3.11)

for *t*+0.

In the case $0 < \alpha < 1/2$ it is more delicate to obtain an estimate for $f - f^*$. For that reason we delete this case.

From the theory of characteristic functions we obtain from the expansion of f

$$P(I(h) > x) \sim ax^{-\alpha}\log x \text{ as } x \to \infty.$$

See, for example, Feller [Fel. 71] section xvii.12, problem 14.

4. Extension. In the previous section we considered the integral

MIJNHEER

$$I(h) = \iint h(x, y) X(dx) X(dy)$$

where X is a completely asymmetric stable process and h is given by (1.2). We can extend the integral to functions given by (1.3).

THEOREM 4.1. Let I(h) be given as above and

$$h(x, y) = \begin{cases} \phi(x)\phi(y) & \text{for } x \neq y \\ 0 & \text{for } x = y \end{cases}$$

Suppose ϕ positive and $\int_{0}^{1} \phi(x)^{\alpha} dx < \infty$. Then

$$I(h) \stackrel{d}{=} \left\{ \int_{0}^{1} \phi^{\alpha}(x) \, dx \right\}^{2/\alpha} \left\{ S_{\alpha}^{2} - S_{\alpha/2} \right\}$$

where S_{α} and $S_{\alpha/2}$ are dependent stable random variables.

PROOF.

$$I(h) = \lim \left[\left\{ \sum_{i=1}^{n} \phi(i/n) n^{-1/\alpha} X_i \right\}^2 - \sum_{i=1}^{n} \phi^2(i/n) n^{-2/\alpha} X_i^2 \right]$$

$$\underline{d} \left[\left\{ \int_{0}^{1} \phi^{\alpha}(x) dx \right\}^{1/\alpha} X \right]^2 - \left\{ \int_{0}^{1} \phi^{\alpha}(x) dx \right\}^{2/\alpha} S_{\alpha/2}$$

$$= \left\{ \int_{0}^{11} h^{\alpha}(x, y) dx dy \right\}^{1/\alpha} \left\{ S_{\alpha}^2 - S_{\alpha/2} \right\}.$$

See also section 1, case IIb. The first limit follows from properties of stable random variables. One shows the second limit by using characteristic functions. \Box

Remark. We can obtain the tail behaviour as in the case h satisfies (1.2). Note that the dependency of S_a and $S_{\alpha/2}$ depends on ϕ .

In Samorodnitsky and Szulga [SS 88] the asymptotic behaviour of the tail of I(h) is given in the case of a <u>symmetric</u> stable process. They obtain if h satisfies the conditions of Theorem 4.1

$$P(|I(h)| > x) \sim C_{\alpha}(h) x^{-\alpha} \log x \text{ as } x \to \infty.$$

266

5. The Behaviour of the Extremal Term. In this section we consider the term $U_{(1)}^{-1/\alpha}U_{(2)}^{-1/\alpha}$ where $U_{(1)}$ and $U_{(2)}$ are the order statistics of a uniform distribution. Let Γ_i , i = 1, 2, ... be the arrivals of a Poisson process. We have

$$P(U_{(1)}^{-1/\alpha}U_{(2)}^{-1/\alpha} > n^{2/\alpha}x) = P(U_{(1)}U_{(2)} \le n^{-2}x^{-\alpha})$$

$$= P\left(\frac{\Gamma_{1}^{-1/\alpha}\Gamma_{2}^{-1/\alpha}}{\Gamma_{n}^{-2/\alpha}} > n^{2/\alpha}x\right)$$

$$\sim P(\Gamma_{1}^{-1/\alpha}\Gamma_{2}^{-1/\alpha} > x) = P(\Gamma_{1}\Gamma_{2} < x^{-\alpha})$$

$$= x^{-\alpha}\int_{x^{-\alpha/2}}^{\infty} y^{-1}e^{-y}dy + \int_{0}^{x^{-\alpha/2}} ye^{-y}dy$$

$$= x^{-\alpha}\int_{x^{-\alpha/2}}^{\infty} y^{-1}e^{-y}dy + 1 - e^{-x^{-\alpha/2}} - x^{-\alpha/2}e^{-x^{-\alpha/2}}$$

$$\sim \frac{1}{2}\alpha x^{-\alpha}\log x \quad \text{for large } x.$$

We have seen a similar tail behaviour for the double α -stable integral.

References

- [AT 86] F. Avram and M. S. Taqqu. Symmetric Polynomials of Random Variables Attracted to an Infinitely Divisible Law. Probab. Th. Rel. Fields 71, 491-500 (1986).
- [Bre 86] L. Breiman. Probability. Addison-Wesley, Reading (Mass.).
- [Den 85] M. Denker. Asymptotic Distribution Theory in Nonparametric Statistics. F. Vieweg and Sohn, Braunschweig/Wiesbaden.
- [Deh 85] H. Dehling. Almost sure approximations for U-statistics. Dependence in Probability and Statistics. E. Eberlein and M. S. Taqqu, eds. Progress in Prob. and Stat. Vol. 11. Birkhauser, Boston. 129-136.
- [Fel 71] W. Feller. An introduction to probability theory and its applications. Vol. II. Second Edition. Wiley, New York.
- [GK 54] B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random variables. Addison-Wesley, Reading (Mass.).
- [Hoe] W. Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Math. Statistics **19**, 293-325 (1948).

- [LR 79] R. G. Laha and V. K. Rohatgi. Probability theory. Wiley, New York.
- [MA 77] T. L. Malevich and B. Abdalimov. Stable limit distributions for U-statistics. Th. of Prob. and Appl. 22, 370-377.
- [Mij 75] J. L. Mijnheer. Sample path properties of stable processes. Math. Centre, Amsterdam.
- [SS 88] G. Samorodnitsky and J. Szulga. An asymptotic evaluation of the tail of a multiple symmetric α -stable integral. Annals of Prob., Vol. 17, 1503-1520 (1989).
- [ST 88] G. Samorodnitsky and M. S. Taqqu. Multiple Stable Integrals of Banach-Valued Functions. Preprint.
- [Ser 80] R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley and Sons, New York.
- [SW 86] G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics. Wiley and Sons, New York.
- [SW 83] J. Szulga and W. A. Woyczynski. Existence of a Double Random Integral with Respect to Stable Measures. J. Mult. Anal. 13, 194-201.