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In this paper—based on an extensive computer simulation—
a detailed investigation and comparisons of seven types
of positive dependence properties appearing in statistical
and reliability literature is presented.

A numerical index of the "strength" of positive quadrant
dependence (PQD) is proposed and compared with the
correlation coefficient. This index can also be adopted to
various other definitions of dependence.

1. Introduction. Dependence relations among variables constitute one of
the basic topics of applied probability and statistics. This theory goes back to
the classical investigations of Pearson in (1900) and (1904). While the concept of
independence is mathematically defined by an equality relation, the violation of
this equality by definition signifies dependence. Difficulties to provide an adequate
measure of dependence are illustrated by the following statement of Cramer (1924):
"Every attempt to measure a conception like this by a single number must neces-
sarily contain amount of arbitrariness and suffer from certain inconveniences." In
fact, Pearson (1900, 1904), Gini (1914), Frechet (1951), Cramer (1924), Hoeffding
(1940), Renyi (1959), Kolmogorov (1933), Lehmann (1966), and Lai and Robbins
(1976) should be mentioned among the leading statisticians and probabilists who
have studied this problem. The more recent work of Lehmann (1966) triggered an
additional spurt of activity in this area after a certain period of dormancy and, in
the last decade, we are witnessing a burgeoning awakening in this field which is
closely associated with the renewed interest in statistical and probabilistic reliabil-
ity methodology pioneered by the works of Barlow and Proschan (and summarized
in their monograph (1981)).

A survey of results up to 1975 is presented in the paper by Kotz and Soong
(1977) where some 10 properties of positive dependence have been discussed and

AMS 1980 subject classification. 62H05.
Key words and phrases. Types of bivariate dependence, simulation, counterexamples, graph-

ical representation, strength of dependence.
The authors express their sincere thanks to Professors H.W. Block, A.R. Sampson, T.H. Sav-

its, and the unknown referees for their comments and suggestions which improved the presentation
of this paper.

333



334 Samuel Kotz, Qiwen Wang, and Ken Hung

interrelations among them have been analyzed in some details. See also Kotz
(1980) for an updated but a shortened version. Concepts, properties, and measures
of dependence are also discussed in Schweizer and Wolff (1976) and Yanagimoto
(1972) among other sources.

In spite of substantial advances there still exists a certain confusion in the lit-
erature as to various implications of dependence definitions. The main purpose of
this paper is to present a clear and self-contained definition of various dependence
properties as proposed by various authors, in the last two decades and to provide
an empirical study (to the best of our knowledge for the first time in the liter-
ature) which will indicate the presence or absence of the particular dependence
properties as classified in this paper. These examples indicate the interrelation
among these definitions is more delicate than it seems from the first glance. A
Monte Carlo simulation was also carried out which may indicate the frequency of
presence of particular dependence properties in the so called "typical" or natural
models. These simulations are supplemented by appropriate graphical representa-
tions. The paper also examines, in some detail, the relationship between various
measures of positive dependence and the classical measure of linear dependence—
the coefficient of correlation.

Finally we propose a new numerical index of positive quadrant dependence and
compare it with the correlation coefficient. A related extensive investigation for
positive quadrant dependence has been conducted by Metry and Sampson (1988)
using graph-theoretic methods. A general classification framework for positive
dependence was recently developed by Kimeldorf and Sampson (1989).

2. Seven Types of Definitions of Non-negative Dependence Between
Two Random Variables X and Y.

1) Non-negativity of the covariance:

(1) Cov(X, Y) = E(XY) - E(X) * E(Y) > 0.

2) PQD(X,Y) - positive quadrant dependent.

The pair of variables (X,Y) satisfies the PQD(X, Y) property if:

(2) P(X <x,Y <y)> P(X < x) * P(Y < y) for any x and y.

3) A(X, Y) - association.

The pair of variables (X, Y) satisfies the A(X, Y) property if:

(3)

where / and g are non-decreasing functions of X and Y.



Bivariate Positive Dependence 335

4) LTD(Y 1 X) - Y is left tail decreasing in X.

The variables X, Y satisfy the LTD(Y | X) property if:

(4) P(Y <y\X <xi)> P(Y < y \ X < x2) when Xl < x2 for aU y.

5) RΊΊ(Y I X) - Y is right tail increasing in X.

The variables X, Y satisfy the RTI(Y | X) property if:

(5) P(Y > y | I > a ; 1 ) < P(Y > y \ X > x2) when x1 < x2 for all y.

6) a) CRs(X, Y) property.

The pair of variables (X, Y) is said to be column regression dependent of
order s (CRs) if for every / = 1,2,. . .,5, all x\ < x2 < . . . < xt and all
2/1 < ί/2 < < 2/*+i> the (t + 1) * (* + 1) determinant

(6)

b) RRθ(X, Y) property.

The pair of variables (X, Y) is said to be row regression dependent of order
s (RRs(X, Y)) if (Y,X) is

P(X<χi\Y =

c) ΌRs(X, Y) property.

If (X, Y) is both RRs and CRs dependent of order 5, we call (X, Y) to be
double regression dependent of order s (DRs).

These definitions are due to Schriever (1985).

RR1(X, Y) is also called PRD(Y | X) - Y is positively regression dependent
o n l .

The variables X, Y satisfy the PRD(Y | X) property if:

(7) P(Y < y I X = xι) > P(Y < y \ X = x2) when xx < x2 for all y.

7) TP^(X,Y) property.

The pair of variables (X, Y) is said to be total positive dependent of order
s if their joint density (or the mass function) /(x,y) satisfies the following
condition:

for any t = 1,2,..., s, all xx < x2 < . . . < xt and yx < y2 < . . . < yu the
determinant
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(8)

The TP2(X, Y) and TP3(X, Y) property will be considered in this paper.
Exchanging X and Y in (4), (5), and (7), the definitions of LTD(X | Y),

RΠ(X I Y) and PRD(X | Y) are given, respectively.
For brevity below we will use the term positive instead of non-negative.

3. A Network of Relationships Among Seven Types of Positive De-
pendence Properties. It has been proved by various authors (see citations in
References) that the following implications among these 7 types of positive depen-
dence properties between X and Y are valid (provided the appropriate covariances
exist).

,CRΓ-#-LTD(XIY) \ ^
TP3 — • TP2 — • DRl""^" ^ A -*> P Q D - ^ Cov>0

Figure 1

(See e.g. Lehmann (1966); Esary, Proschan, and Walkup (1967); Esary and
Proschan (1970); Schriever (1985); and Bilodeau (1989)).

Schriever provides the theorem and a proof that TPs dependence implies
DRs-dependence. In our Figure 1 we have the particular case TP2->DR1.

All of the above implications are strictly held. Some numerical examples will
be given in Section 5.

It should be noted that the properties TP3, TP2, DR1, A, PQD, and Cov>0
(on the middle line of the network) are symmetrical about X and Y, while the
remaining ones are non-symmetrical.

4. Computer Simulation. To study the relations among these positive de-
pendence properties, a Monte Carlo simulation was carried out using the following
algorithm.

(1) Let gij be a uniform random number in (0,1), obtained from the BASIC
subroutine, for i = 1,2,..., m; j = 1,2,..., n.

(2) Let Piά = P(X =j,Y = i) = tfy/PSiΣ*,! 9ij] for i = 1,2,.. .,m; j =
1,2,...,n.

It is obvious that P^ > 0 and Σ ^ Σ ^ P J = 1.
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Based on this algorithm a computer program was compiled. After running 30
times with different random seeds, 3000 cases with m = 3 and n = 3 have been
generated. Frequencies of occurrences of the seven types of positive dependence
properties stated above are presented in the Table 1 and the Figure 2. For brevity
we shall denote LTD(Y | X) by LTDx and similarly RTI(Y | X) by RTIz as well
as LTD(X I Y) by LTDy and RTI(X | Y) by RΎly.

Several remarks are in order.

1) In the above 3000 cases we did not find a single case which has the PQD
property but not the A(X, Y) property. However, one such case was obtained
in another simulation run (of one million cases related to Table 2).

2) There was not a single case observed such that both LTDx and RTLc were
valid but not RR1 or both LTDy and RTIy were valid but not CR1. This is
indeed impossible whenever m = 3 and n = 3. (See e.g. Esary and Proschan
(1972).)

3) The frequencies of occurrences of the six one-sided tail properties are almost
equal in pairs; a rather substantial decrease in frequencies of two-sided tail
properties was observed.

4) Note the sharp decrease of the total number of cases from Cov(X, Y) > 0 to
PQD; from LTD and RTI to DR1 and from DR1 to TP2.

5) It is interesting to compare the PQD column of Table 1 with the second row
of Metry and Sampson's (1988) Table 6.2 where the exact value 1/6 is ob-
tained by enumeration. This shows that our simulation and their theoretical
derivation yield very similar results.

Table 1. Total Numbers (T) and Percentages (P) of Occurrences of
Various Dependence Properties in 3000 Simulations

T

T

Cov> 0
1494

) 49.8
RTIy

327

) 10.9

PQD
503
16.8

RR1
167
5.6

A
503

16.8
CR1

163
5.4

LTDx
314
10.5

DR1
78

2.6

RTIx
320
10.7

TP2
32

1.1

LTDy
308
10.3

TP3
22

0.7

In order to investigate the relation between the coefficent of correlation p and
the positive dependence properties, we first subdivided the range of p from 0 to 0.75
into 15 intervals. Using the same algorithm as for the 3000 cases, additional one
million cases were generated. For comparison purposes the first 1000 cases were
selected for each of the first 13 intervals of p and over 100 cases were obtained for
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50

40 -

3 0 -

2 0 -

1 0 -

Cov^O PQD A LTDx RTly LTDx RTly

One-sided tail

properties

LTDx LTDy
and and

RTIx RTly

Two-sided

properties

RR1 CR1

One-sided
tail

properties

DR1

Two-
sided
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TP2 TP3

Figure 2. Percentages of Occurrences of Various
Positive Dependence Properties
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Table 2. Relations Between Frequencies Positive Dependence
Properties and the Coefficient of Correlation

p(x,Y)

(.00,.05)

(.05,-10)

(.10,-15)

(.15,.2O)

(.20,-25)

(.25,-30)

(.30,-35)

( 35,.4O)

(.40,-45)

(.45,.5O)

(.50,-55)

(.55,-60)

(.60,-65)

(.65,-70)

(.70,-75)

R-square

Intercept

Slope

Mid-

point

.025

.075

.125

.175

.225

.275

.325

.375

.425

.475

525

.575

.625

.675

.725

No. of

CASES

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

407

134

PQD

5

69

199

368

535

705

810

892

941

962

980

989

994

407

133

.838

.135

1.496

LTDx

3

32

102

183

316

439

551

636

723

736

758

806

834

342

112

.924

.013

1.352

BTLB

2

38

99

206

313

440

531

615

692

720

753

808

825

338

118

.946

.008

1.356

RR1

1

13

33

69

137

204

305

378

485

505

544

634

672

277

99

.980

-.085

1.188

DR1

1

3

8

30

65

91

160

210

295

323

385

453

497

220

83

.968

-.110

.946

TP2

1

1

4

13

28

50

57

109

152

181

243

284

310

141

55

.937

-.083

.611

TP3

1

0

2

9

16

24

32

66

104

136

187

244

265

135

53

.881

-.088

.558

the last two intervals. The results are shown in Table 2. Since the frequency of the
property A(X,Y) is almost the same as that of FQΏ(X,Y) and the frequencies of
LTDy, RTIy, and CR1 are very close to that of LTDx, RTLr, and RR1, respectively,
only seven properties are included into Table 2. As p increases the frequency of
virtually every property listed in Table 2 (except TP3) increases, but the effect of
the increase of p is much more noticeable for the PQD, LTD, and RTI properties
and is the least noticeable for TP2 and TP3. As a first approximation, simple linear
regression models have been fitted setting p as an independent variable (using mid-
points of the intervals) and the property as the dependent binary variables (if the
property is valid, its value will be 1, and zero otherwise). Table 2 presents the
intercept and slope of the regression equations, and the corresponding R-squares.
The values of the R-square indicate that there exists a strong linear relationship
between the correlation coefficient and the positive regression dependence. Note
also a sharp sensitivity in the range (0.075-0.175) and a relative robustness in the
range (0.425-0.625) of the values of p(X,Y).

5. Ten Numerical Examples. In order to show that all of the implications in
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Figure 1 are strict, we present ten numerical examples. Eight of them are obtained
from the above 3000 cases and the remaining two involve additional computations.
These examples seem to be the simplest for our purposes.

EXAMPLE 1.

Y

1
2

3

\χ 1
0.25
0.01
0.02

0.28

2

0.10
0.03
0.26

0.39

3
0.01
0.22
0.10

0.33

0
0
0

.36

.26

.38

The table gives the probabilities P(X = j,Y = i) and the marginal distri-
butions P(X = j) and P(Y = i) for j = 1,2,3 and i = 1,2,3. For example,
P(X = 2,y = 3) = 0.26, P{X = 1) = 0.28, P(Y = 2) = 0.26. In this case,
we have the coefficient of correlation = 0.476. However, the distribution does not
possess PQD property since

P(X < 2, Y < 2) = 0.39 while P(X < 2) * P(Y < 2) = 0.4154.

EXAMPLE 2.

Y\X
1
2
3

1
0.23
0.01
0.12

2 3
0.01 0.11
0.28 0.01
0.01 0.22

0.35
0.30
0.35

0.36 0.30 0.34

To show that the distribution possesses PQD(X, Y) property we form the table:

(id)

P(X < j) * P(Y < i)

(1,1) (1,2) (2,1) (2,2)

0.23 0.24 0.24 0.53
0.126 0.231 0.234 0.429

For i = 1,2 and j = 1,2 we have strict inequality in (2) whereas equality holds
for i = 3 or j = 3.

Hence the PQD property is valid. But there is no A(X,Y) property.
Indeed, let

< 3 and Y < 3
= 3 or Y = 3
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g(X,Y)-^ j i f χ > i a n ( i y > i

/ and g are non-decreasing functions of X or Y.
The distribution of f(X, Y) and g(X, Y) is then

9\f
0
1

0
0.25 0.23

0.28 0.24

Since Cov(/(X,Y),g(X,Y)) = -0.0044, the property A(X,Y) is not valid.

EXAMPLE 3.

0.36

0.32

0.32

Y\J
1

2
3

ί 1
0.07
0.06
0.05

0.18

2
0.13
0.15
0.09

0.37

3
0.16
0.11
0.18

0.45

To show that A(X, Y) is valid we use the following theorem given in Esary,
Proschan, and Walkup (1967).

Theorem. If Cov(f(X,Y),g(X,Y)) > 0 for all binary non-decreasing functions
f and g, then the pair of variables (X, Y) are associated.

There are 20 different binary non-decreasing functions for this example (the
case m = n = 3) which result in 400 different covariances. A computer program
has been run and it was verified that all of the 400 covariances are non-negative.

However, neither LTD(F | X) nor RTI(Y | X) are true in this case. Indeed:
P(Y < 2 I X < 1) = 0.722, P(Y < 2 | X < 2) = 0.745 (so it is not LTDx) and
P(Y > 1 I X > 1) > P(Y > 1 I X > 2) (so it is not RTIx.)

Note that among our 3000 cases only 36 possess the properties of Example 3.

EXAMPLE 4.

Y\X
1
2
3

1
0.10
0.04
0.07

2
0.13
0.12
0.13

3
0.15
0.10
0.16

0.38
0.26
0.36

0.21 0.38 0.41
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The corresponding conditional probabilities P(Y < i \ X < j), i = 1,2,3 and
j = 1,2,3, indicate that LTDx property is valid. However, since P(Y > 1 | X >
1) = 0.646 and P(Y > 1 | X > 2) = 0.634 the RTIx does not hold.

EXAMPLE 5.

Y\X
1
2
3

1
0.37
0.04
0.05

2
0.11
0.12
0.02

3
0.02
0.16
0.11

0.50
0.32
0.18

0.46 0.25 0.29

The corresponding conditional probabilities show that RTIx property is valid.
However, LTDx is not valid, since P(Y < 2 | X < 1) = 0.89 and P(Y <2\ X <
2) = 0.90.

EXAMPLE 6.

Y\X 1 2 3 4
1 0.06 0.17 0.19 0.05 0.47
2 0.03 0.19 0.19 0.12 0.53

0.09 0.36 0.38 0.17

For this example, the values of P(Y < 1 | X > j) and P(Y > 1 | X > j),
j = 1,2,3,4, indicate that both LTDx and RTIx are true.

However, PRD(Y | X) is not valid since P(Y < 1 | X = 2) = 0.47 and
P(Y < 1 I X = 3) = 0.5.

To avoid confusion we remind the reader that PRD(Y | X) property is the
same as RR1(X, Y) and below we shall use the later terminology.

EXAMPLE 7.

Y\X 1 2 3
1 0.19 0.15 0.09
2 0.02 0.02 0.01
3 0.21 0.19 0.12

0.43
0.05
0.52

0.42 0.36 0.22

The values of P(Y <i\X = j), i = 1 ,2,3, j = 1 ,2,3, show tha t RR1 pat te rn
exists.
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However, the values of P(X < j | Y = i), (i = 1,2,3, j = 1,2,3), indicate that
CR1(X, Y) property is not valid in this case.

Notice that neither LTD(X | Y) nor RTI(X | Y) are valid in this case.

EXAMPLE 8.

Y\X
1
2
3

1
0.10
0.25
0.04

2
0.04
0.01
0.10

3
0.06
0.24
0.16

0.20

0.50

0.30

0.39 0.15 0.46

The values of P(X < j | Y = i) and P(Y < i
distribution is CR1, but not RR1.

X = j) indicate that this

EXAMPLE 9.

Y\X
1
2
3

1
0.14
0.11
0.09

2
0.13
0.13
0.12

3
0.09
0.10
0.09

0.36

0.34

0.30

0.34 0.38 0.28

The values of P(Y < i \ X = j) indicate that CR1(X, Y) is valid. The values of
P(Y <i\X =j) also indicate the existence of the RRlpf, Y) pattern. Therefore
in this case the DR1(JSΓ, Y) property is valid. However, since

= -0.0003 < 0

the TP2 property

EXAMPLE 10.

is not valid.

V \ YI \ J\.

1

2

3

0
0

0

1

.09

.04

.08

0

0

0

2

.16

.08

.17

3
0.11
0.08
0.19

0.36
0.20
0.44

0.21 0.41 0.38
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The T P 2 ( X , Y) property is valid since nine 2 x 2 related determinants are
positive. However, the determinant

= -0.000004 < 0
0.09 0.16 0.11
0.04 0.08 0.08
0.08 0.17 0.19

indicates that TP3(X, Y) is not valid.

6. Pitfalls in the Relationship Between the Coefficient of Correlation
and Other Six Types of Positive Dependence Properties. The implica-
tions of the seven types of positive dependence properties as presented in Figure
1 presumably indicates the degree of dependence between variables. However this
relationship is somewhat more complex than it was originally envisioned.

In Example 1, Cov(X, Y) = 0.319 and the coefficient of correlation is the second
largest among 10 examples (p = 0.476); however the ("weak") PQD property is not
valid. At the same time in Example 7, p = 0.037 (less than 8% of the value obtained
in Example 1), while here PRD(Y | X) property holds. Example 10 provides the
second strongest positive dependence as indicated by Figure 1, however the value
of p(0.114) is very small. If we have used p as an indicator of dependence, we
would have concluded that X and Y are more "independent" in the situation of
the Example 7 and 10 than in Example 1 and some other examples.

Our last example chosen from the 3000 generated cases illustrates a situation
in which TP3(X, Y) property is valid.

EXAMPLE 11.

Y\X
1
2
3

1
0.07
0.14
0.13

2
0.06
0.14
0.16

3
0.04
0.11
0.15

0.17
0.39
0.44

0.34 0.36 0.30

The TP3(X, Y) property is valid. The verification is left to readers.
Again, we have a very low value of the correlation coefficient (p = 0.104)

coupled with the presence of the strongest positive dependence TP3 property.
In conclusion we present two extreme examples that are not based on a com-

puter simulation.
Let X and Y be independent and uniform:

P(X = Xj,Y = yi) = l/(mn) for i = 1,2,.. .,m; j = 1,2,. . . ,n.

Here we have p = 0, and moreover TP3(X, Y) and all of the seven types of positive
dependence properties hold with the equality sign.

At the other extreme consider the family distribution parameterized by t:
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Y
1
2
3

\ X 1
0
t
0

0

2
t
.5-t
0 0

3
0
0
.5-t

t

0.5
0.5-ί

J 0.5 0.5-/

where t takes values in the interval (0,0.5).
Here Cov(X,Y) = 0.25 + t - At2, Var(X) = Var(Y) = 0.25 + 2t - 4*2, and

/> = (0.25 + * - 4*2)/(0.25 + 2* - 4*2). As t -• 0, the probability mass concentrates
at (X = 2, Y = 2) and (X = 3, Y = 3) and p -+ 1, hence X and Y possess a very
high linear relation. However, in this case even the PQD property is not valid,
since

P(X < 1, Y < 1) = 0 < t2 = P(X < 1)P(Y < 1).

7. Surface Representation of Bivariate Distributions With Selected
Types of Positive Dependence. In this section we present several graphs
which depict characteristic structures of the joint probability mass distributions
for selected types of bivariate dependence.

1) Characteristic structure of distributions with a high positive correlation lack-
ing most of the other positive dependence properties is presented in Graph
1 (corresponding to Example 1). The largest values of Pij are on the main
diagonal (Pu = 0.25) or near the main diagonal (P23 = 0.22 and P 3 2 = 0.26),
while Pij's that are far away from the main diagonal (at the corners) have
low values (P 1 3 = 0.01 and P31 = 0.02). The correlation coefficient p = 0.476
is "moderately high" (the second largest among all the examples). However,
the probability P22 on the main diagonal at the center is only 0.03, which is
too small to possess PQD and other positive dependence properties.

2) Graph 2 possesses the strongest positive dependence property TP3, while the
correlation coefficient is very small (/> = 0.104). The graph indicates that
this distribution is closer to the uniform distribution than those in other
examples.

3) The comparison between RR1 (but not CR1 or LTΌy and RΎIy) and CR1
(but not RR1 or LTDx and RTLr) is presented in Graphs 3 and 4 respec-
tively. Note that the "horizontal" edges are prominent in Graph 3 while the
"vertical" ones contain a substantial amount of probability mass in Graph 4.

8. A Proposed Modification of Definitions of Dependence Between
Random Variables. The main difference between covariance (or the coefficient
of correlation) and the other six properties of positive dependence discussed in
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this paper is that the latter simply provide a "Yes" or "No" answer to a certain
probabilistic relationship, while the former presents a numerical measure of a linear
dependence. Basically, the coefficient of correlation deals with an overall appraisal
of "whole forest," while the other dependence properties attempt to check "the
trees" individually.

It would seem appropriate to generalize the definitions of dependence between
two variables by introducing a probabilistic component within the specified rela-
tionship. As an example, we propose an index of positive quadrant dependence
defined below.

DEFINITION. An index of positive quadrant dependence of two random vari-
ables X and Y is given by:

IJ>QΌφ(X I Y) = Σ ( x , v ) e R φ P ( X = s , Y = y ) / [ l - Σ { X i y ) e R b P ( X = x 9 Y = y)}

where x = 1,2,.. .,n and y = l,2,...m; Rφ = {(x,y) \ P{X < x,Y < y) >
P(X < x)P(Y < y) + φ}, φ is a non negative parameter; and the boundary
Rh = {(χ? y) I x = n or y = m)}, in this case.

Table 3 provides the index IPQD</> for the examples presented in this paper for
<£ = 0, 0.005, 0.01, 0.015, 0.02 and 0.05.

Note that in the column corresponding to φ = 0 we obtain essentially "Yes"
(ΪPQΌφ = 1) or "No" (ΪPQΌφ < 1) answers to the question "is the PQD property
valid?". The other columns present values which successively indicate the strength
of validity of the PQD property when φ ranges from 0.005 to 0.05.

An alternative—perhaps even more important—justification for the introduc-
tion of parameter φ is to assess the robustness of the properties as far as possible
random errors are concerned. If our data is subject to random errors, the situation
as presented in Examples 7, 9, and 11 may not indicate the presence of the PQD
property while the values appearing in Examples 5, 8, 2, and 1 will very likely
provide a "significant" PQD distribution.

Evidently the other definitions of positive dependence properties can be ex-
tended along these lines.
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