MULTIVARIATE DISTRIBUTIONS GENERATED FROM MIXTURES OF CONVOLUTION AND PRODUCT FAMILIES

By Albert W. Marshall ${ }^{1,2}$ and Ingram Olkin ${ }^{1}$
University of British Columbia and Western Washington University, and Stanford University

Abstract

A number of standard univariate distributions can be represented as mixtures of other standard distributions. In this paper such mixture representations are exploited to generate families of multivariate distributions with given marginals. Attention is confined to mixtures of parametric families where the parameter appears as the order of a convolution or as a power of the distribution or survival function. The mixture structure yields properties of the generated multivariate distributions such as total positivity, association and infinite divisibility. Examples obtained include the bivariate Poisson, binomial, negative binomial, normal, chi-square, logistic and Pareto distributions.

1. Introduction. For any given parametric family of distributions $F(\cdot \mid \theta)$, it is possible to regard the parameter θ as the value of a random variable Θ with distribution G, say. Then $F(\cdot \mid \theta)$ is a conditional distribution given $\Theta=\theta$ and the corresponding unconditional distribution

$$
\begin{equation*}
H(x)=\int F(x \mid \theta) d G(\theta) \tag{1}
\end{equation*}
$$

is a mixture.
Here, both x and θ can be vectors, often of different dimensions. Many examples arise in which θ is a scalar and $F(\cdot \mid \theta)$ is the product of its marginals. Then (1) takes the form

$$
\begin{equation*}
H(\mathbf{x})=\int \Pi F_{i}\left(x_{i} \mid \theta\right) d G(\theta) \tag{2}
\end{equation*}
$$

[^0]where G and each F_{i} is a univariate distribution function. Clearly, multivariate distributions H of the form (1) or (2) have univariate marginals of the form (2). Of course many univariate examples are well known.

This paper is concerned with properties and examples of mixtures of the form (1) or (2) for two kinds of parametric families $\{F(\cdot \mid \theta): \theta \in A\}$ which we call "convolution families" and "product families." These families arise in a natural fashion which is here described in a univariate setting.

Suppose that X_{1}, \cdots, X_{n} are independent random variables with common distribution F, and suppose that $\Theta \geq 0$ is a random nonnegative integer having distribution G. Denote the θ-th convolution of F with itself by $F^{\theta *}$. With the conventions that $F^{\theta *}$ is degenerate at 0 and that an empty sum is 0 , the random variable $U=X_{1}+\cdots+X_{\Theta}$ has the distribution function H given by

$$
\begin{equation*}
H(x)=\int_{0}^{\infty} F^{\theta *}(x) d G(\theta) \tag{3}
\end{equation*}
$$

In case F is infinitely divisible, (3) has meaning and H is a distribution function whenever G satisfies $G(0-)=0$. Distributions of the form (3) are often called compound distributions (see, e.g., Feller, 1968, p. 286).

Again, suppose that X_{1}, X_{2}, \cdots are independent random variables with common distribution F and suppose this time that $\Theta \geq 1$ is a random positive integer having distribution G. Then the random variables

$$
V=\min \left(X_{1}, \cdots, X_{\Theta}\right), \quad W=\max \left(X_{1}, \cdots, X_{\Theta}\right)
$$

have respective distributions H and K given by

$$
\begin{align*}
& \bar{H}(x)=\int \bar{F}^{\theta}(x) d G(\theta) \tag{4}\\
& K(x)=\int F^{\theta}(x) d G(\theta)
\end{align*}
$$

where for any distribution function L, \bar{L} is the corresponding survival function. The mixtures (3)-(5) give rise to the following definition.

Definition 1.1. Let $\mathcal{F}=\{F(\cdot \mid \theta): \theta \in A\}$ be an indexed family of n dimensional distributions with index set $A \subset \mathcal{R}^{k}$ satisfying

$$
\begin{equation*}
\alpha \in A, \beta \in A \Rightarrow \alpha+\beta \in A \tag{6}
\end{equation*}
$$

\mathcal{F} is said to be a convolution family if

$$
\begin{equation*}
F(\cdot \mid \alpha) * F(\cdot \mid \beta)=F(\cdot \mid \alpha+\beta), \quad \alpha, \beta \in A \tag{7}
\end{equation*}
$$

\mathcal{F} is said to be a survival product family if

$$
\begin{equation*}
\bar{F}(\cdot \mid \alpha) \bar{F}(\cdot \mid \beta)=\bar{F}(\cdot \mid \alpha+\beta), \quad \alpha, \beta \in A \tag{8}
\end{equation*}
$$

finally \mathcal{F} is said to be a distribution product family if

$$
\begin{equation*}
F(\cdot \mid \alpha) F(\cdot \mid \beta)=F(\cdot \mid \alpha+\beta), \quad \alpha, \beta \in A \tag{9}
\end{equation*}
$$

Convolution, survival product and distribution product families can be defined as semi-groups under the appropriate operation without the aid of an index set, but in this paper the index plays an important role.

Example 1.2. For any distribution $F,\left\{F^{k *}: k=0,1, \ldots\right\}$ is a convolution family. In case F is a Bernoulli distribution with parameter $p, F^{k *}$ is a binomial distribution with parameters k and $p, k=0,1, \ldots$

More generally, if F_{1}, \ldots, F_{ℓ} is a finite collection of distributions each having a support in \mathcal{R}^{n}, then the set of all distributions of the form

$$
F_{1}^{k_{1 *}} * \cdots * F_{\ell}^{k_{\ell *}}
$$

is a convolution family.
EXAMPLE 1.3. The prototype survival product family is the family of univariate exponential distributions. For any univariate distribution function F, $\left\{\bar{F}^{\theta} \mid \theta>0\right\}$ is a survival product family of distributions with proportional hazards. Some, but not all, bivariate distributions can be used in the same way to generate a survival product family of bivariate distributions (see Theorem 3.4).

In the study of both convolution families (Section 2) and product families (Section 3), the notions of total positivity and association play an important role. Some results concerning these notions are reviewed in an Appendix (Section 4).
2. Convolution Families. Convolution families involve infinite divisibility as well as the dependency property of total positivity (see Section 4). These properties sometimes carry over to mixtures and sometimes can be easily obtained from mixture representations.

Convolution families combine in obvious ways to give new convolution families.
Observation 2.1. If $\left\{F_{(i)}^{\theta_{*}}: \theta \in A_{i}\right\}$ is a convolution family of k_{i}-variate distributions, $i=1,2$, then the distributions of the form

$$
F\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \theta_{1}, \theta_{2}\right)=F_{(1)}^{\theta_{1} *}\left(\mathbf{x}_{1}\right) F_{(2)}^{\theta_{2} *}\left(\mathbf{x}_{2}\right), \quad \theta_{1} \in A_{1}, \quad \theta_{2} \in A_{2}
$$

constitute a convolution family of $\left(k_{1}+k_{2}\right)$-variate distributions.
Observation 2.2. If $\left\{F_{(i)}^{\theta_{*}}: \theta \in A_{i}\right\}$ is a convolution family of n-variate distributions, $i=1,2$, then the distributions of the form

$$
F\left(\mathbf{x} \mid \theta_{1}, \theta_{2}\right)=\left(F_{(1)}^{\theta_{1 *}^{*}} * F_{(2)}^{\theta_{2 *}}\right)(\mathbf{x}), \quad \theta_{1} \in A_{1}, \quad \theta_{2} \in A_{2}
$$

form a convolution family of n-variate distributions.
For the study of mixtures of convolution families, a basic fact is that a convolution of mixtures is a mixture of convolutions.

Lemma 2.3. If $H_{(i)}(\mathbf{x})=\int F_{(i)}(\mathbf{x} \mid \theta) d G_{i}(\theta), \quad i=1,2$ and

$$
F(\mathbf{x} \mid \theta, \eta)=\int F_{(1)}(\mathbf{x}-\mathbf{t} \mid \theta) d F_{(2)}(\mathbf{t} \mid \eta)
$$

then

$$
\left(H_{(1)} * H_{(2)}\right)(\mathbf{x})=\iint F(\mathbf{x} \mid \theta, \eta) d G_{(1)}(\theta) d G_{(2)}(\eta)
$$

Proof.

$$
\begin{aligned}
& \left(H_{(1)} * H_{(2)}\right)(\mathbf{x}) \\
= & \int H_{(1)}(\mathbf{x}-\mathbf{z}) d H_{(2)}(\mathbf{z})=\int_{\mathbf{z}} \int_{\theta} F_{(1)}(\mathbf{x}-\mathbf{z} \mid \theta) d G_{(1)}(\theta) d H_{(2)}(\mathbf{z}) \\
= & \int_{\theta} \int_{\mathbf{z}} F_{(1)}(\mathbf{x}-\mathbf{z} \mid \theta) d H_{(2)}(\mathbf{z}) d G_{(1)}(\theta)=\int_{\theta} \int_{\mathbf{z}} H_{(2)}(\mathbf{x}-\mathbf{z}) d F_{(1)}(\mathbf{z} \mid \theta) d G_{(1)}(\theta) \\
= & \int_{\theta} \int_{\mathbf{z}} \int_{\eta} F_{(2)}(\mathbf{x}-\mathbf{z} \mid \eta) d G_{(2)}(\eta) d F_{(1)}(\mathbf{z} \mid \theta) d G_{(1)}(\theta) \\
= & \int_{\theta} \int_{\eta} F(\mathbf{x} \mid \theta, \eta) d G_{(2)}(\eta) d G_{(1)}(\theta) .
\end{aligned}
$$

Infinite Divisibility in Convolution Families.

Lemma 2.4. If $\{F(\cdot \mid \theta): \theta>0\}$ is a convolution family then $F(\cdot \mid 1)$ is infinitely divisible and

$$
F(\cdot \mid \theta)=F^{\theta *}(\cdot \mid 1) .
$$

Proof. Let ϕ_{θ} be the characteristic function of $F(\cdot \mid \theta), \theta>0$. From (7) it follows that

$$
\phi_{\theta} \phi_{\eta}=\phi_{\theta+\eta}, \quad \theta, \eta>0
$$

This functional equation has the solution $\phi_{\theta}=\phi_{1}^{\theta}$ (Aczél, 1966, p. 36). \|
In the following theorem, the assumption is made that the index set A is a convex cone. A subset \mathcal{T} of a convex cone is said to be a frame for the cone if \mathcal{T}, but no proper subset of \mathcal{T}, spans the cone positively.

Theorem 2.5. If $\{F(\cdot \mid \theta): \theta \in A\}$ is a convolution family indexed by a convex cone A, then for all $\theta \in A, F(\cdot \mid \theta)$ is infinitely divisible. If the convex cone A has a finite frame $\mathcal{T}=\left\{t_{1}, \ldots, t_{\ell}\right\}$, then F is of the form

$$
F(\cdot \mid \theta)=F^{\theta_{1}^{*}}\left(\cdot \mid t_{1}\right) * \cdots * F^{\theta_{\ell^{*}}}\left(\cdot \mid t_{\ell}\right)
$$

where $\theta=\sum_{1}^{\ell} \theta_{i} t_{i}$.
Proof. This result follows from (7) and Lemma 2.4. ||
Various versions of the following results can be found in the literature. Lemma 2.6 is given for the univariate case by Keilson and Steutel (1974, p. 116). Theorem 2.8 in one dimension is due to Feller (1971, p. 538). With the assumption that $F(\cdot \mid \theta)$ is infinitely divisible, Theorem 2.8 is given in a very general setting by Kent (1981), who also lists some additional relevant references.

Lemma 2.6. If $\{F(\cdot \mid \theta): \theta \in A\}$ is a convolution family of multivariate distributions and

$$
H_{(i)}(\mathbf{x})=\int F(\mathbf{x} \mid \theta) d G_{(i)}(\theta), \quad i=1,2
$$

then

$$
\left(H_{1} * H_{2}\right)(\mathbf{x})=\int F(\mathbf{x} \mid \theta) d\left(G_{1} * G_{2}\right)(\theta)
$$

Proof. In Lemma 2.3, take $F_{(1)}=F_{(2)}=F$. Since $\{F(\cdot \mid \theta): \theta \in A\}$ is a convolution family, the distribution $F(\cdot \mid \theta, \eta)$ of Lemma 2.3 is just $F(\cdot \mid \theta+\eta)$ and consequently the result follows from Lemma 2.3. ||

Theorem 2.7. If $\{F(\cdot \mid \theta): \theta \in A\}$ and $\{G(\cdot \mid \alpha): \alpha \in B\}$ are convolution families, and if

$$
\begin{equation*}
H(\mathbf{x} \mid \alpha)=\int F(\mathbf{x} \mid \theta) d G(\theta \mid \alpha), \quad \alpha \in B, \quad \mathbf{x} \in \mathcal{R}^{n} \tag{10}
\end{equation*}
$$

then $\{H(\cdot \mid \alpha), \alpha \in B\}$ is a convolution family.
Proof. This is immediate from Lemma 2.6. ||
Theorem 2.8. If $\{F(\cdot \mid \theta): \theta \in A\}$ is a convolution family and G is an infinitely divisible distribution, then H given by (10) is infinitely divisible. Moreover,

$$
\begin{equation*}
H^{\alpha *}(\mathbf{x})=\int F(\mathbf{x} \mid \theta) d G^{\alpha *}(\theta), \quad \alpha>0, \mathbf{x} \in \mathcal{R}^{n} \tag{11}
\end{equation*}
$$

Proof. Suppose that for some positive integer $m, \alpha=1 / m$ so that $\left(G^{\alpha *}\right)^{m *}=$ G. If $H^{\alpha *}$ is defined by (11) then by Lemma $2.6\left(H^{\alpha *}\right)^{m *}=H$. This proves that H is infinitely divisible and (11) is satisfied for $\alpha=1 / m, m=1,2, \ldots$. Again from Lemma 2.6, it follows immediately that (11) holds for rational α and the proof is completed by a limiting argument. ||

Total Positivity in Convolution Families.

The following theorem shows how the positive dependency notion of total positivity (see Section 4) arises in the context of convolution families. There, \tilde{F} can be taken to be either F or \bar{F}. For typographical simplicity, $\overline{F^{\theta *}}$ is written $\bar{F}^{\theta *}$.

Theorem 2.9.
(i) If $\tilde{F}(x \mid \theta)=\tilde{F}^{\theta *}(x), \theta=0,1,2, \ldots$ where F is a univariate distribution function such that $F(0-)=0$ and $\tilde{F}(x-y)$ is $T P_{2}$ in x and y, then $\tilde{F}(x \mid \theta)$ is $T P_{2}$ in x and θ.
(ii) If $\tilde{F}(x \mid \theta)=\tilde{F}^{\theta *}(x), \theta \geq 0$, where F is a univariate infinitely divisible distribution function such that $F(0-)=0$ and $\tilde{F}^{\theta *}(x-y)$ is $T P_{2}$ in x and y for all θ, then $\tilde{F}(x \mid \theta)$ is $T P_{2}$ in x and θ.
(iii) If $F(x \mid \theta)=F^{\theta *}(x), \theta=0,1,2, \ldots$ where F is a univariate distribution function with a density f such that $f(x-y)$ is $T P_{2}$ in x and y, then $F(\cdot \mid \theta)$ has a density $f(\cdot \mid \theta)$ which is $T P_{2}$ in x and $\theta=0,1, \ldots$.

Proof. Let $x_{1}<x_{2}$ and $\theta_{1}<\theta_{2}$, and suppose that \tilde{F} is \bar{F}. Then

$$
\begin{aligned}
\left|\begin{array}{cc}
\bar{F}\left(x_{1} \mid \theta_{1}\right) & \bar{F}\left(x_{1} \mid \theta_{2}\right) \\
\bar{F}\left(x_{2} \mid \theta_{1}\right) & \bar{F}\left(x_{2} \mid \theta_{2}\right)
\end{array}\right| & =\left|\begin{array}{cc}
\bar{F}^{\theta_{1} *}\left(x_{1}\right) & \bar{F}^{\theta_{2} *}\left(x_{1}\right) \\
\bar{F}^{\theta_{1} *}\left(x_{2}\right) & \bar{F}^{\theta_{2} *}\left(x_{2}\right)
\end{array}\right| \\
& =\int_{0}^{\infty}\left|\begin{array}{cc}
\bar{F}^{\theta_{1} *}\left(x_{1}\right) & \bar{F}^{\theta_{1} *}\left(x_{1}-u\right) \\
\bar{F}^{\theta_{1} *}\left(x_{2}\right) & \bar{F}^{\theta_{1} *}\left(x_{2}-u\right)
\end{array}\right| d f^{\left(\theta_{2}-\theta_{1}\right) *}(u) \geq 0
\end{aligned}
$$

because $\bar{F}(x-y)$ is TP_{2} in x and y implies that the same is true for $\bar{F}^{\theta *}, \theta=0,1, \ldots$ (Barlow and Proschan, 1975, p. 100), and this means the integrand is nonnegative. The proofs for other cases are similar. For a proof of (iii), see Karlin (1968, p. 150).

Theorem 2.10. Let

$$
\begin{equation*}
\tilde{H}(\mathbf{x})=\int \Pi \tilde{F}^{\theta *}\left(x_{i}\right) d G(\theta) \tag{12}
\end{equation*}
$$

where each F_{i} is a univariate distribution function such that $F_{i}\left(0_{-}\right)=0$.
(i) If for each $i, \tilde{F}_{i}(x-y)$ is $T P_{2}$ in x and y, then \tilde{H} is $M T P_{2}$.
(ii) If for each $i, f_{i}(x-y)$ is $T P_{2}$ in x and y, then H has a density h that is $M T P_{2}$.

Proof. This is immediate from Theorem 2.9 and Theorem 4.15. ||

Examples

Example 2.11. BIVARIATE POISSON DISTRIBUTION. In the mixture (2), let F_{i} be a binomial distribution with parameters $\left(\theta, p_{i}\right)$, where p_{i} is fixed, and suppose that G is a Poisson distribution with parameter η. It is well known that this mixture has Poisson marginals. With $q_{i}=1-p_{i}, i=1,2$, the probability mass function of this mixture is given by

$$
\begin{equation*}
h(k, \ell)=\sum_{\theta=0}^{\infty}\binom{\theta}{k} p_{1}^{k} q_{1}^{\theta-k}\binom{\theta}{\ell} p_{2}^{\ell} q_{2}^{\theta-\ell} e^{-\eta} \frac{\eta^{\theta}}{\theta!}, \quad k, \ell=0,1, \ldots \tag{13}
\end{equation*}
$$

Since $\binom{x}{y}$ is TP_{∞} in x and $y=0,1, \ldots$ (Karlin, 1968, p. 137), it follows from the basic composition theorem for totally positive functions that $h(k, \ell)$ is TP_{∞} in k and $\ell=0,1, \ldots$. Consequently, by Corollary 4.8 it follows that variables having the probability mass function (13) are associated. From Theorem 2.8, it follows that the bivariate Poisson distribution of (13) is also infinitely divisible.

A different construction of a bivariate Poisson distribution starts with independent random variables U_{1}, U_{2} and Θ having Poisson distributions with respective parameters λ_{1}, λ_{2} and λ_{12}. If $X_{i}=U_{i}+\Theta, i=1,2$, then (X_{1}, X_{2}) has the bivariate Poisson distribution of M'Kendrick (see Marshall and Olkin, 1985). The joint probability mass function of $\left(X_{1}, X_{2}\right)$ is

$$
\begin{align*}
h(k, \ell) & =\sum_{\theta=0}^{\infty} P\left(U_{1}+\theta=k\right) P\left(U_{2}+\theta=\ell\right) e^{-\lambda_{12}} \frac{\lambda_{12}^{\theta}}{\theta!} \\
& =\sum_{\theta} \frac{\lambda_{12}^{\theta} \lambda_{1}^{k-\theta} \lambda_{2}^{\ell-\theta}}{\theta!(k-\theta)!(\ell-\theta)!} e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right)}, \quad k, \ell=0,1, \ldots \tag{14}
\end{align*}
$$

Dwass and Teicher (1957) show that this is the only infinitely divisible bivariate Poisson distribution, so it is reassuring to note by comparing Laplace transforms that when $\lambda_{1}=\eta p_{1} q_{2}, \lambda_{2}=\eta p_{2} q_{1}$ and $\lambda_{12}=\eta p_{1} p_{2},(13)$ and (14) define the same distribution.

Example 2.12. BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION. It is well known that if F_{1} and F_{2} are Poisson distributions with respective parameters $\alpha \theta$ and $\beta \theta$, and if G is a gamma distribution with shape parameter r and scale parameter $\lambda=1$, then the mixture (2) has negative binomial marginals and probability mass function

$$
\begin{aligned}
h(k, \ell \mid r)= & \int_{0}^{\infty} \frac{(\alpha \theta)^{k} e^{-\alpha \theta}}{k!} \frac{(\beta \theta)^{\ell} e^{-\beta \theta}}{\ell!} \frac{\theta^{r-1} e^{-\theta}}{\Gamma(r)} d \theta \\
= & \frac{\Gamma(k+\ell+r)}{k!\ell!\Gamma(r)}\left(\frac{\alpha}{\alpha+\beta+1}\right)^{k}\left(\frac{\beta}{\alpha+\beta+1}\right)^{\ell}\left(\frac{1}{\alpha+\beta+1}\right)^{r} \\
& k, \ell=0,1, \ldots
\end{aligned}
$$

The above derivation of this bivariate negative binomial distribution is due to Arbous and Kerrich (1951). It follows from Theorem 2.10 that $h(k, \ell \mid r)$ is MTP_{2}; by Corollary 4.8, this means the distribution is associated, so that the correlation is non-negative. By Theorem 2.8, $h(k, \ell \mid r)$ is infinitely divisible and moreover

$$
h\left(\cdot \mid r_{1}\right) * h\left(\cdot \mid r_{2}\right)=h\left(\cdot \mid r_{1}+r_{2}\right), \quad r_{1}, r_{2}>0
$$

Example 2.13. BIVARIATE NORMAL DISTRIBUTION. If F_{1} and F_{2} are normal distributions with means μ and $\alpha \mu,(\alpha= \pm 1)$ and variances σ_{1}^{2} and σ_{2}^{2}, respectively, and if μ has a $\mathcal{N}\left(0, \sigma_{0}^{2}\right)$ distribution, then the mixture (2) has density function

$$
\begin{aligned}
h(x, y) & =\frac{1}{(2 \pi)^{3 / 2} \sigma_{0} \sigma_{1} \sigma_{2}} \int_{-\infty}^{\infty}\left[\exp -\frac{1}{2}\left\{\frac{(x-\mu)^{2}}{\sigma_{1}^{2}}+\frac{(y-\alpha \mu)^{2}}{\sigma_{2}^{2}}+\frac{\mu^{2}}{\sigma_{0}^{2}}\right\}\right] d \mu \\
& =\frac{|\Sigma|^{-\frac{1}{2}}}{(2 \pi)} \exp \left[-\frac{1}{2}(x, y) \Sigma^{-1}(x, y)^{\prime}\right]
\end{aligned}
$$

where

$$
\Sigma=\frac{1}{d}\left(\begin{array}{cc}
\sigma_{0}^{2}+\sigma_{1}^{2} & \alpha \sigma_{0}^{2} \\
\alpha \sigma_{0}^{2} & \sigma_{0}^{2}+\sigma_{2}^{2}
\end{array}\right)
$$

and $d=\left(\sigma_{1}^{2} \sigma_{2}^{2}+\sigma_{0}^{2} \sigma_{1}^{2}+\sigma_{0}^{2} \sigma_{2}^{2}\right) /\left[\left(\sigma_{0}^{2}+\sigma_{1}^{2}\right)\left(\sigma_{0}^{2}+\sigma_{2}^{2}\right)-\alpha^{2} \sigma_{0}^{4}\right]$.
The choice $\alpha=+1$ yields a positive correlation and $\alpha=-1$ yields a negative correlation.

Example 2.14. A BIVARIATE CHI-SQUARE DISTRIBUTION. If F_{1} and F_{2} are gamma distributions with common shape parameter $m+2 \theta$ and with respective scale parameters $\frac{1}{2} \lambda_{1}$ and $\frac{1}{2} \lambda_{2}$ and G is a negative binomial distribution, then the mixture (2) has density function

$$
=\sum_{\ell=0}\left(\frac{\lambda_{1}^{m+\ell} x^{m+\ell-1} e^{-\frac{1}{2} \lambda_{1} x}}{2^{m+\ell} \Gamma(m+\ell)}\right)\left(\frac{\lambda_{2}^{m+\ell} y^{m+\ell-1} e^{-\frac{1}{2} \lambda_{2} y}}{2^{m+\ell} \Gamma(m+\ell)}\right) \frac{\Gamma(m+\ell)\left(\rho^{2}\right)^{\ell}\left(1-\rho^{2}\right)^{m}}{\Gamma(m) \ell!} .
$$

This is the joint density of the sample variances s_{11} and s_{12} from a sample of size $n=m / 2$ from a bivariate normal distribution with inverse covariance matrix $\Sigma^{-1}=\left(\sigma^{i j}\right), i, j=1,2$. Here $\lambda_{1}=\sigma^{11}, \lambda_{2}=\sigma^{22}$ and $\rho=\sigma^{12} / \sqrt{\sigma^{11} \sigma^{22}}$ is the correlation.

Since the gamma density is TP_{2}, it follows from Theorem 2.10 that $h(x, y \mid m)$ is MTP_{2}, and hence, by Corollary 4.8, is associated. Because the negative binomial distribution is infinitely divisible, by Theorem $2.8 h(x, y \mid m)$ is infinitely divisible.

Example 2.15. BIVARIATE NON-CENTRAL CHI-SQUARE DISTRIBUTIONS. Because a non-central chi-square distribution is a Poisson mixture of central chi-square distributions, a bivariate non-central chi-square distribution can formally be obtained using (2). The corresponding density is

$$
h(x, y)=\sum_{\theta=0}^{\infty} \frac{x^{\frac{n}{2}+\theta-1} e^{-\frac{x}{2}}}{\Gamma\left(\frac{n}{2}+\theta\right) 2^{\frac{n}{2}+\theta}} \frac{y^{\frac{m}{2}+\theta-1} e^{-\frac{y}{2}}}{\Gamma\left(\frac{m}{2}+\theta\right) 2^{\frac{m}{2}+\theta}} \frac{\alpha^{\theta} e^{-\alpha}}{\theta!}, \quad x, y \geq 0
$$

It follows from Theorem 2.10 that $h(x, y)$ is MTP_{2} and hence (by Corollary 4.8) is associated.

A possibly more meaningful bivariate non-central chi-square distribution is obtained from the representation

$$
X=U_{1}^{2}+Z_{1}, \quad Y=U_{2}^{2}+Z_{2}
$$

where U_{1}, U_{2} and $\left(Z_{1}, Z_{2}\right)$ are independently distributed with $U_{i} \sim \mathcal{N}\left(\mu_{i}, 1 / \lambda_{i i}\right), i=$ 1,2 and $\left(Z_{1}, Z_{2}\right)$ has the bivariate chi-square distribution of Example 2.14. The corresponding bivariate chi-square density function is

$$
h(x, y \mid n)=\sum_{\ell=0}^{\infty} \sum_{\theta_{1}=0}^{\infty} \sum_{\theta_{2}=0}^{\infty} f_{1}\left(x \mid \ell, \theta_{1}\right) f_{2}\left(y \mid \ell, \theta_{2}\right) g\left(\ell \mid \rho^{2}\right) \frac{e^{-\alpha_{1}} \alpha_{1}^{\theta_{1}}}{\theta_{1}!} \frac{e^{-\alpha_{2}} \alpha_{2}^{\theta_{2}}}{\theta_{2}!}
$$

where $\alpha_{i}=\lambda_{i i} \mu_{i}^{2} / 2, i=1,2, g\left(\ell \mid \rho^{2}\right)$ is negative binomial distribution of 2.14 , and

$$
f_{i}\left(t \mid \ell, \theta_{i}\right)=\frac{\lambda_{i i}^{\left(n+2 \ell+2 \theta_{i}+1\right) / 2} t^{\left(n+2 \ell+2 \theta_{i}+1\right) / 2} e^{-\lambda_{i i} t / 2}}{2^{\left(n+2 \ell+2 \theta_{i}\right) / 2} \Gamma\left(\left(n+2 \ell+2 \theta_{i}\right) / 2\right)}
$$

$i=1,2$. When $\rho=0$ we obtain the independent case with X and Y each having a non-central chi-square distribution.

The association of $h(x, y)$ follows from the representation of X and Y given above, or from Theorem 2.10. By Theorem 2.8, $h(x, y \mid n)$ is infinitely divisible.

Multivariate Extension of Convolution Families.

Let \mathcal{F} be an indexed family of distributions and let \mathcal{S} be the class of nonempty subsets of $\{1, \ldots, n\}$. For each $S \in \mathcal{S}$, let U_{S} have a distribution $F\left(\cdot \mid \theta_{S}\right)$ in \mathcal{F}. Suppose that the random variables $U_{S}, S \in \mathcal{S}$ are independent, and let

$$
\begin{equation*}
X_{i}=\sum_{S: i \in S} U_{S}, \quad i=1, \ldots, n \tag{15}
\end{equation*}
$$

Denote by $\mathcal{F}^{n *}$ the family of n-dimensional distributions for random vectors of the form $\left(X_{1}, \ldots, X_{n}\right)$. Clearly distributions in $\mathcal{F}^{n *}$ have $n-1$ dimensional marginals in $\mathcal{F}^{(n-1) *}$. If \mathcal{F} is a convolution family, then distributions in $\mathcal{F}^{n *}$ have one dimensional marginals in \mathcal{F}; in particular, X_{i} has distribution $F\left(\cdot \mid \sum_{S: i \in S} \theta_{S}\right)$, $i=1, \ldots, n$. From (15) it is clear that distributions in $\mathcal{F}^{n *}$ are associated. The family $\mathcal{F}^{n *}$ has various other desirable properties (see Marshall and Shaked, 1986).

Theorem 2.16. If $\mathcal{F}=\{F(\cdot \mid \theta): \theta \in A\}$ is a convolution family of univariate distributions, then $\mathcal{F}^{n *}$ is a convolution family (indexed by $A^{2^{n}-1}$).

Proof. Clearly $A^{2^{n}-1}$ satisfies (6). Suppose X and Y are independent random vectors with respective distributions $F(\cdot \mid \alpha)$ and $F(\cdot \mid \beta)$ in $\mathcal{F}^{n *}$. Then there exist independent random variables $U_{S}, V_{S}, S \in \mathcal{S}$, such that

$$
X_{i}=\sum_{S: i \in S} U_{S}, \quad Y_{i}=\sum_{S: i \in S} V_{S}, \quad X_{i}+Y_{i}=\sum_{S: i \in S}\left(U_{S}+V_{S}\right), \quad i=1, \ldots, n
$$

If U_{S} and V_{S} have respective distributions $F\left(\cdot \mid \alpha_{S}\right)$ and $F\left(\cdot \mid \beta_{S}\right)$ in \mathcal{F}, then by (7) $U_{S}+V_{S}$ has the distribution $F\left(\cdot \mid \alpha_{S}+\beta_{S}\right)$. Thus

$$
F(\cdot \mid \alpha) * F(\cdot \mid \beta)=F(\cdot \mid \alpha+\beta) . \quad \|
$$

Theorem 2.17. If F is infinitely divisible and $\mathcal{F}=\left\{F^{\theta *}: \theta \geq 0\right\}$, then distributions in $\mathcal{F}^{n *}$ are infinitely divisible.

The proof of this result is similar to the proof of Theorem 2.16.
Example 2.18. BIVARIATE BINOMIAL AND POISSON DISTRIBUTIONS. Let $X_{i}=U_{i}+U_{12}, i=1,2$, where U_{1}, U_{2} and U_{12} are independent random variables with distributions in \mathcal{F}. Then the joint distribution of X_{1} and X_{2} is in $\mathcal{F}^{2 *}$. When \mathcal{F} consists of binomial distributions, $\left(X_{1}, X_{2}\right)$ has the bivariate binomial distribution of Wicksell (see Marshall and Olkin, 1985); it follows from Theorem 4.13 that such distributions form a convolution family. When \mathcal{F} consists of the Poisson distributions then $\left(X_{1}, X_{2}\right)$ has the bivariate Poisson distribution of Example 2.11; it follows from Theorem 2.17 that such distributions are infinitely divisible. See also Example 2.20.

Mixtures of distributions in $\mathcal{F}^{n *}$ can take various forms, but discussion here is confined to the case that the parameters $\theta_{S}, S \in \mathcal{S}$ are independent random variables with respective distributions $G\left(\cdot \mid \alpha_{S}\right), S \in \mathcal{S}$. Denote the joint distribution of $X_{1}, \ldots X_{n}$ given $\theta_{S}, S \in \mathcal{S}$, by $F^{*}\left(\cdot \mid \theta_{S}, S \in \mathcal{S}\right)$.

The next observation says that the operations of mixing and of extending \mathcal{F} to $\mathcal{F}^{n *}$ commute. Alternatively, it can be viewed as saying that the structure exhibited in (15) is preserved under mixing.

Proposition 2.19. Let $\mathcal{F}=\{F(\cdot \mid \theta): \theta \in A\}$, and let $\mathcal{H}=\{H(\cdot \mid \alpha): \alpha \in$ $B\}$ be the family of distributions of the form

$$
H(x \mid \alpha)=\int F(x \mid \theta) d G(\theta \mid \alpha)
$$

where $F \in \mathcal{F}$ and $\mathcal{G}=\{G(\cdot \mid \alpha): \alpha \in B\}$ is a family of distributions having support contained in A. Then $\mathcal{H}^{n *}$ consists of distributions having the form

$$
\begin{equation*}
H^{n *}\left(\mathbf{x} \mid \alpha_{T}, T \in \mathcal{S}\right)=\int F^{*}\left(\mathbf{x} \mid \theta_{S}, S \in \mathcal{S}\right) \prod_{S \in \mathcal{S}} d G\left(\theta_{S} \mid \alpha_{T}\right) \tag{16}
\end{equation*}
$$

Proof. Let $U_{S}, S \in \mathcal{S}$ be independent random variables with distributions in \mathcal{F} such that

$$
X_{\ell}=\sum_{\ell \in S} U_{S}, \quad \ell=1, \ldots, n
$$

have joint distribution F^{*}. Denote the characteristic function of U_{S} by ϕ_{S}. Then X_{1}, \ldots, X_{n} have joint characteristic function

$$
E e^{i \Sigma t_{\ell} X_{\ell}}=E e^{i \Sigma_{S \in S} \tau_{S} U_{S}}=\Pi_{S \in S} \phi_{S}\left(\tau_{S}\right)
$$

where $\tau_{S}=\Sigma_{\ell: \ell \in S} t_{\ell}$. Consequently, the characteristic function of $H^{n *}$ is

$$
\begin{equation*}
\int \prod_{S \in \mathcal{S}} \phi_{S}\left(\tau_{S}\right) \prod_{S \in \mathcal{S}} d G\left(\theta_{S} \mid \alpha_{T}\right)=\prod_{S \in \mathcal{S}} \int \phi_{S}\left(\tau_{S}\right) d G\left(\theta_{S} \mid \alpha_{T}\right) \tag{17}
\end{equation*}
$$

Now let $V_{T}, T \in \mathcal{S}$ be independent random variables such that V_{T} has the distribution $H\left(\cdot \mid \alpha_{T}\right)$ and let

$$
Y_{j}=\sum_{T: j \in T} V_{T}, j=1, \ldots, n
$$

Then Y_{1}, \ldots, Y_{n} have a joint distribution in $\mathcal{H}^{n *}$ and joint characteristic function given by (17). \||

Example 2.20. A BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION. Let $X_{1}=U_{1}+U_{12}, X_{2}=U_{2}+U_{12}$, where U_{1}, U_{2} and U_{12} are independent random variables having Poisson distributions with respective parameters θ_{10}, θ_{01} and θ_{11} (i.e., X_{1} and X_{2} have the bivariate Poisson distribution of Example 2.11). Suppose that θ_{10}, θ_{01} and θ_{11} are independent random variables having gamma distributions with respective parameters $\left(\alpha_{10}, \lambda\right),\left(\alpha_{01}, \lambda\right)$ and $\left(\alpha_{11}, \lambda\right)$. Then for $k, \ell=0,1, \ldots$,

$$
\begin{aligned}
& h(k, \ell)= \iiint \sum_{j} \frac{\theta_{11}^{j} \theta_{10}^{k-j} \theta_{01}^{\ell-j}}{j!(k-j)!(\ell-j)!} e^{-\left(\theta_{10}+\theta_{01}+\theta_{11}\right)} \\
& \frac{\lambda^{\alpha_{10}} \theta_{10}^{\alpha_{10}-1} e^{-\lambda \theta_{10}}}{\Gamma\left(\alpha_{10}\right)} \frac{\lambda^{\alpha_{01}} \theta_{01}^{\alpha_{01}-1} e^{-\lambda \theta_{01}}}{\Gamma\left(\alpha_{01}\right)} \frac{\lambda^{\alpha_{11}} \theta_{11}^{\alpha_{11}-1} e^{-\lambda \theta_{11}}}{\Gamma\left(\alpha_{11}\right)} d \theta_{01} d \theta_{10} d \theta_{11} \\
&= \sum_{j} \frac{\lambda^{\alpha}}{\Gamma\left(\alpha_{10}\right) \Gamma\left(\alpha_{01}\right) \Gamma\left(\alpha_{11}\right)} \frac{\Gamma\left(\alpha_{10}+k-j-1\right) \Gamma\left(\alpha_{01}+\ell-j-1\right) \Gamma\left(\alpha_{11}+j-1\right)}{j!(k-j)!(\ell-j)!(\lambda+1)^{\alpha+k+\ell-j}} \\
&=\sum_{j} \frac{\Gamma\left(\alpha_{10}+k-j-1\right)}{\Gamma\left(\alpha_{10}\right)(k-j)!} \frac{\Gamma\left(\alpha_{01}+\ell-j-1\right)}{\Gamma\left(\alpha_{01}\right)(\ell-j)!} \frac{\Gamma\left(\alpha_{11}+j-1\right)}{\Gamma\left(\alpha_{11}\right) j!} p^{\alpha}(1-p)^{k+\ell-j}
\end{aligned}
$$

where $\alpha=\alpha_{11}+\alpha_{10}+\alpha_{01}, p=\lambda /(\lambda+1)$.
This distribution has negative binomial marginals; with $\alpha_{10}=\alpha_{01}=1-\alpha_{11}$, this is a bivariate geometric distribution.

From Proposition 2.19, it follows that this negative binomial distribution is in $\mathcal{F}^{2 *}$ when \mathcal{F} consists of negative binomial distributions with fixed parameter p.
3. Product Families. Results which follow are stated for survival product families, but it should be understood that parallel results hold for distribution product families.

Observation 3.1. If $\left\{F_{(i)}(\cdot \mid \theta): \theta \in A_{i}\right\}$ is a survival product family, $i=1,2$, then distributions of the form

$$
\bar{F}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \mid \theta_{1}, \theta_{2}\right)=\bar{F}_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2} \mid \theta_{1}\right) \bar{F}_{2}\left(\mathbf{x}_{2}, \mathbf{x}_{3} \mid \theta_{2}\right), \quad \theta_{1} \in A_{1}, \quad \theta_{2} \in A_{2}
$$

constitute a survival product family.
Lemma 3.2. A survival product family of distributions $F(\cdot \mid \theta)$ indexed by $A=(0, \infty)$ must be a proportional hazard family, that is,

$$
\begin{equation*}
\bar{F}(\cdot \mid \theta)=\bar{F}^{\theta}(\cdot \mid 1), \quad \theta>0 \tag{18}
\end{equation*}
$$

Proof. Fix \mathbf{x} and let $\phi(\theta)=\bar{F}(\mathbf{x} \mid \theta)$. From (8) it follows that

$$
\phi(\alpha+\beta)=\phi(\alpha) \phi(\beta), \quad \alpha, \beta>0
$$

Since ϕ is bounded, it follows that for some real number $\gamma, \phi(\alpha)=e^{-\gamma \alpha}$, that is $\phi(\alpha)=[\phi(1)]^{\alpha}$. But this is (18). \|

Theorem 3.3. If $\{F(\cdot \mid \theta): \theta \in A\}$ is a survival product family indexed by a convex cone $A \subset \mathcal{R}^{k}$ with finite frame $\mathcal{T}=\left\{t_{1}, \ldots, t_{\ell}\right\}$ then

$$
\bar{F}(\mathbf{x} \mid \theta)=\prod_{i=1}^{\ell} \bar{F}^{\theta_{i}}\left(\mathbf{x} \mid t_{i}\right)
$$

where $\theta=\sum_{1}^{\ell} \theta_{i} t_{i}$.
Proof. This is immediate from (8) and Lemma 3.2. ||

Proportional Hazard Families in Higher Dimensions.

If \bar{F} is a univariate survival function, then for all $\theta>0, \bar{F}^{\theta}$ is also a univariate survival function. In the multivariate case, $\bar{F}^{k}, k=1,2, \ldots$ is always a survival function, but \bar{F}^{θ} is a survival function for all $\theta>0$ only in special circumstances.

Theorem 3.4. Let \bar{F} be a bivariate survival function. Then \bar{F}^{θ} is a bivariate survival function for all $\theta>0$ if and only if $\bar{F}(x, y)$ is $T P_{2}$ in (x, y).

Proof. Suppose first that \bar{F}^{θ} is a survival function for all $\theta>0$. Then for all $\epsilon, \delta \geq 0$,

$$
\xi(\theta)=\bar{F}^{\theta}(x, y)-\bar{F}^{\theta}(x, y+\epsilon)-\bar{F}^{\theta}(x+\delta, y)+\bar{F}^{\theta}(x+\delta, y+\epsilon) \geq 0
$$

Since $\xi(\theta) \geq 0$ for all $\theta>0$ and $\xi(0)=0$, it follows that the derivative $\xi^{\prime}(0) \geq 0$; but this is just the condition

$$
\frac{\bar{F}(x, y) \bar{F}(x+\delta, y+\epsilon)}{\bar{F}(x, y+\epsilon) \bar{F}(x+\delta, y)} \geq 1
$$

that \bar{F} is TP_{2}.
Next, suppose that \bar{F} is TP_{2}. With $R(x, y)=-\log \bar{F}(x, y)$, this condition can be written in the form

$$
\begin{array}{lc}
R(x+\delta, y+\epsilon) \leq R(x, y+\epsilon) & +\quad R(x+\delta, y)-R(x, y) \tag{19}\\
& \text { for } \quad \text { all } \epsilon, \delta \geq 0 \text { and all } x, y
\end{array}
$$

Note that $R(x+\delta, y)-R(x, y) \geq 0$ and write

$$
R(x, y+\epsilon)-R(x, y)=[R(x, y+\epsilon)+R(x+\delta, y)-R(x, y)]-R(x+\delta, y)
$$

Since $\psi(x)=e^{-x}$ is decreasing and convex, it follows that for all $\theta>0$,

$$
\begin{aligned}
e^{-\theta R(x, y)}-e^{-\theta R(x, y+\epsilon)} & \geq e^{-\theta R(x+\delta, y)}-e^{-\theta[R(x, y+\epsilon)+R(x+\delta, y)-R(x, y)]} \\
& \geq e^{-\theta R(x+\delta, y)}-e^{-\theta R(x+\delta, y+\epsilon)}
\end{aligned}
$$

the last inequality because ψ is decreasing and (19) holds. But this says that \bar{F}^{θ} is a survival function. \|

As noted in Section 4, the condition that \bar{F} is TP_{2} is a positive dependency property which implies that the correlation is non-negative (when it exists).

Remark 3.5. If F is a bivariate distribution with density f such that $f(x, y)$ is TP_{2} in x and y, then it follows from Theorem 4.9 that $\bar{F}(x, y)$ is also TP_{2} in x and y. Several examples from Section 2 have this property, including 2.11, 2.12. See also Examples 3.8 and 3.9.

Mixtures of Product Families.

Lemma 3.6. If \bar{F}_{i}^{θ} is a survival function for all θ in the support of G_{i} and $\bar{H}_{i}(\mathbf{x})=\int \bar{F}_{i}^{\theta}(\mathbf{x}) d G_{i}(\theta), i=1,2$, then

$$
\bar{H}_{1}(\mathbf{x}) \bar{H}_{2}(\mathbf{y})=\int \bar{F}^{\theta}(\mathbf{x}) d\left(G_{1} * G_{2}\right)(\theta)
$$

Proof. Write $F^{\theta}(\mathbf{x})=e^{-\theta R(\mathbf{x})}$, where $R(\mathbf{x})=-\log \bar{F}(\mathbf{x})$. Then the result is easily seen to be a reflection of the fact that the Laplace transform of a convolution is the product of Laplace transforms.

Theorem 3.7. Let $\{G(\cdot \mid \alpha): \alpha \in B\}$ be a convolution family of distributions such that for each $\alpha, G(\cdot \mid \alpha)$ has support contained in A. Let $\{F(\cdot \mid \theta): \theta \in A\}$ be a survival product family of distributions such that $F(x \mid \theta)$ is measurable in θ for each fixed x.

If

$$
H(x \mid \alpha)=\int F(x \mid \theta) d G(\theta \mid \alpha), \quad \alpha \in B
$$

then

$$
\begin{equation*}
\bar{H}(x \mid \alpha+\beta)=\bar{H}(x \mid \alpha) \bar{H}(x \mid \beta) \text { for all } \alpha, \beta \in B,-\infty<x<\infty \tag{20}
\end{equation*}
$$

Proof. This is immediate from Lemma 3.6. ||
Example 3.8. MULTIVARIATE LOGISTIC DISTRIBUTION. If F_{i} are iterated exponential extreme value distributions for minima, that is, $\bar{F}_{i}\left(x_{i} \mid \theta\right)=$ $\exp \left\{-\theta e^{x_{i}}\right\},-\infty<x_{i}<\infty, \theta>0, i=1, \ldots, n$, and if G is a gamma distribution with shape parameter r and scale parameter λ, then the distribution H of (2) takes the form

$$
\bar{H}(\mathbf{x} \mid r)=\lambda^{r} /\left(\lambda+\sum_{1}^{n} e^{x_{i}}\right)^{r}, \quad \lambda, r>0
$$

Example 3.9. MULTIVARIATE PARETO DISTRIBUTIONS. If

$$
\bar{F}_{i}\left(x_{i}\right)=\exp \left\{-\theta\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{1 / \gamma_{i}}\right\}, \quad x_{i} \geq \mu_{i}, \quad i=1, \ldots, n
$$

are Weibull survival functions and if G is a $\operatorname{Gam}(\alpha, 1)$ distribution then the mixture (2) is a Type IV multivariate Pareto distribution as defined by Arnold (1983). This mixture has survival function

$$
\begin{equation*}
\bar{H}(\mathbf{x} \mid \alpha)=\left[1+\sum_{i=1}^{n}\left(\frac{x_{i}-\mu_{i}}{\sigma_{i}}\right)^{1 / \gamma_{i}}\right]^{-\alpha}, \quad x_{i} \geq \mu_{i}, \quad i=1, \ldots, n \tag{21}
\end{equation*}
$$

The representation of (21) as a mixture was used with a minor variation by Takahasi (1965) to define a multivariate Burr distribution.

It follows from Theorem 4.15 that the density corresponding to H is TP_{∞} in each pair of arguments, the other arguments being fixed. Consequently the distribution is associated.

Lemma 3.6 and Theorem 3.7 can be generalized to allow the F_{i} to involve different sets of variables.

Lemma 3.10. Let $\mathbf{x}^{(i)}$ be a subvector of \mathbf{x} of dimension n_{i}, and let F_{i} be a distribution fuction of dimension n_{i} such that \bar{F}_{i}^{θ} is a survival function for all $\theta \in A_{i}, i=1, \ldots, k$. Let G_{j} be a distribution of dimension k such that $G_{j}\left(A_{1} \times\right.$ $\left.\cdots \times A_{k}\right)=1, j=1,2$. If

$$
\bar{H}_{j}(\mathbf{x})=\int \prod_{i=1}^{k} \bar{F}_{i}^{\theta_{i}}\left(\mathbf{x}^{(i)}\right) d G_{j}(\theta), \quad j=1,2
$$

then

$$
\bar{H}_{1}(\mathbf{x}) \bar{H}_{2}(\mathbf{x})=\int \prod_{i=1}^{k} \bar{F}_{i}^{\theta_{i}}\left(\mathbf{x}^{(i)}\right) d\left(G_{1} * G_{2}\right)(\theta)
$$

Proof. Let $R_{i}\left(\mathbf{x}^{(i)}\right)=-\log \bar{F}_{i}\left(\mathbf{x}^{(i)}\right)$ so that

$$
\bar{H}_{j}(\mathbf{x})=\int \exp \left\{-\Sigma_{i=1}^{k} \theta_{i} R_{i}\left(\mathbf{x}^{(i)}\right)\right\} d G_{j}(\theta)
$$

Then

$$
\begin{aligned}
\bar{H}_{1}(\mathbf{x}) \bar{H}_{2}(\mathbf{x}) & =\iint \exp \left\{-\sum_{i=1}^{k}\left(\theta_{i}+\eta_{i}\right) R_{i}\left(\mathbf{x}^{(i)}\right)\right\} d G_{1}(\theta) d G_{2}(\eta) \\
& =\int \exp \left\{-\sum_{i=1}^{k} \theta_{i} R_{i}\left(\mathbf{x}^{(i)}\right)\right\} d\left(G_{1} * G_{2}\right)(\theta)
\end{aligned}
$$

Special cases of particular interest include
(i) $k=1$ and $\mathbf{x}^{(1)}=\mathbf{x}$,
(ii) $k=n$ and $\mathbf{x}^{(i)}=x_{i}$ where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.
(iii) $k=2^{n}-1$ and $\mathbf{x}^{(i)}$ ranges through the nonempty subvectors of \mathbf{x}.

Theorem 3.11. Let $\mathcal{G}=\{G(\cdot \mid \alpha), \alpha \in A\}$ be a convolution family of k dimensional distribution functions such that

$$
\begin{equation*}
\bar{G}(0 \mid \alpha)=1 \quad \text { for all } \quad \alpha \in A \tag{22}
\end{equation*}
$$

With the notation of Lemma 3.10, let

$$
\bar{H}(\mathbf{x} \mid \alpha)=\int \prod_{i=1}^{k} F_{i}^{\theta_{i}}\left(\mathbf{x}^{(i)}\right) d G(\theta \mid \alpha), \quad \mathbf{x} \in \mathcal{R}^{n}, \alpha \in A
$$

Then $\mathcal{H}=\{H(\cdot \mid \alpha), \alpha \in A\}$ is a survival product family.
Proof. This follows from Lemma 3.10. ||

Multivariate Extensions of Survival Product Families.

Let \mathcal{F} be an indexed family of distributions and for each $S \in \mathcal{S}$, the non-empty subsets of $\{1,2, \ldots, n\}$, let U_{S} have distribution $F\left(\cdot \mid U_{S}\right) \in \mathcal{F}$. Suppose that the random variables $U_{S}, S \in \mathcal{S}$ are independent, and let

$$
\begin{equation*}
X_{i}=\min _{S: i \in S} U_{S}, \quad i=1, \ldots, n \tag{23}
\end{equation*}
$$

Then the joint survival function of the X_{i} 's is given by

$$
\begin{equation*}
\bar{F}_{(n)}\left(\mathbf{x} \mid \theta_{S}, S \in \mathcal{S}\right)=\prod_{S \in \mathcal{S}} \bar{F}\left(\max _{j \in S} x_{j} \mid \theta_{S}\right) \tag{24}
\end{equation*}
$$

The family $\overline{\mathcal{F}}_{(n)}$ of such distributions has various desirable properties (see Marshall and Shaked, 1986); in particular if \mathcal{F} is a survival product family, then distributions in $\overline{\mathcal{F}}_{(n)}$ have univariate marginals in \mathcal{F}. If \mathcal{F} is a survival product family indexed by $(0, \infty)$, then Lemma 3.2 applies and

$$
\begin{equation*}
\bar{F}_{(n)}\left(\mathbf{x} \mid \theta_{S}, S \in \mathcal{S}\right)=\prod_{S \in \mathcal{S}} \bar{F}^{\theta_{S}}\left(\max _{j \in S} x_{j} \mid 1\right) \tag{25}
\end{equation*}
$$

Example 3.12. If $X_{1}=\min \left(U_{1}, Z\right)$ and $X_{2}=\min \left(U_{2}, Z\right)$, where U_{1}, U_{2} and Z are independent random variables with distributions in the family \mathcal{F} then $\left(X_{1}, X_{2}\right)$ has a distribution in $\overline{\mathcal{F}}_{(2)}$. When \mathcal{F} consists of the exponential distributions, $\overline{\mathcal{F}}_{(2)}$ consists of the bivariate exponential distributions of Marshall and Olkin (1967).

For distribution product families, "min" in (23) is replaced by "max" and (24) is replaced by

$$
\begin{equation*}
F(\mathbf{x} \mid \theta) \equiv F_{(n)}(\mathbf{x} \mid \theta)=\prod_{S \in \mathcal{S}} F\left(\min _{j \in S} x_{j} \mid \theta_{S}\right) \tag{26}
\end{equation*}
$$

and the family of such distributions is denoted by $\mathcal{F}_{(n)}$.
Theorem 3.13. If $\mathcal{F}=\{F(\cdot \mid \theta): \theta \in A\}$ is a survival product family then $\overline{\mathcal{F}}_{(n)}$ is a survival product family; if \mathcal{F} is a distribution product family, then $\mathcal{F}_{(n)}$ is a distribution product family.

The next observation says that the operations of mixing and of extending \mathcal{F} to $\overline{\mathcal{F}}_{(n)}$ commute (cf. Proposition 2.19).

Proposition 3.14. Let $\mathcal{F}=\{F(\cdot \mid \theta): \theta \in A\}$, and let $\mathcal{H}=\{H(\cdot \mid \alpha): \alpha \in$ $B\}$ be the family of distributions of the form

$$
H(x \mid \alpha)=\int F(x \mid \theta) d G(\theta \mid \alpha)
$$

where $F \in \mathcal{F}$ and $\mathcal{G}=\{G(\cdot \mid \alpha): \alpha \in B\}$ is a family of distributions having support contained in A. Then $\overline{\mathcal{H}}_{(n)}$ consists of distributions having the form

$$
\bar{H}_{(n)}\left(\mathbf{x} \mid \alpha_{S}, S \in \mathcal{S}\right)=\int \bar{F}_{(n)}\left(\mathbf{x} \mid \theta_{S}, S \in \mathcal{S}\right) \prod_{S \in \mathcal{S}} d G\left(\theta_{S} \mid \alpha_{S}\right)
$$

Proof.

$$
\begin{aligned}
\bar{H}_{(n)}\left(\mathbf{x} \mid \alpha_{S}, S \in \mathcal{S}\right) & =\int \prod_{S \in \mathcal{S}} \bar{F}\left(\max _{j \in S} x_{j} \mid \theta_{S}\right) \prod_{S \in \mathcal{S}} d G\left(\theta_{S} \mid \alpha_{S}\right) \\
& =\prod_{S \in \mathcal{S}} \int \bar{F}\left(\max _{j \in S} x_{j} \mid \theta_{S}\right) d G\left(\theta_{S} \mid \alpha_{S}\right)=\prod_{S \in \mathcal{S}} \bar{H}\left(\max _{j \in S} x_{j} \mid \alpha_{S}\right)
\end{aligned}
$$

If in the above proposition, \mathcal{F} is a survival product family and \mathcal{G} is a convolution family, then it follows from Theorem 3.7 and Theorem 3.13 that $\overline{\mathcal{H}}_{(n)}$ is a survival product family, and of course this is the most interesting case.

Example 3.15. MULTIVARIATE LOGISTIC DISTRIBUTIONS. Let \mathcal{F} consist of the iterated exponential extreme value distributions for minima as in Example 3.8. Then \mathcal{F} is a survival product family and $\overline{\mathcal{F}}_{(n)}$ consists of distributions of the form

$$
\bar{F}\left(\mathbf{x} \mid \theta_{S}, S \in \mathcal{S}\right)=\exp \left[-\sum_{S \in \mathcal{S}} \theta_{S} \exp \left(\max _{j \in S} x_{j}\right)\right]
$$

If the θ_{S} are independent and have gamma distributions with respective shape and scale parameters r_{S} and λ_{S}, then the mixture H of (1) is given by

$$
\bar{H}\left(\mathbf{x} \mid r_{S}, \lambda_{S}, S \in \mathcal{S}\right)=\prod_{S \in \mathcal{S}}\left[\frac{\lambda_{S}}{\lambda_{S}+\exp \left(\max _{i \in S} x_{i}\right)}\right]^{r_{S}}
$$

If the parameters $\lambda_{S}, S \in \mathcal{S}$ are either 0 or are equal to $\lambda>0$, say, then the mixing gamma distributions form a convolution family, and in this case the distribution $\bar{H}\left(\cdot \mid r_{S}, \lambda, S \in \mathcal{S}\right)$ form a survival product family as expected.
4. Appendix: Association and Total Positivity. The following result of Ahmed, León and Proschan (1978) shows that the positive dependency property of association is preserved under mixing.

Theorem 4.1. Let H be a mixture given by (4). If
(27) for each fixed $\theta, F(x \mid \theta)$ is associated,
(28) G is associated,
(29) $\int \xi(\mathbf{x}) d F(\mathbf{x} \mid \theta)$ is increasing in θ for all increasing $\xi: \mathcal{R}^{n} \rightarrow \mathcal{R}$ such that the integral exists,
then H is associated.
Lemma 4.2. Let H be a mixture given by (2). If

$$
\begin{equation*}
\int \xi(x) d F_{i}(x \mid \theta) \text { is increasing in } \theta \text { for all increasing } \xi: \mathcal{R} \rightarrow \mathcal{R} \tag{30}
\end{equation*}
$$

such that each integral exists, $i=1, \ldots, n$, then (29) holds where $F(\mathbf{x} \mid \theta)=$ $\Pi F_{i}\left(x_{i} \mid \theta\right)$.

Theorem 4.3. Let H be a mixture given by (2). If G is associated and if condition (30) holds, then H is associated.

Corollary 4.4. Let H be a mixture given by (2). If

$$
\begin{equation*}
F_{i}\left(x_{i} \mid \theta\right) \text { is decreasing in } \theta \text { for all } x_{i}, i=1, \ldots, n \tag{31}
\end{equation*}
$$

then H is associated.

Total Positivity in Mixtures.

Total positivity is often encountered in mixtures (e.g., see Marshall and Olkin, 1979, Example 18.A.12). In the multivariate setting, multivariate total positivity in the following sense arises.

Definition 4.5. (Karlin and Rinott, 1980). Let $\mathcal{X}=\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}$ where each \mathcal{X}_{i} is totally ordered. For $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, let
$\mathbf{x} \vee \mathbf{y}=\left(\max \left(x_{1}, y_{1}\right), \ldots, \max \left(x_{n}, y_{n}\right)\right), \mathbf{x} \wedge \mathbf{y}=\left(\min \left(x_{1}, y_{1}\right), \ldots, \min \left(x_{n}, y_{n}\right)\right)$.
A function $\psi: \mathcal{X} \rightarrow[0, \infty)$ is said to be multivariate totally positive of order 2 $\left(\mathrm{MTP}_{2}\right)$ if

$$
\psi(\mathbf{x} \vee \mathbf{y}) \psi(\mathbf{x} \wedge \mathbf{y}) \geq \psi(\mathbf{x}) \psi(\mathbf{y}) \text { for all } \mathbf{x}, \mathbf{y} \in \mathcal{X}
$$

Proposition 4.6. (Kemperman, 1977; Karlin and Rinott, 1980, Proposition 2.1). Suppose that $\psi: \mathcal{X} \rightarrow[0, \infty)$ is totally positive of order $2\left(T P_{2}\right)$ in each pair of arguments, the remaining arguments being fixed. Suppose also that $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ and $\psi(\mathbf{x}) \psi(\mathbf{y})>0$ implies $\psi(\mathbf{u})>0$ for all \mathbf{u} such that $\mathbf{x} \wedge \mathbf{y} \leq \mathbf{u} \leq \mathbf{x} \vee \mathbf{y}$. Then ψ is $M T P_{2}$ on \mathcal{X}.

Theorem 4.7. (Karlin and Rinott, 1980, p. 472). If $\mathbf{X}=\left(X_{1} \ldots, X_{n}\right)$ has a joint density that is $M T P_{2}$ and if A and B are upper Borel sets in \mathcal{R}^{n} (i.e., $a \in A$ and $a^{\prime} \geq a \Rightarrow a^{\prime} \in A$, and similarly for B), then

$$
\begin{equation*}
P\{\mathbf{X} \in A \vee B\} P\{\mathbf{X} \in A \wedge B\} \geq P\{\mathbf{X} \in A\} P\{\mathbf{X} \in B\} \tag{32}
\end{equation*}
$$

where $A \vee B=\{\mathbf{u}=\mathbf{a} \vee \mathbf{b}: \mathbf{a} \in A, \mathbf{b} \in B\}$ and $A \wedge B=\{\mathbf{u}=\mathbf{a} \wedge \mathbf{b}: \mathbf{a} \in A, \mathbf{b} \in B\}$.
According to Theorem 3.1 of Esary, Proschan and Walkup (1967), random variables X_{1}, \ldots, X_{n} are associated if and only if for all upper Borel sets in \mathcal{R}^{n},

$$
\begin{equation*}
P\{\mathbf{X} \in A \cap B\} \geq P\{\mathbf{X} \in A\} P\{\mathbf{X} \in B\} \tag{33}
\end{equation*}
$$

Note that $A \cap B=A \wedge B$. A comparison of (32) and (33) provides a proof of the following.

Corollary 4.8. (Fortuin, Kastelyn and Ginibre, 1971; Karlin and Rinott, 1980, Theorem 4.2). If $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ has an $M T P_{2}$ joint density, then X_{1}, \ldots, X_{n} are associated.

To a large extent, joint densities which are MTP_{2} arise in mixtures as a consequence of the following theorem.

Theorem 4.9. (Karlin and Rinott, 1980, Proposition 3.4). Let $\mathcal{X}=\prod_{i=1}^{n} \mathcal{X}_{i}$, $\mathcal{Y}=\Pi_{i=1}^{n} \mathcal{Y}_{i}$ and $\mathcal{Z}=\Pi_{i=1}^{n} \mathcal{Z}_{i}$, where each $\mathcal{X}_{i}, \mathcal{Y}_{i}$ and \mathcal{Z}_{i} is totally ordered. If ψ_{1} is $M T P_{2}$ on $\mathcal{X} \times \mathcal{Y}, \psi_{2}$ is $M T P_{2}$ on $\mathcal{Y} \times \mathcal{Z}$ and if

$$
\psi(\mathbf{x}, \mathbf{z})=\int_{\mathcal{Y}} \psi_{1}(\mathbf{x}, \mathbf{y}) \psi_{2}(\mathbf{y}, \mathbf{z}) \Pi d \sigma_{i}\left(y_{i}\right)
$$

where each σ_{i} is σ-finite, then ψ is $M T P_{2}$ on $\mathcal{X} \times \mathcal{Z}$.

Proposition 4.10.

(i) If $f(\mathbf{x} \mid \theta)$ is $M T P_{2}$ in (\mathbf{x}, θ) and g is $M T P_{2}$, then

$$
h(\mathbf{x})=\int f(\mathbf{x} \mid \theta) g(\theta) d \theta
$$

is $M P T_{2}$.
(ii) If $f(\mathbf{x} \mid \theta)$ is $M T P_{2}$ in (\mathbf{x}, θ) and if $g(\theta \mid \alpha)$ is $M T P_{2}$ in (θ, α), then

$$
h(\mathbf{x} \mid \alpha)=\int f(\mathbf{x} \mid \theta) g(\theta \mid \alpha) d \theta
$$

is $M T P_{2}$ in (\mathbf{x}, α).
Proof. This is an immediate consequence of Theorem 4.9.
Proposition 4.11.
(i) If $h(\mathbf{x})=\int \Pi_{i=1}^{n} f_{i}\left(x_{i} \mid \theta_{i}\right) g(\boldsymbol{\theta}) d \boldsymbol{\theta}$, where each $f_{i}\left(x_{i} \mid \theta_{i}\right)$ is $T P_{2}$ in $\left(x_{i}, \theta_{i}\right)$ and if g is $M T P_{2}$, then h is $M T P_{2}$.
(ii) If $h(\mathbf{x} \mid \boldsymbol{\alpha})=\int \Pi_{i=1}^{n} f_{i}\left(x_{i} \mid \theta_{i}\right) g(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) d \boldsymbol{\theta}$, where each $f_{i}\left(x_{i} \mid \theta_{i}\right)$ is $T P_{2}$ in x_{i}, θ_{i}, and if $g(\boldsymbol{\theta} \mid \boldsymbol{\alpha})$ is $M T P_{2}$ in $(\boldsymbol{\theta}, \boldsymbol{\alpha})$, then h is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\alpha})$.

Proof. By Proposition 4.6, $\Pi_{i} f_{i}\left(x_{i} \mid \theta_{i}\right)$ is MTP_{2} in $(\mathbf{x}, \boldsymbol{\theta})$ so this result follows from Proposition 4.10.

Proposition 4.12. Let $h(\mathbf{x})=\int f(\mathbf{x} \mid \boldsymbol{\theta}) \Pi d G_{i}\left(\theta_{i}\right)$. If $f(\mathbf{x} \mid \boldsymbol{\theta})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\theta})$, then h is $M T P_{2}$.

Proof. This follows directly from Theorem 4.9 or from Proposition 4.11. || Just as MTP_{2} densities arise so do distribution functions and survival functions.

Proposition 4.13.
(i) Let $H(\mathbf{x})=\int F(\mathbf{x} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta}) d \boldsymbol{\theta}$ and suppose that g is $M T P_{2}$. If $F(\mathbf{x} \mid \boldsymbol{\theta})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\theta})$, then H is $M T P_{2}$; if $\bar{F}(\mathbf{x} \mid \boldsymbol{\theta})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\theta})$, then \bar{H} is $M T P_{2}$.
(ii) Let $H(\mathbf{x} \mid \boldsymbol{\alpha})=\int F(\mathbf{x} \mid \boldsymbol{\theta}) g(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) d \boldsymbol{\theta}$ and suppose that $g(\boldsymbol{\theta} \mid \boldsymbol{\alpha})$ is $M T P_{2}$ in $(\boldsymbol{\theta}, \boldsymbol{\alpha})$. If $F(\mathbf{x} \mid \boldsymbol{\theta})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\theta})$, then $H(\mathbf{x} \mid \boldsymbol{\alpha})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\alpha})$. A similar statement holds if F and H are replaced by \bar{F} and \bar{H}.

Proof. These results follow from Theorem 4.9. ||
Proposition 4.14. Let $H(\mathbf{x})=\int F(\mathbf{x} \mid \boldsymbol{\theta}) \Pi d G_{i}\left(\theta_{i}\right)$. If $F(\mathbf{x} \mid \boldsymbol{\theta})$ is $M T P_{2}$ in $(\mathbf{x}, \boldsymbol{\theta})$, then H is $M T P_{2}$. A similar statement holds with \bar{F} and \bar{H} in place of F and H.

Proof. These results follow from Theorem 4.9. ||
Although higher order multivariate total positivity has to our knowledge not been defined, one counterpart to MTP_{2} is the condition of higher order total positivity in pairs of arguments.

Theorem 4.15. If $\bar{F}_{i}\left(x_{i} \mid \theta\right)$ is totally positive of order $k\left(T P_{k}\right)$ in $\left(x_{i}, \theta\right)$, $i=1, \ldots, n$, then

$$
\bar{H}(\mathbf{x})=\int \Pi_{i=1}^{n} \bar{F}_{i}\left(x_{i} \mid \theta\right) d G(\theta)
$$

is $T P_{k}$ in each pair $x_{j}, x_{\ell}, 1 \leq j, \ell \leq k(j \neq \ell)$, the other arguments being fixed. If $F_{i}\left(x_{i} \mid \theta\right)$ is $T P_{k}$ in $\left(x_{i}, \theta\right), i=1, \ldots, n$, then

$$
H(\mathbf{x})=\int \Pi_{i=1}^{n} F_{i}\left(x_{i} \mid \theta\right) d G(\theta)
$$

is $T P_{k}$ in each pair $x_{j}, x_{\ell}, j \neq \ell$, the other arguments being fixed.
If F_{i} has a density f_{i} with respect to some measure that is $T P_{k}$ in $\left(x_{i}, \theta\right)$, $i=1, \ldots, n$, and if

$$
h(\mathbf{x})=\int \prod_{i=1}^{n} f_{i}\left(x_{i} \mid \theta\right) d G(\theta)
$$

then h is $T P_{k}$ in each pair $x_{j}, x_{\ell}, j \neq \ell$, the other arguments being fixed.
Proof. This is an immediate consequence of the basic composition formula (Karlin, 1968, p. 17). ||

It is not difficult to show that if h is TP_{k} in pairs of its arguments, then H and \bar{H} both have this property.

When $n=2$, even TP_{2} is known to have useful implications.
A random vector (X_{1}, X_{2}) is said to be right corner set increasing (RCSI) if

$$
P\left\{X_{1}>x_{1}, X_{2}>x_{2} \mid X_{1}>x_{1}^{\prime}, X_{2}>x_{2}^{\prime}\right\}
$$

is increasing in x_{1}^{\prime} and x_{2}^{\prime} for all x_{1}, x_{2}. Shaked (1977) shows that the survival function of $\left(X_{1}, X_{2}\right)$ is TP_{2} if and only if $\left(X_{1}, X_{2}\right)$ is RCSI. Barlow and Proschan (1975) show that if (X_{1}, X_{2}) is RCSI, then X_{1} and X_{2} are associated. By analogous arguments or by applying these results to $\left(-X_{1},-X_{2}\right)$ it can be shown the distribution function of $\left(X_{1}, X_{2}\right)$ is TP_{2} if and only if $\left(X_{1}, X_{2}\right)$ is left corner set decreasing (LCSD), i.e.,

$$
P\left\{X_{1} \leq x_{1}, X_{2} \leq x_{2} \mid X_{1} \leq x_{1}^{\prime}, X_{2} \leq x_{2}^{\prime}\right\}
$$

is decreasing in x_{1}^{\prime} and x_{2}^{\prime} for all x_{1}, x_{2}. Moreover, if $\left(X_{1}, X_{2}\right)$ is LCSD then X_{1} and X_{2} are associated.

Thus we see that when $n=2, \mathrm{TP}_{2}$ of either the distribution function or the survival function implies association. For $n>2$, corresponding results are false (C. Newman, 1986, private communication).

REFERENCES

AczÉL, J. (1966). Lectures on Functional Equations and Their Applications. Academic Press, New York.
Ahmed, L., León, R.V., and Proschan, F. (1978). Generalized association with applications in multivariate statistics. Technical Report, Florida State University.
Arbous, A.G. and Kerrich, J.E. (1951). Accident statistics and the concept of accident proneness. Biometrics 7 340-432.
Arnold, B.C. (1983). Pareto Distributions. International Co-operative Publishing House, Fairland, Maryland.
Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.
Dwass, M. and Teicher, H. (1957). On infinitely divisible random vectors. Ann. Math. Statist. 28 461-470.
Esary, J.D., Proschan, F. and Walkup, D. (1967). Association of random variables, with applications. Ann. Math. Statist. 38 1466-1474.
Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Vol. I (third edition), Wiley, New York.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II (second edition), Wiley, New York.
Fortuin, C.M., Kastelyn, P.W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89-103.
Karlin, S. (1968). Total Positivity, Vol. 1. Stanford University Press, Stanford, CA.
Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Mult. Anal. 10 467-498.
Keilson, J. and Steutel, F.W. (1974). Mixtures of distributions, moment inequalities and measures of exponentiality and normality. Ann. Prob. 2 112-130.
Kemperman, J.H.B. (1977). On the FKG-inequality for measures on a partially ordered space. Indag. Math. 39 313-331.
Kent, J.T. (1981). Convolution mixtures of infinitely divisible distributions. Math. Proc. Camb. Phil. Soc. 90 141-153.
Marshall, A.W. and Olkin, I. (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62 30-44.
Marshall, A.W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press, New York.

Marshall, A.W. and Olkin, I. (1985). A family of bivariate distributions generated by the bivariate Bernoulli distribution. J. Amer. Statist. Assoc. 80 332-338.
Marshall, A.W. and Shaked, M. (1986). Multivariate new better than used distributions. Math. Oper. Res. 11 110-116.
Shaked, M. (1977). A family of concepts of dependence for bivariate distributions. J. Amer. Statist. Assoc. 72 642-650.
Shaked, M. (1977). A concept of positive for exchangeable random variables. Ann. Statist. 5 505-515.
Takahasi, K. (1965). Note on the multivariate Burr's distribution. Ann. Inst. Statist. Math. 17 257-260.

Department of Statistics
University of British Columbia
Vancouver, B.C.
Canada V6T 1W5

Statistics and Education Department
Stanford University
Stanford, CA 94305

[^0]: ${ }^{1}$ Supported in part by the National Science Foundation, and
 ${ }^{2}$ The Natural Sciences and Engineering Research Council of Canada. AMS Classification. 60E05, 62E10.
 Key words and phrases. Associated random variables, total positivity, multivariate distributions with given marginals, infinite divisibility, bivariate Poisson distribution, bivariate binomial distribution, bivariate negative binomial distribution, bivariate Pareto distribution.

