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A number of standard univariate distributions can be rep-
resented as mixtures of other standard distributions. In
this paper such mixture representations are exploited to
generate families of multivariate distributions with given
marginals. Attention is confined to mixtures of paramet-
ric families where the parameter appears as the order of
a convolution or as a power of the distribution or survival
function. The mixture structure yields properties of the
generated multivariate distributions such as total posi-
tivity, association and infinite divisibility. Examples ob-
tained include the bivariate Poisson, binomial, negative
binomial, normal, chi-square, logistic and Pareto distri-
butions.

1. Introduction, For any given parametric family of distributions F(- | 0),
it is possible to regard the parameter θ as the value of a random variable Θ with
distribution G, say. Then F( \ θ) is a conditional distribution given Θ = θ and
the corresponding unconditional distribution

(1) H(x)= ί F(x\θ)dG(θ)

is a mixture.
Here, both x and θ can be vectors, often of different dimensions. Many exam-

ples arise in which θ is a scalar and F(' \ θ) is the product of its marginals. Then

(1) takes the form

(2) #(x) = JlίFi(xi\θ)dG(θ),
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372 Albert W. Marshall and Ingram Olkin

where G and each F{ is a univariate distribution function. Clearly, multivariate
distributions H of the form (1) or (2) have univariate marginals of the form (2).
Of course many univariate examples are well known.

This paper is concerned with properties and examples of mixtures of the form
(1) or (2) for two kinds of parametric families {F(- \ θ) : θ £ A} which we call
"convolution families" and "product families." These families arise in a natural
fashion which is here described in a univariate setting.

Suppose that XL, ,Xn are independent random variables with common dis-
tribution F, and suppose that Θ > 0 is a random nonnegative integer having
distribution G. Denote the 0-th convolution of F with itself by Fθ*. With the
conventions that Fθ* is degenerate at 0 and that an empty sum is 0, the random
variable U = X\ + \- XQ has the distribution function H given by

(3) H(x)= Γ Fθ*(x)dG(θ).
Jo

In case F is infinitely divisible, (3) has meaning and H is a distribution function
whenever G satisfies G(O-) = 0. Distributions of the form (3) are often called
compound distributions (see, e.g., Feller, 1968, p. 286).

Again, suppose that Xi,X2>**# are independent random variables with com-
mon distribution F and suppose this time that Θ > 1 is a random positive integer
having distribution G. Then the random variables

V = min(Xi, ,XΘ), W = max(Xi, ,XΘ)

have respective distributions H and K given by

(4) H(x) = JFθ(x)dG(θ),

(5) K(x) = JF\x)dG(θ),

where for any distribution function i , L is the corresponding survival function.

The mixtures (3)-(5) give rise to the following definition.

DEFINITION 1.1. Let T = {F(- | θ) : θ £ A} be an indexed family of π-
dimensional distributions with index set A C TZk satisfying

(6) αe A, βe A^α + βe A.

T is said to be a convolution family if

(7) F(-\a)*F(-\β) = F(-\a + β), a,βeA;

T is said to be a survival product family if

(8) F( \a)F( \β) = F( \a + β), a,β€A;
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finally T is said to be a distribution product family if

(9) F(.\a)F( \β) = F(.\a + β), a,βeA.

Convolution, survival product and distribution product families can be defined
as semi-groups under the appropriate operation without the aid of an index set,
but in this paper the index plays an important role.

EXAMPLE 1.2. For any distribution Fy {Fk* : k = 0,1,...} is a convolution
family. In case F is a Bernoulli distribution with parameter p, Fk* is a binomial
distribution with parameters k and p, k = 0,1,

More generally, if Fι,..., Ft is a finite collection of distributions each having a
support in 7£n, then the set of all distributions of the form

is a convolution family.

EXAMPLE 1.3. The prototype survival product family is the family of uni-
variate exponential distributions. For any univariate distribution function i*1,
{FΘ I θ > 0} is a survival product family of distributions with proportional haz-
ards. Some, but not all, bivariate distributions can be used in the same way to
generate a survival product family of bivariate distributions (see Theorem 3.4).

In the study of both convolution families (Section 2) and product families
(Section 3), the notions of total positivity and association play an important role.
Some results concerning these notions are reviewed in an Appendix (Section 4).

2. Convolution Families. Convolution families involve infinite divisibility
as well as the dependency property of total positivity (see Section 4). These
properties sometimes carry over to mixtures and sometimes can be easily obtained
from mixture representations.

Convolution families combine in obvious ways to give new convolution families.

OBSERVATION 2.1. If {F?ϊ : θ € A{} is a convolution family of ^-variate
distributions, i = 1,2, then the distributions of the form

21 θuθ2) = ^ (χi) i $ ; ( χ 2 ) , 0i e Au θ2 e A2,

constitute a convolution family of (&χ + &2)-variate distributions.

OBSERVATION 2.2. If {F?X : θ £ Ai} is a convolution family of n-variate
distributions, i = 1,2, then the distributions of the form

F ( x I θuθ2) = (I** * j g ; )(χ) , θιeA1, θ2e A 2

form a convolution family of n-variate distributions.
For the study of mixtures of convolution families, a basic fact is that a convo-

lution of mixtures is a mixture of convolutions.
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LEMMA 2.3.

then

PROOF.

\θ,η) =

^(x | θ)dGi(θ), i = 1,2 and

- t I θ)dF{2)(t

,η) dG{1){θ)dGφ).

= ί fΓ(1)(x - z)

- z

-z\θ) dG(1)(θ) dH{2)(z)

dG{1)(θ) =ίj f f ( 2 ) ( x - z) dFφ

= f f f F(2)(x - z I 17) Λ2 ( 2 )(»7) d F ( 1 ) ( z | β
ι/p ^/z «/τy

= / ί F(yL\θ,η)dG{2)(η)dG(1)(θ). ||

Infinite Divisibility in Convolution Families.

LEMMA 2.4. // {F( \ θ) : θ > 0} is a convolution family then F(
infinitely divisible and

F( I θ) = Fθ*{ I 1).

1) is

PROOF. Let φe be the characteristic function of F(- \ θ),θ > 0. From (7) it
follows that

Φθ Φη = Φθ+η, θ,η> 0.

This functional equation has the solution φe = φ\ (Aczel, 1966, p. 36). ||

In the following theorem, the assumption is made that the index set A is a
convex cone. A subset T of a convex cone is said to be a frame for the cone if T,
but no proper subset of T, spans the cone positively.

THEOREM 2.5. // {F(- \ θ) : θ e A} is a convolution family indexed by a
convex cone A, then for all θ € A, F( \ θ) is infinitely divisible. If the convex cone
A has a finite frame T = {tι,..., U}, then F is of the form
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.F(. I β) = i ^ ( I ίi) * - - - * i^' (-1 */),

where θ = ΣiθiU-

PROOF. This result follows from (7) and Lemma 2.4. ||

Various versions of the following results can be found in the literature. Lemma
2.6 is given for the univariate case by Keilson and Steutel (1974, p. 116). Theorem
2.8 in one dimension is due to Feller (1971, p. 538). With the assumption that
JF( I θ) is infinitely divisible, Theorem 2.8 is given in a very general setting by
Kent (1981), who also lists some additional relevant references.

LEMMA 2.6. // {F(- \ θ) : θ 6 A} is a convolution family of multiυariate
distributions and

then

#2)(x) = JF(x\ θ) did * G2){θ).

PROOF. In Lemma 2.3, take F^ = F(2) = F. Since {F(- \ θ) : θ e A} is a
convolution family, the distribution F(* \ θ,η) of Lemma 2.3 is just F(- \ θ + η)
and consequently the result follows from Lemma 2.3. ||

THEOREM 2.7. If {F{- \ θ) : θ € A} and {G( \ a) : a e B} are convolution
families, and if

(10) #(x|α)= /F(x\θ)dG(θ\a), aeB, x e Γ ,

then {iΓ( | α), α € B} is a convolution family.

PROOF. This is immediate from Lemma 2.6. ||

THEOREM 2.8. If {F(- \ θ) : θ £ A} is a convolution family and G is an in-
finitely divisible distribution, then H given by (10) is infinitely divisible. Moreover,

(11) Ha*(x) = / F(x\ θ) dGa*(θ), a > 0, x G Γ ,

PROOF. Suppose that for some positive integer m, a = 1/ra so that (G α *) m * =
G. If ffα* is defined by (11) then by Lemma 2.6 (Ha*)m* = H. This proves that
H is infinitely divisible and (11) is satisfied for a = 1/ra, ra = 1,2,... . Again
from Lemma 2.6, it follows immediately that (11) holds for rational a and the
proof is completed by a limiting argument. ||
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Total Positivity in Convolution Families.

The following theorem shows how the positive dependency notion of total pos-
itivity (see Section 4) arises in the context of convolution families. There, F can
be taken to be either F or F. For typographical simplicity, Fθ* is written Fθ*.

THEOREM 2.9.

(i) If F(x I θ) = Fθ*(x), θ = 0,1,2,... where F is α uniυαriαte distribution
function such that F(0—) = 0 and F(x — y) is TP2 in x and y, then F{x \ θ)
is TP2 in x and θ.

(ii) If F(x I θ) = Fθ*(x), θ > 0, where F is a univariate infinitely divisible
distribution function such that F(0—) = 0 and Fθ*(x - y) is TP2 in x and y
for all θ, then F(x \ θ) is TP2 in x and θ.

(in) If F(x I θ) = Fθ*(x), θ = 0,1,2,... where F is a univariate distribution
function with a density f such that f(x — y) is TP2 in x and y, then F(- \ θ)
has a density /(• | θ) which is TP2 in x and θ = 0,1, . . . .

PROOF. Let x\ < X2 and θ\ < #2? &nd suppose that F is F. Then

F(xι\θ1) F(Xl\θ2)

F(x2\θ1) F(x2\θ2) Fθ>*(x2)

Jo Fθl*(x2-u)

because F(x—y) is TP2 in x and y implies that the same is true for Fθ*, θ = 0,1, . . .
(Barlow and Proschan, 1975, p. 100), and this means the integrand is nonnegative.
The proofs for other cases are similar. For a proof of (iii), see Karlin (1968, p.
150) . II

THEOREM 2.10. Let

(12) H^)

where each F{ is a univariate distribution function such that Fz (0—) = 0.

(i) If for each i, Fi(x - y) is TP2 in x and y, then H is MTP2.

(ii) If for each i, fo(x - y) is TP2 in x and y, then H has a density h that is
MTP2.
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PROOF. This is immediate from Theorem 2.9 and Theorem 4.15. ||

Examples

EXAMPLE 2.11. BIVARIATE POISSON DISTRIBUTION. In the mixture
(2), let F{ be a binomial distribution with parameters (0,p;), where pi is fixed,
and suppose that G is a Poisson distribution with parameter η. It is well known
that this mixture has Poisson marginals. With gt = 1 — p t , i = 1,2, the probability
mass function of this mixture is given by

(13)

Since (*) is TPoo in x and y = 0,1, . . . (Karlin, 1968, p. 137), it follows from the
basic composition theorem for totally positive functions that h(k,l) is TPQQ in k
and I = 0,1, . . . . Consequently, by Corollary 4.8 it follows that variables having
the probability mass function (13) are associated. From Theorem 2.8, it follows
that the bivariate Poisson distribution of (13) is also infinitely divisible.

A different construction of a bivariate Poisson distribution starts with indepen-
dent random variables U\,U2 and Θ having Poisson distributions with respective
parameters λi, X2 and λi2 If X% = U{ + Θ, i = 1,2, then (Xχ,X2) has the bivari-
ate Poisson distribution of M'Kendrick (see Marshall and Olkin, 1985). The joint
probability mass function of (XL,X2) is

h(k,ί) =
0=0

(14)
\θ xk-θ^ί-θ

Λ 1 2 Λ 1 Λ 2

Dwass and Teicher (1957) show that this is the only infinitely divisible bivariate
Poisson distribution, so it is reassuring to note by comparing Laplace transforms
that when λi = ηpiq2, ̂ 2 = VP2Q1 and λχ2 = VPιP2, (13) and (14) define the same
distribution.

EXAMPLE 2.12. BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION. It
is well known that if F\ and F<ι are Poisson distributions with respective param-
eters αθ and βθ, and if G is a gamma distribution with shape parameter r and
scale parameter λ = 1, then the mixture (2) has negative binomial marginals and
probability mass function
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M M | r ) .

k\£\T(r)

α \ k ( β

)

The above derivation of this bivariate negative binomial distribution is due to
Arbous and Kerrich (1951). It follows from Theorem 2.10 that h{k,i \ r) is MTP2;
by Corollary 4.8, this means the distribution is associated, so that the correlation
is non-negative. By Theorem 2.8, h{k,l \ r) is infinitely divisible and moreover

h( I n ) * Λ( I r2) = Λ( I ri + r2), ru r2 > 0.

EXAMPLE 2.13. BIVARIATE NORMAL DISTRIBUTION. If f\ and F 2 are
normal distributions with means μ and αμ, (α = ±1) and variances σ^ and σ2,
respectively, and if μ has a A^O, σo) distribution, then the mixture (2) has density
function

(2x)

where

σZ + σ.

and d = (σ\σ\ + σlσ\ + σgσ|)/[(σg + σ?)(σg + σ|) - α2σ$\.
The choice α = +1 yields a positive correlation and α = — 1 yields a negative

correlation.

EXAMPLE 2.14. A BIVARIATE CHI-SQUARE DISTRIBUTION. If Fλ and F2

are gamma distributions with common shape parameter m+2θ and with respective
scale parameters | λ i and \\2 and G is a negative binomial distribution, then the
mixture (2) has density function

h(x,y I m)
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This is the joint density of the sample variances su and S12 from a sample of
size n = m/2 from a bivariate normal distribution with inverse covariance matrix
Σ " 1 = (σ% ij = 1,2. Here λi = σ n , λ 2 = σ2 2 and p = σ 1 2/\/σ nσ 2 2 is the
correlation.

Since the gamma density is TP2, it follows from Theorem 2.10 that h(x, y \ m)
is MTP2, and hence, by Corollary 4.8, is associated. Because the negative binomial
distribution is infinitely divisible, by Theorem 2.8 h(x,y \ m) is infinitely divisible.

EXAMPLE 2.15. BIVARIATE NON-CENTRAL CHI-SQUARE DISTRIBU-
TIONS. Because a non-central chi-square distribution is a Poisson mixture of cen-
tral chi-square distributions, a bivariate non-central chi-square distribution can
formally be obtained using (2). The corresponding density is

" g f+«-i e -f

Γ(f + 0)2?+• θ\ ' X'y-°

It follows from Theorem 2.10 that h(x,y) is MTP2 and hence (by Corollary
4.8) is associated.

A possibly more meaningful bivariate non-central chi-square distribution is
obtained from the representation

where C/χ, U2 and (Z\,Z<ι) are independently distributed with U{ ~ Λf(μi, 1/λu), i =
1,2 and ( Z i , ^ ) has the bivariate chi-square distribution of Example 2.14. The
corresponding bivariate chi-square density function is

where α t = λuμf/2y i = 1,2,g(ί \ p2) is negative binomial distribution of 2.14, and

ΐ = 1,2. When p = 0 we obtain the independent case with X and y each having
a non-central chi-square distribution.

The association of h(x,y) follows from the representation of X and Y given
above, or from Theorem 2.10. By Theorem 2.8, h(x,y \ n) is infinitely divisible.

Multivariate Extension of Convolution Families.

Let T be an indexed family of distributions and let S be the class of nonempty
subsets of {1,.. .,ra}. For each S G <S, let Us have a distribution F(- \ θs) in T.
Suppose that the random variables Us,S € S are independent, and let
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(15) Xi=
sues

Denote by Tn* the family of n-dimensional distributions for random vectors of the
form (XL, . . . ,Xn). Clearly distributions in Tn* have n — 1 dimensional marginals
in pi71-1)*. If F is a convolution family, then distributions in Tn* have one di-
mensional marginals in T\ in particular, Xt has distribution F( \ Σs:ieS@s)i
i = l , . . . ,n . From (15) it is clear that distributions in Tn* are associated. The
family !Fn* has various other desirable properties (see Marshall and Shaked, 1986).

THEOREM 2.16. If T = {F( \ θ) : θ e A} is α convolution family of uniυariate
distributions, then Tn* is a convolution family (indexed by A2""1,).

PROOF. Clearly A2**"1 satisfies (6). Suppose X and Y are independent random
vectors with respective distributions F(- \ a) and F( | β) in Tn*. Then there exist
independent random variables Us^Vs^S € 5, such that

Xi= Σ US' F «= Σ Vs> Xi + Yi= Σ,(Us + Vs)> * = l. .n
Sites Sites s-.ies

If Us and Vs have respective distributions F(- \ as) and F(- \ βs) in J7, then by
(7)Us + Vs has the distribution F( \ as + βs). Thus

THEOREM 2.17. If F is infinitely divisible and T = {F^* : θ > 0},
distributions in Fn* are infinitely divisible.

The proof of this result is similar to the proof of Theorem 2.16.

EXAMPLE 2.18. BIVARIATE BINOMIAL AND POISSON DISTRIBUTIONS.
Let Xi = U{ + Ui2,i =1,2, where U\,U2 and U\2 are independent random variables
with distributions in T. Then the joint distribution of X\ and X<ι is in J72*. When
T consists of binomial distributions, {X\,X*L) has the bivariate binomial distri-
bution of Wicksell (see Marshall and Olkin, 1985); it follows from Theorem 4.13
that such distributions form a convolution family. When T consists of the Poisson
distributions then {X\,X<2) has the bivariate Poisson distribution of Example 2.11;
it follows from Theorem 2.17 that such distributions are infinitely divisible. See
also Example 2.20.

Mixtures of distributions in Tn* can take various forms, but discussion here is
confined to the case that the parameters θs,S £ S are independent random vari-
ables with respective distributions G(- \ as), S G S. Denote the joint distribution
of Xu ...Xn g i v e n θs, S € <S, b y F * ( \θs,Se S ) .

The next observation says that the operations of mixing and of extending T
to Tn* commute. Alternatively, it can be viewed as saying that the structure
exhibited in (15) is preserved under mixing.



Distributions Generated from Mixtures 381

PROPOSITION 2.19. Let T = {F( | θ) : θ e A}, and let H = {H(- \ a) : a e

B} be the family of distributions of the form

H(x\a) = JF(x\θ)dG(θ\a),

where F 6 T and Q = {G( \ a) : α 6 B} is a family of distributions having
support contained in A. Then 7ίn* consists of distributions having the form

(16) # " * ( x \aτ,TeS)= ίF*(x \θS9SeS)H dG(θs I α τ ) .
J sesses

PROOF. Let Us,S 6 S be independent random variables with distributions in
T such that

have joint distribution F*. Denote the characteristic function of Us by φs. Then
X\,..., Xn have joint characteristic function

where T5 = Σ^^fy. Consequently, the characteristic function of Hn* is

(17) / Π Φsi?s) Π ^ ( ^ 5 I αΓ) = Π / ^ ( r 5 ) rfG(β5 | α τ ) .

Now let Vτ,Γ G S be independent random variables such that VT has the

distribution H( \ QLT) and let

Then YΊ,..., Yn have a joint distribution in Ή n * and joint characteristic function

given by (17). ||

EXAMPLE 2.20. A BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION.
Let Xι = U\ + U121X2 = U2 + #12? where Uι, U2 and U12 are independent random
variables having Poisson distributions with respective parameters 0io,#oi and Θu
(i.e., X\ and X2 have the bivariate Poisson distribution of Example 2.11). Suppose
that #io, #oi and #n are independent random variables having gamma distributions
with respective parameters (αio? λ), (αoi, λ) and (an, λ). Then for k,i = 0 ,1, . . . ,
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g ί l g 1 0 J g 0 l ' y -(flio+floi+flii)

3 "

10 e " Λ " " 0 1
Γ(αoi)

\ a Γ(αio + k - j - l)Γ(αoi + i - j - l ) Γ ( α n + j - 1)

Γ ( α l o ) Γ ( α o i ) Γ ( α n ) j ! ( * - j)\{ί - j

Γ(αio + fc - j - 1) Γ(α 0 1 + £ - j - 1) Γ ( α n + j - 1) α

1 v^iojl,^ "• 3)' 1 \OίQi)\*' ~~ 3) J-vαnJJ

where a = a n + aio + aoi, p = λ/(λ + 1).
This distribution has negative binomial marginals; with αio = c*oi = 1 —

this is a bivariate geometric distribution.
From Proposition 2.19, it follows that this negative binomial distribution is in

J72* when T consists of negative binomial distributions with fixed parameter p.

3. Product Families. Results which follow are stated for survival product
families, but it should be understood that parallel results hold for distribution
product families.

OBSERVATION 3.1. If {F^(- \ θ) : θ e A{} is a survival product family, i = 1,2,
then distributions of the form

F(xi,X2,X3 I #1,02) = Fi(xi,X2 I 0l) ^2(X2,X3 I 02), 01 € AU 02 € A2

constitute a survival product family.

LEMMA 3.2. A survival product family of distributions F(- \ 0) indexed by
A = (0,oo) must be a proportional hazard family, that is,

(18) F(. I 0) = f*( I 1), 0>O.

PROOF. Fix x and let φ{θ) = F(x | 0). From (8) it follows that

φ{a + β) = φ(ct) φ(β), α,/3 > 0.

Since φ is bounded, it follows that for some real number 7,</>(α) = e~7C*, that is
φ(a) = [φ(l)]a. But this is (18). ||

THEOREM 3.3. If {F(- \ θ) : 0 e A] is a survival product family indexed by a
convex cone A C 1Zk with finite frame T = {ίi,..., fy} then
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t = l

where θ = ΣΛ^U-

PROOF. This is immediate from (8) and Lemma 3.2. ||

Proportional Hazard Families in Higher Dimensions.

If F is a univariate survival function, then for all θ > 0, Fθ is also a univariate
survival function. In the multivariate case, Fk, k = 1,2,... is always a survival
function, but Fθ is a survival function for all θ > 0 only in special circumstances.

THEOREM 3.4. Let F be α bivαriαte survival function. Then Fθ is a bivariate
survival function for all θ > 0 if and only if F(x,y) is TP2 in (#,2/).

PROOF. Suppose first that Fθ is a survival function for all θ > 0. Then for all
c,δ > 0 ,

ξ(θ) = Fθ(xyy) - F\x,y + e) - Fθ(x + δ,y) + Fθ(x + δ,y + e)>0.

Since ξ(θ) > 0 for all θ > 0 and f(0) = 0, it follows that the derivative f'(0) > 0;
but this is just the condition

that F is TP 2 .
Next, suppose that F is TP 2 . With R(x,y) = ~log^(a:,y), this condition can

be written in the form

(19) R(x + δ,y + e)< R(x,y + e) + R{x + δ,y) - R(x,y)

for all £, δ > 0 and all z, y.

Note that R(x + δ,y)- R(x, y)>0 and write

R(x, y+e)- R(x, y) = [R(x, y+e) + R(x + δ, y) - R(x, y)] - R(x + ί, y).

Since ψ(x) = e~x is decreasing and convex, it follows that for all θ > 0,

e-ΘR(x,y) _ e-ΘR(xfy+e) > e~ΘR(x+δ,y) _ e-θ[R(x,y+c)+R{x+δ,y)-R(x,y)]

-ΘR(x+δiy) _ e-ΘR(x+δ,y+e)
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the last inequality because φ is decreasing and (19) holds. But this says that Fθ

is a survival function. ||

As noted in Section 4, the condition that F is TP2 is a positive dependency
property which implies that the correlation is non-negative (when it exists).

REMARK 3.5. If F is a bivariate distribution with density / such that f(x,y)
is TP 2 in x and y, then it follows from Theorem 4.9 that F(x,y) is also TP2 in x
and y. Several examples from Section 2 have this property, including 2.11, 2.12.
See also Examples 3.8 and 3.9.

Mixtures of Product Families.

LEMMA 3.6. If F? is α survival function for all θ in the support of Gi and
3i(x) = f Ff( χ)dGi(θ), i = 1,2, then

H2(y) = J Fθ(x) d(Gx * G2)(θ).

PROOF. Write Fθ(x) = e~ΘRW, where i2(x) = -logF(x). Then the result is
easily seen to be a reflection of the fact that the Laplace transform of a convolution
is the product of Laplace transforms. ||

THEOREM 3.7. Let {G( | α) : a £ B} be a convolution family of distributions
such that for each a, G{- \ a) has support contained in A. Let {F{ \ θ) : θ £ A}
be a survival product family of distributions such that F(x \ θ) is measurable in θ
for each fixed x.

If

H(x I α) = ί F(x I θ) dG(θ | α), a £ B,

then

(20) H(x \a + β) = H(x \ a) H(x \ β) for all a,βe B, -00 < x < 00.

PROOF. This is immediate from Lemma 3.6. ||

EXAMPLE 3.8. MULTIVARIATE LOGISTIC DISTRIBUTION. If F{ are it-
erated exponential extreme value distributions for minima, that is, F{(x{ \ θ) =
exp{-0e* }, —00 < X{ < 00, θ > 0, i = 1,..., n, and if G is a gamma distribution
with shape parameter r and scale parameter λ, then the distribution H of (2) takes
the form

XiY, λ , r > 0 .
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EXAMPLE 3.9. MULTIVARIATE PARETO DISTRIBUTIONS. If

are Weibull survival functions and if G is a Gam(α, 1) distribution then the mixture
(2) is a Type IV multivariate Pareto distribution as defined by Arnold (1983). This
mixture has survival function

(21) ^ ( χ | β ) = 1 + χ i ^ - ^ J , *.->*•, <=1,...,».

The representation of (21) as a mixture was used with a minor variation by Taka-
hasi (1965) to define a multivariate Burr distribution.

It follows from Theorem 4.15 that the density corresponding to H is TPQQ

in each pair of arguments, the other arguments being fixed. Consequently the
distribution is associated.

Lemma 3.6 and Theorem 3.7 can be generalized to allow the F{ to involve
different sets of variables.

LEMMA 3.10. Let xW be α subvector o/x of dimension n{} and let F{ be a
distribution fuction of dimension n, such that Ff is a survival function for all
θ £ A{, i = !,...,&. Let Gj be a distribution of dimension k such that Gj(A\ x

then

k

Fχ(x) B2(x) = ί Π W > ) d(G1 * G2)(θ).
J t=i

PROOF. Let Λt (χW) = -logfi(χW) so that

Then

ί = i

» = 1

Special cases of particular interest include
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(i) k = 1 and χ(*) = x,

(ii) k = n and xM = xt where x = ( # i , . . . , xn).

(iii) k = 2n - 1 and xM ranges through the nonempty subvectors of x.

THEOREM 3.11. Let Q = {G( | α), α e A} δe α convolution family of k-
dimensional distribution functions such that

(22) (7(0|α) = l for all a 6 A.

With the notation of Lemma 3.10f let

r k

# ( x I a) = / Π 2?'(xW) ^ ( β I α), x 6 Un, a e A.
J ί = l

ΓΛen 7ΐ = {H(- \ α), α ζ A } is a survival product family.

PROOF. This follows from Lemma 3.10. ||

Multivariate Extensions of Survival Product Families.

Let T be an indexed family of distributions and for each S € <S, the non-empty
subsets of {1,2,.. . ,n} , let Us have distribution F( | Us) € T. Suppose that the
random variables Us, S € S are independent, and let

(23) Xi= mm Us, i = l , . . . ,n .

Then the joint survival function of the Xt 's is given by

(24) F(n)(x I 05, S e S) =

The family ^(n) of such distributions has various desirable properties (see Marshall
and Shaked, 1986); in particular if T is a survival product family, then distributions
in T(n) have univariate marginals in T. If T is a survival product family indexed
by (0,oo), then Lemma 3.2 applies and

(25) F(n)(x \θs, S € S) = Π ^*5(™«*; I 1).

EXAMPLE 3.12. If Xx = min(Z7i, Z) and X2 = min(ί/2, ^ ) , where Z7i, ?72 and
are independent random variables with distributions in the family T then (Xχ
has a distribution in ^( 2). When .T7 consists of the exponential distributions,
consists of the bivariate exponential distributions of Marshall and Olkin (1967).
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For distribution product families, "min" in (23) is replaced by "max" and (24)
is replaced by

(26) F(x I θ) = F ( n )(x I θ) =
ses

and the family of such distributions is denoted by ^Vn)

THEOREM 3.13. ///" = {F( | 0) : 0 e A} is a survival product family then
J(n) is a survival product family; if T is a distribution product family, then J7^
is a distribution product family.

The next observation says that the operations of mixing and of extending T
to ,F(n) commute (cf. Proposition 2.19).

PROPOSITION 3.14. Let T = {F( \ θ) : θ e A}, and let H = {H(- \ a) : a e

B} be the family of distributions of the form

H(x\a)= ί F(x\θ)dG(θ\a),

where F G T and Q = {G( \ a) : a £ B} is a family of distributions having
support contained in A. Then 7ί(n) consists of distributions having the form

H{n)(x \as,S€S)= f F{n)(κ \ΘS,S€S)J[ dG(θs \ as).
J ses

PROOF.

ses 3e ses

sesJ 3eb ses

If in the above proposition, T is a survival product family and Q is a convolution
family, then it follows from Theorem 3.7 and Theorem 3.13 that ?ϊ(n) is a survival
product family, and of course this is the most interesting case.

EXAMPLE 3.15. MULTIVARIATE LOGISTIC DISTRIBUTIONS. Let .F con-
sist of the iterated exponential extreme value distributions for minima as in Ex-
ample 3.8. Then T is a survival product family and T(n) consists of distributions
of the form

F(x I θSj S € S) = exp - £ θs exp(max^) .

L j£S J
max

ses j£S

If the θs are independent and have gamma distributions with respective shape and
scale parameters rs and λs, then the mixture if of (1) is given by
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JΓ(x|7 s,λs,Se<S)= Π [

If the parameters \s, S € S are either 0 or are equal to λ > 0, say, then the mixing
gamma distributions form a convolution family, and in this case the distribution
H( I r5, λ, S £ S) form a survival product family as expected.

4. Appendix: Association and Total Positivity. The following result of
Ahmed, Leon and Proschan (1978) shows that the positive dependency property
of association is preserved under mixing.

THEOREM 4.1. Let H be α mixture given by (4). //

(27) for each fixed θ, F(x \ θ) is associated,

(28) G is associated,

(29) / £(x)d.F(x I θ) is increasing in θ for all increasing ξ : TZn —> TZ such that
the integral exists,

then H is associated.

LEMMA 4.2. Let H be a mixture given by (2). If

(30) / ξ(x)dFi(x I θ) is increasing in θ for all increasing ξ : TZ —• 7£

such that each integral exists, i = l , . . . , n , then (29) holds where F ( x | θ) =

THEOREM 4.3. Let H be a mixture given by (2). // G is associated and if
condition (30) holds, then H is associated.

COROLLARY 4.4. Let H be a mixture given by (2). //

(31) Fi(x{ I θ) is decreasing in θ for allxi,i= 1,..., n,

then H is associated.

Total Positivity in Mixtures.

Total positivity is often encountered in mixtures (e.g., see Marshall and Olkin,
1979, Example 18.A.12). In the multivariate setting, multivariate total positivity
in the following sense arises.

DEFINITION 4.5. (Karlin and Rinott, 1980). Let X = X\ x x Xn where
each X{ is totally ordered. For x,y £ X, let
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x V y = (max(xi, yi),. . . , max(xn, yn)), xΛy = (min(a;i, yτ),..., min(zn, yn)).

A function φ : X —• [0, oo) is said to be multivαriαte totally positive of order 2
(MTP2) if

V>(x V y) ^(x Λ y) > φ(x) φ(y) for all x, y 6 X.

PROPOSITION 4.6. (Kemperman, 1977; Karlin and Rinott, 1980, Proposition
2.1). Suppose that φ : X —• [0, oo) is totally positive of order 2 (TP2) in each pair
of arguments, the remaining arguments being fixed. Suppose also that x, y G X
and φ(x)φ(y) > 0 implies φ(u) > 0 for all u such that x Λ y < u < x V y . Then
φ is MTP2 on X.

THEOREM 4.7. (Karlin and Rinott, 1980, p. 472). IfX = {Xx.. .,Xn) has a
joint density that is MTP2 and if A and B are upper Borel sets in TZn (i.e., a € A
and a1 > a => a! 6 A, and similarly for B), then

(32) P{X G i V ΰ } P{X € A Λ B} > P{X G A} P{X € # } ,

where AVB = {u = aVb : a € A, b € B} and AΛB = {u = aΛb : a € A, b 6 B}.

According to Theorem 3.1 of Esary, Proschan and Walkup (1967), random
variables X i , . . . , Xn are associated if and only if for all upper Borel sets in 7£n,

(33) P{X eAHB}> P{X e A}P{X € B}.

Note that AΠ B = A Λ B. A comparison of (32) and (33) provides a proof of
the following.

COROLLARY 4.8. (Fortuin, Kastelyn and Ginibre, 1971; Karlin and Rinott,
1980, Theorem 4.2). If X = (Xu...JXn) has an MTP2 joint density, then
Xij..., Xn are associated.

To a large extent, joint densities which are MTP2 arise in mixtures as a con-
sequence of the following theorem.

THEOREM 4.9. (Karlin and Rinott, 1980, Proposition 3.4). Let X = Π ^ Λ ,
y = Π^= 1J t and Z = ΐl^Zi, where each Ai,yt- and Z{ is totally ordered. If φλ is
MTP2 on X xy, φ2 is MTP2 on y X Z and if

,z) = J ih(x,

where each σt is a-finite, then φ is MTP2 on X X Z.



390 Albert W. Marshall and Ingram Olkin

PROPOSITION 4.10.

(i) ///(x I θ) is MTP2 in (x,0) and g is MTP2) then

isMPT2.

(ii) ///(x I 0) is MTP2 in (x,0) and if g(θ \ a) is MTP2 in (0,α), then

Λ(x|α) = J /(

is MTP2 in(x,α).

PROOF. This is an immediate consequence of Theorem 4.9.

PROPOSITION 4.11.

ft) J/Λ(x) = /ΠJLj/,•(&,• I θi)g(θ)dθ, where each /t (a?t | 0t ) is TP2 in (s;,0i)
and ifg is MTP2} then h is MTP2.

(ii) J/Λ(x I a) = / Π ^ / i ί x i I 0,)5(0 I α)c?0, w Λere eαcΛ /t (xt | 0t ) is ΓP2 in
a ) is MTP2 in (β,a),

PROOF. By Proposition 4.6, Πt /t (xt | 0t ) is MTP2 in (x,0) so this result
follows from Proposition 4.10. ||

PROPOSITION 4.12. Let Λ(x) = / / ( x | 0)ΠdGt (0t ). ///(x | 0) is MTP2 in
is MΓP2.

PROOF. This follows directly from Theorem 4.9 or from Proposition 4.11. ||

Just as MTP2 densities arise so do distribution functions and survival functions.

PROPOSITION 4.13.

(i) Let JT(x) = / F ( x | θ)g(θ)dθ and suppose that g is MTP2. If F(x | 0) is
MTP2 in (x,0), then H is MTP2; i/*F(x | 0) is MTP2 in (x,0), then H is
MTP2.

(ii) Let # ( x I α) = / F ( x | 0) g(θ \ a)dθ and suppose that g(θ \ ci) is MTP2 in
(0,α). //F(x I 0) is MTP2 in (x,0), then #(x | α)_ is MTP2 in (x,α). Λ
similar statement holds if F and H are replaced by F and H.
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PROOF. These results follow from Theorem 4.9.

PROPOSITION 4.14. Let #(x) = / F ( x | 0)ΠΛjf (0t ). If F(y: \_θ) is MTP2 in
(x,0), then H is MTP2. A similar statement holds with F and S in place of F
and H.

PROOF. These results follow from Theorem 4.9. ||

Although higher order multivariate total positivity has to our knowledge not
been defined, one counterpart to MTP2 is the condition of higher order total
positivity in pairs of arguments.

THEOREM 4.15. If Fi(xi \ θ) is totally positive of order k (TPk) in (z t,0),
i = 1,.. .,ra, then

j ( x ) = J Uf=1Fi(xi I θ) dG(θ)

is TPk in each pair Xj^xt, l<j,£<k(jjί t), the other arguments being fixed.

If Fi(x{ I θ) is TPk in ( z t , θ), i = 1 , . . . , n} then

(x) = Jτί?=1Fi(xi\θ)dG(θ)

is TPk in each pair Xj,X£,j φ l} the other arguments being fixed.
If Fi has a density fi with respect to some measure that is TPk in (xi,θ),

i — 1 , . . .,7i, and if

Λ ( x ) = lίlfi{xi\θ)dG{θ),
J t = l

then h is TPk in each pair Xj,X£,j φ £, the other arguments being fixed.

PROOF. This is an immediate consequence of the basic composition formula
(Karlin, 1968, p. 17). ||

It is not difficult to show that if h is TP^ in pairs of its arguments, then H and
H both have this property.

When n = 2, even TP2 is known to have useful implications.
A random vector (X\,X2) is said to be right corner set increasing (RCSI) if

-i i-Λ-i ^ X\i •**• 2 ^ Xi I -̂ * 1 ^ \i "^2 ^ 2J

is increasing in x1 and x2 for all X\,x2. Shaked (1977) shows that the survival
function of {Xι,X2) is TP2 if and only if (Xι,X2) is RCSI. Barlow and Proschan
(1975) show that if (Xι,X2) is RCSI, then Xι and X2 are associated. By analo-
gous arguments or by applying these results to (—Xi,— X2) it can be shown the
distribution function of {X\,X2) is TP2 if and only if (Xι,X2) is left corner set
decreasing (LCSD), i.e.,
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P{X\ < xi, X2 < X2 I X\ < a?i, X2 < x2}

is decreasing in xx and x2 for all £i,#2 Moreover, if (Xι^X2) is LCSD then X\
and X2 are associated.

Thus we see that when n = 2, TP2 of either the distribution function or the
survival function implies association. For n > 2, corresponding results are false
(C. Newman, 1986, private communication).
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