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Hollander, Proschan, and Sconing (1987) used the theory

of majorization to develop and study various information

measures in the randomly right-censored model where the

basic observation is Z_ = (Z,δ) where Z = min(X, Y),

X is the survival time, Y is the censoring time, Y is

assumed to be independent of X, and δ = 1 if X < Y,

= 0 otherwise. Here we use coefficients of divergence to

derive measures of how dissimilar the joint distribution

of (X, j£) is from the product of its marginals. These

measures contain some of the HPS information measures

as special cases. We also introduce various concepts of

bivariate dependence to measure the degree to which Y

inhibits the ability to see X.

1. Introduction and Summary. Consider the randomly censored model
where X is the survival time, Y is the censoring time, and where Y is assumed to
be independent of X. We observe (Z, δ) where Z = min(X,Y), δ = I(X < Y),
where I(A) denotes the indicator of the event A. Hollander, Proschan, and Sconing
(1987) [hereafter referred to as HPS (1987)] used the theory of majorization to
develop and study various measures for this model.

One of the measures developed by HPS (1987) for the case where X and Y
are discrete is a generalization of Shannon's (1948) information in the uncensored
case.

DEFINITION 1.1. For the censored model where X and Y have discrete distri-
butions pi = Pr(X = t),</, = Pr(Y = i), the information in the experiment (X,Y)
is defined to be

(1) JSΓ(X, Y) = H(p,q) = - J > 5 > ; l o g P j + Pi+1 log j> + 1
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where p = (pi,P2? •)> g = (?i> ?2, - •)> and Pt = Σj>i Pj (The choice of the base
of the logarithm is unimportant and henceforth will be defined as the base of the
natural logarithm.)

When there is no censoring, (1) reduces to Shannon's (1948) measure

(2)

HPS (1987) showed that (1) is equivalent to Shannon's mutual information
H(X) - H(X\Zjδ). Other properties concerning H(X9Y) established by HPS
(1987) include:

I: H(X)>H(X9Y).

II: If Yi < y2, then H{X,Y1) < H(X,Y2)

III: If there exists a k such that for all i > fc, pi > pi+χ and Pk < β""1, then
H(X, i + 1) — H(X, i) is nonincreasing in i, i > k. Here H(X, i) is an abbre-
viation for H(X,Y) where Y = i with probability one.

Property II essentially says that information increases as censoring decreases.
However, there will be limits to such an increase and Barlow and Hsiung (1983)
state "it would be interesting to see when this (information) gain is marginally
decreasing." Property III gives a condition for that effect. HPS (1987) used
majorization to prove I and II. Goel (1986) uses (2) and BlackwelΓs (1951) theory
of comparison of experiments to prove I and II.

When X, Y are absolutely continuous with densities p, q, respectively, the ana-
log of (1) is

(3) H(X, Y) = H(p, <ι) = -J q(y) [jΓ v{*) iogP(χ)dx + P(y) log p(y)] dy

where P is the distribution function of X and P = 1 - P. This measure of infor-
mation in the continuous case was introduced and considered in Sconing (1985)
and Hollander, Proschan, and Sconing (1985). They noted that unlike (1), (3) is
not scale-invariant. Baxter (1989) established analogues of properties I, II, III in
the absolutely continuous case using measure H(X,Y) defined by (3). Baxter does
not view the lack of scale-invariance to be a serious limitation for the use of (3).

The original motivation for (1) and (3) was intuitive. Suppose in the discrete
case the censoring variable assumes the value i. Then the information obtained
is the full information — pj logpj, if a death occurs prior to the censoring time.
Otherwise we receive partial information, — Pi+ι logPt +i. (If a death and a cen-
sorship occur at the same time we say that a death is observed.) The definition of
(expected) information follows by averaging with respect to the censoring variable.

In Section 2 we derive the /-divergence [see (5)] of the Radon-Nikodym deriva-
tive of the joint distribution of X and Z with respect to the product of marginals.
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This measures how dissimilar the joint distribution is from the product of the
marginals. The measure derived is seen to contain some of the HPS (1987) infor-
mation measures as special cases. As the censoring variable increases stochastically
(the limiting case of Y = oo with probability one can be thought of as no cen-
soring), Z and X become more similar and thus the divergence should decrease.
Conditions for this to occur are given in Theorem 2.1.

In Section 3 we introduce various notions of bivariate dependence to measure
the degree to which the censoring variable Y inhibits the ability to see the survival

st

variable X. Let YΊ < Y2 and let Z, = min(X,Y;),i = 1,2. We compare the
dependence between X and Z\ to the dependence between X and Z2. The notions
introduced are "more positive quadrant dependent," "more associated," "more left-
tail decreasing," "more right-tail increasing," and "more stochastically increasing."
It is then shown that (X, Z2) is more positive quadrant dependent than (X, Z\).
With the exception of "more associated," similar results are obtained for the other
notions of dependence.

2. Coefficients of Divergence. When X < Y we have Z = X. Since
the variables X, Z are often equal, in some sense their underlying probabilistic
structures should be similar. From Kullback (1959), coefficients which increase as
two distributions become less similar and are called coefficients of divergence.

We define our information measure in the continuous case to be

(4) Ig(pχpz.,pχχz) = J™ q(z) [[*p(*)g{p(x)}dx + P(z)g{P(z)}j dz.

This measure is equivalent to a measure of information in the discrete case
developed in HPS (1987) and (with g(x) = — logx) advocated in the absolutely
continuous case by Baxter (1989).

Note that the information is defined as a relationship between pxpzj the prod-
uct of the marginal distributions of X and Z_, and pχχz_ the joint distribution.
Our coefficent Ig is actually a measure of the distance of the joint distribution
from the case where X and Z_ are independent. That (4) is actually a coefficient
of divergence follows from the results of Csiszar.

Csiszar (1963, 1966) generalized the Kullback-Leibler information number in
the following fashion. Let f(x) be a convex function on R+ satisfying /(0) =
\imx->of(x)9Q /(0/0) = 0,0 /(α/0) = Km*.**, α/(a?)/a?,α > 0. Let m and u2

be two probability distributions on some measurable space (X,A). Let λ be a
measure on (A', A) such that U{ is absolutely continuous with respect to λ, i = 1,2.
Let pi be the Radon-Nikodym derivative of U{ with respect to λ. Define

(5) J/(«i, u2) = JPl(x)f [ j - ^ ] X(dx).

//(«!, U2) is the /-divergence of U\ and u2.
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From a completely different point of view, Ali and Silvey (1965a, 1965b, 1966)
and independently Ziv and Zakai (1973) obtain an expression similar to (5). Both
pairs of authors consider coefficients which quantify the distance between two
probability measures. Their coefficient of divergence is defined as

(6) df(Pl9P2) = / f(φ)dP1 + P2(N) lim f(φ)/φ
Jφ<oo Φ-+°°

where f(x) is a convex function, φ = dP2/dPi, and N is a Pχ-null set where P 2

has positive measure. The only difference between (5) and (6) is the dominating
measure λ. The two measures will be identical if Pi and P 2 are mutually absolutely
continuous. Note that the measures (5) and (6) are not symmetric in p\ and p 2.
However if g(x) = xf(l/x) then //(pi,p2) = Ig(p2iPi) Further g is convex if and
only if / is convex. Define a new function f*(x) = f(x) + g(x)', then the measure
//•(pi,p2) will be symmetric.

Now we can derive the coefficient of (4) using the divergence measures in (5)
or (6). Consider X and Z_ as the two variables of interest. We derive the /-
divergence of the Radon-Nikodym derivative of the joint distribution of X and Z_
with respect to the product of their marginals. Note that the joint density of X
and Z_ puts positive probability on the line where X = Z, the 45° line passing
through the origin. This line has zero two-dimensional Lebesgue measure. Thus
Pi and p 2 defined as the joint distribution of X and Z_ and the product of the
marginals are not mutually absolutely continuous. Hence the measures in (5) and
(6) are no longer equivalent. Equation (6) is now useful only if lim^^oo j{x)jx
is finite. Equation (5) requires a measure \(x) which dominates both the joint
density of X and Z_ and the product of the marginals. Let λ(x) be the sum of
two-dimensional Lebesgue measure and a measure w, which is Lebesgue measure
on the 45° line {(x, y) : x = y, x > 0, y > 0}. For the joint probability measure of
(X,Z), we write Pr{X = #,Z = (^,0)} = p(x)q(z), for x > z, 0 otherwise, and
Pr{X = x, Z_ = (z, 1)} = p(x)Q(x), for x = z, 0 otherwise. Then (5) becomes

which reduces to,

ΛOO

If(pxPz_,PXxz) = / p(x)p(x)Q(x)f{l/p(x)}dx
Jo

(7) + Γ q(x)P(x)P(x)f{l/P(x)}dx
Jo

Take g(x) = xf(l/x); then (7) becomes
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(8) Ig(pχpz,PXxz)= Γ p(x)Q(x)9{p(x)}dx+ Γ q(x)P(x)g{P(x)}dx.
~~ " Jo Jo

This can be rewritten to give the coefficient in (4). One would expect that (under
reasonable conditions) Ig would decrease as censoring increases stochastically. Such
a decrease is equivalent to the term φ(z) = f£ p(x)g(p(x))dx + P(z)gP(z)) being
increasing. Assume g is differentiable; then

φ\z) = p(z)g{p(z)} - p(z)P{z)g'{P{z)} - p(z)g{P(z)},

which is positive if and only if for every z

(9) 9{p(z)} > P(z)g'{P(z)} + g{P{z)}.

Unfortunately inequality (9) is not always satisfied. For example, take g(x) =
— logx and P(x) = exp{—λx}; then the direction of the inequality depends on λ.
However some conditions can be found for g(x) and p(x) so that (9) is satisfied.
Two such conditions are:

Cl: g decreasing on [0,1] and p(z){P(z)}"1 < 2
C2: g increasing on [0,1] and p{z){P{z)}'1 > 2

The conditions Cl and C2 are introduced to keep the failure rate p(z){P(z)}^1

from varying too much.

THEOREM 2.1. If either Cl and C2 hold and gf(x) is continuous on [0,oo],
then Ig(pχpz_^pχχz) is decreasing as censoring increases stochastically.

PROOF. It is enough to show (9). Expand g(p(z)) in a Taylor series about

P{z). Then

g{p(z)} >

> g{P(z)} + P(z)gf{P(z)} + g'{P(z)}({p(z) - 2P(z)}

> g{P(z)} + P{z)g'{P{z)},

if gf{P{z)}{p(z) - 2P(z)} > 0, which holds if Cl or C2 hold. ||

In terms of the original function /(#), g(x) decreasing is equivalent to f(x)/x
increasing, 1 < x < oo. Most of the functions f(x) which are commonly used in
/-divergence satisfy the necessary condition.

EXAMPLE 2.2.

1) /(#) = x log x g(x) = - log x Kullback-Leibler
Information number

2) f{χ) = (l/2)(x1/2 _ i)2 g(χ) = (l/2)(x1/2 - I ) 2 Hellinger metric

3) f(x) = (l/2)|a? - 1| g(x) = (l/2)|x - 1| city-block distance
4) f(x) = (x- I ) 2 g(x) = (x - l)2/x χ2-distance
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It is easy to verify that in the above four cases, g(x) is decreasing. Note that
the third function does not satisfy the conditions of Theorem 2.1. However the
ordering still holds under slightly more restrictive conditions.

THEOREM 2.3. Ifg is decreasing on (0,1) and p(z)(P(z))~1 < 1, then Ig(pχp£,
PXxz) is decreasing as censoring increases stochastically.

PROOF. If g is decreasing and p(z)/P(z) < l,g{p(z)} > g{P(z)}. Equation
(9) follows since g\x) < 0 on (0,1). ||

These last two theorems use the divergence measure as defined in (5). As was
stated previously (6) is not satisfactory unless lims-̂ oo f(x)/x < oo. Of the four
functions cited in Example 2.2 only the second and third functions fit this criterion.
In particular the third function, /(#) = (l/2)|x— 1| is the one originally proposed
by Ali and Silvey (1965a) for measuring dispersion between the joint distribution
of two variables and the product of their marginals. In the censored model, the
set N corresponds to the set where X = Z, or equivalently, where X < Y. Then
(6) becomes

(10) df(pχpz,pχxz) = Γq(x)P2(x)f{l/P(x)}dx + c Γ p{x)Q(x)dx
~~ "~ Jo Jo

where c = lima:_>oo f(x)/x.

THEOREM 2.4. / / / is such that lim^oo f(x)/x = c < oo and f(x)/x is
increasing for 1 < x < oo, then df(pχp^pχxz) increases as censoring decreases
stochastically.

PROOF. Consider (10) as an expected loss over the variable Z with loss
P(x)f{l/P(x)} when Z = x and Y < X, and loss c when X < Y. So the
loss function can be written as P(x)f{l/P(x)}I(Y < X) + cI{X < Y). As Y
increases stochastically, so does Z. Since f(x)/x increases to c as x increases, the
loss function is increasing. Hence the expected loss increases. ||

In Example 2.2 both the Hellinger metric and the city-block distance satisfy the
conditions of Theorem 2.4. The conditions in Theorem 2.4 are less restrictive than
those of Theorem 2.1 in the sense that there is no condition on the distribution of
X. Of course the conditions in Theorem 2.4 are more restrictive in the sense that
they allow fewer functions /.

3. Measures of Bivariate Dependence. Dependence measures have typi-
cally been developed to test for independence between two variables or to measure
the degree to which large values of one variable go with large values of the other.
Some general notions of dependence are given in the following definition.

DEFINITION 3.1.

1) Positively quadrant dependent (PQD): U and V are positively quadrant
dependent if
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(11) Pr(f/ < u, V < v) > Pτ(U < u) Pr(F < v) for all u, v.

2) Associated: U and V are associated if

(12) Cow{T(U,V),A(U,V)}>0

for all Γ, Δ which are componentwise increasing.

3) Left-Tail Decreasing (LTΌ(V\U)) : V is left-tail decreasing in U if

(13) Pτ(V < v\U < u) is decreasing in u.

4) Right-Tail Increasing (RΎl(V\U)) : V is right-tail increasing in U if

(14) Fτ(V > v|ί7 > t̂ ) is increasing in u.

5) Stochastically Increasing (SI(VΊ ί7)) : V is stochastically increasing in U if

(15) Pr(F > υ\U = u) is increasing in u.

These notions are ordered in strength by:

(16) SI(VΊEO=* RT1(V\U)=> Association =* PQD.

The sequence of implications is the same when RTI(F|ί7) is replaced by
LΎΌ(V\U). For verification of the implications and counterexamples to the reverse
implications, see Barlow and Proschan (1981). Most of the above definitions were
originally given in Lehmann (1966). The notion of association was introduced in
Esary, Proschan, and Walkup (1967).

The inequalities in parts 1-5 of Definition 3.1 are notions of positive dependence
for a pair of variables. We now generalize these concepts to compare the levels of
dependence of two sets of variables.

DEFINITION 3.2. Given four random variables ί/i,ί/2?^i?^ we say that:

1) Uι and V\ are more PQD than U2 and V2 if for all w, v,

< u, Vλ < v) - Pr(C/! < u) Pr(Fi < v)

(17) > Pr(C/2 < u, V2 < v) - Pτ(U2 < u) Pr(F2 < v).

2) Uι and V\ are more associated than U2 and V2 if

Vi), Δ(ffi,Fi)} - Cov{T(U2, V2),Δ(?72, V2)} > 0,

(18) for all componentwise increasing functions Γ, Δ.

3) V\ is more LTD in U\ than V2 is in U2 if for all v, v! < w,
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Pr(Vi < v\Uλ < υ!) - Pr(Vi < v\Uχ < u) > Fτ(V2 < v\U2 < u')

(19) - P r ( y 2 < v\U2 <

4) Vι is more RTI in U\ than V2 is in V2 if for all v, u' < «,

Pr(Fχ > v\Ui > u) - Pr(Vi > v\Uχ > u') > Pr(V2 >υ\U2> u)

(20)

5) Vj is more SI in Uι than V2 is in U2 if for all v, w; < ίA,

>v|?7i = u') > Fτ(V2 > v\U2 = u)

(21)

REMARKS, a) With Definition 3.2, comparisons in the censored model are
readily made. In our censored data applications we take U\ = U2 = X (the
survival time random variable), but note that Definition 3.2 does not require that
restriction.

b) When Z7χ has the same distribution as U2 and VΊ has the same distribution as
V2, then our notion of "more PQD" given in (17) reduces to Tchen's (1980) notion
of the distribution of (Ϊ7i, Vi) being "more concordant" than the distribution of
(U2,V2).

c) Yanagimoto and Okamoto (1969) introduced an ordering which they call
monotone regression dependence which is similar but not equivalent to our "more
SI" ordering given in (21). They use it to prove monotonicity of some rank cor-
relation statistics with respect to an underlying parameter measuring dependence
of the random variables.

d) Schriever (1987) has generalized the ordering of Yanagimoto and Okamato
(1969) by introducing an ordering which he terms "more associated." He shows
that most well-known rank measures of positive dependence preserve his ordering
"more associated" in populations.

e) It is not necessary for the random variables to be positively dependent for
any of (17)-(21) to hold.

THEOREM 3.3. In the censored model the amount of positive quadrant de-
st

pendence increases as censoring decreases stochastically. That is, if Y\ < Y2 and
Z{ = min(X,Yi), i = 1,2, then X and Z2 are more PQD than X and Z\.

PROOF. Consider Pr(X < x,Z{ < z) - Pr(X < x)Pr(Z, < z). There are two
cases.
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1) If x < z, then

Pr(X < x, Zi < z) - Pr(X < x) Pr(Z, < z)

= Pr(X < x) - Pr(X < a;) Pr(Z, < z) = P(x){l - Ki(z)}

= P(x)Ki(z) = P(x)P(z)Qi(z),

where Ki(z) = P(x)Qi(z), the survival function of Z, .

2) If x > z, then

Pr(X < x, Zi <z)- Pr(X < x) Pr(Z, < z)

= Pr{X < x, min(X, Yi) < z} - Pr(X < x) p r(Z, < z)

= Pr(X < z) + Pr(z < X < x, Y{ < z) - Pr(X < z) Pr(Zt < z)

= P(z) + {P(x) - PWQiiz) - P(x){l - P(z)Qi(z)}

= Qi(z){P(z) - P(x) + P(x)P(z)} = Qi(z)P(z)P(x). ||

The following theorem is an easy consequence of Theorem 3.3.

THEOREM 3.4. For any increasing function ψ, f ψ{Pτ(X < x,Z < z)-Pτ(X <
x) Pτ(Z < z)}dxdz will increase as censoring decreases stochastically.

COROLLARY 3.5. Cov(X,Z) increases as censoring decreases stochastically.

PROOF. COV(X,Z) = //{Pr(X < x,Z < z) - Pr(X < x)Pr(Z < z)}dxdz
and so the result is immediate from Theorem 3.4. ||

Covariance is, of course, a well known measure of positive dependence. Many
other such measures can also be shown to increase as censoring decreases stochas-
tically. To show this, we state the following theorem.

THEOREM 3.6. Let (UiyV^ ^), t = l , . . . ,n, be independent and identically dis-

tributed. Let (Ui,Vt- '), i= 1,..., n, be independent and identically distributed with

(Ui, Vf ') more PQD than (ί/t , V± '), i = 1,..., n. Let r, s be concordant functions,

that is, both r and s monotonic in the same direction in each argument. Then

ir(Uu...yUn)Js(vi1\...M1))} is more PQD than {r{Uu ..., Un), s(v}2\...,

κ ( 2 ) )}.
The proof is by induction along the lines of Theorems 1 and 2 of Lehmann

(1966).

COROLLARY 3.7. Kendall's T, Spearman's ps, and Blomqυist's q all increase
as censoring decreases stochastically.

PROOF. Kendall's r = Cov(sign(X2 ~ -X\)? sign(^2 — Z\)) and hence is in-
creasing by Theorem 3.6 and Corollary 3.5. Spearman's ps = 3Cov(sign(X2 — ^i)?
sign(Z3 — Z\)) and is increasing by Theorem 3.6 and Corollary 3.5. Blomqvist's
q = 2{Pr(X > πιx, Z > mz) + Pτ(X < mx) Pr(Z < mz)} - 1 where mx and mz are
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the medians of X and Z respectively. This reduces to 2{Pr(X > m Γ ,Z > mz) -
Pr(X > mx)Yτ(Z > mz) + Pr(X < mx,Z < mz) - Pr(X < mx)Fτ(Z < mz)},
which (from Theorem 3.3) increases as censoring decreases stochastically. ||

In Example 3.8 we show that even though there is less censoring, association
may decrease.

EXAMPLE 3.8. Let Γ(X, Z{) = I(X > xu Z{ > zx\ Δ(X, Zt ) = I{X >x2,Z{>
z2), i = 1,2, and let xτ < x2 < z1 < z2. Then Cov{Γ(X, Z;),Δ(X, Zz )} =
P(z2)Qi(z2) - P(z1)Qi(zι)P(z2)Qi(z2) = P(^2)Q t (^2){l - P(*i)Q t (*i)}. Choose
P,QuQ2 so that P(z1) = 1/2, Q1(z1) = 1, Q2{zλ) = 1/2, P(z2) = 1/4, Qfa) =
5/12, Q2(z2) = 1/3. Note that Qχ(^) > Q2(^),« = 1,2. Then Cov{Γ(X,Zi),Δ(X,

st
Zi)} = 5/96, and Cov{Γ(X,Z2),Δ(X, Z2)} = 6/96. Thus here Yλ > Y2 but X
and Z2 are more associated than X and Zχ

Thus a chain of implications similar to (16) using (17)-(21) is not possible.
This result is not that surprising as the ordering defined in (18) does not satisfy
the properties for a positive dependence ordering as set down in Kimeldorf and
Sampson (1989). In particular they show that a bivariate c.d.f. may not be less
associated than its Frechet upper bound.

This leaves the last three notions: LTD, RTI, and SI.

st
THEOREM 3.9. IfYλ < Y2 then

(i) Z2 is more RTI in X than Z\ is in X.

(ii) Z2 is more LTD in X than Z\ is in X.

(in) Z2 is more SI in X than Z\ is in X.

PROOF, i) Let xf < x. Then

Pr(Z > z\X > x) - Pr(Z > z\X > x1) =

{Pr(X > s, Y > z, X > x)/ Pr(X > a:)} -

(22) {Pr(X > z,Y > z,X > x')/Fτ(X > x')}.

There are three cases to consider.

1) Let x > x1 > z. Then (22) reduces to Pr(y > z) - Pr(Y > z) = 0.

2) Let x > z > x1. Then (22) reduces to Pr(Y > z) - {Pτ(X > z,Y >
z)/Fτ(X > x')} = Q(z)[l - {P(z)/P(xf)}]. This decreases as Q decreases.

3) Let z> x > x\ Then (22)_reduces_to P(z)Q(z)[{l/P(x)} - {1/P(xf)}] =

P(z)Q(z){P(x) P(xf)}'1{P(x/) - P(x)}, which decreases as Q decreases.
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The proofs for LTD and SI follow in an analogous fashion. ||

THEOREM 3.10. Let φ be an increasing function. Then

(1) fz fx<x, φ{Fτ(Z < z\X < xr) - Fτ(Z < z\X < x)}dxdx'dz is increasing as
censoring decreases stochastically.

(2) fz fx<x, φ{Pτ(Z > z\X > x) - Pr(Z > z\X > xf)}dxdxrdz is increasing as
censoring decreases stochastically.

(3) fz Jx<x, φ{Fτ(Z > z\X = x) - Pr(Z > z\X = x')}dxdx'dz is increasing as
censoring decreases stochastically.
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