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Let X\,..., Xn be a sequence of dependent random vari-

ables and for .; = l , . . . , n , Aj = (XJSIJ) where //s

are infinite intervals of the same type, Ij = (—oo,αj)

or Ij = (6j,oo). In this article we compare the perfor-

mance of the Bonferroni-type and product-type inequal-

ities in approximating the probabilities P{U"= 1j4 t } or

1jBt } where J9, is the complementary event of A{.

The following results are proved. If XL, . . . , Xn possess

a positive dependence structure (MTP2 or sub-Markov

with respect to a sequence of infinite intervals of the

same type) the product-type inequalities dominate the

Bonferroni-type inequalities. If, on the other hand, the

sequence of random variables is negatively dependent (S-

MRR2 or super-Markov with respect to a sequence of

infinite intervals of the same type) the product-type in-

equalities complement the Bonferroni-type inequalities in

approximating the probabilities mentioned above. Three

examples are presented to illustrate the results obtained

in this paper.

1. Introduction. Let X i , . . . ,X n be a sequence of dependent random vari-

ables and for j = 1,2,..., n

(1) Aj = (Xjεlj),

where Ij are infinite intervals of the same type; Ij = (—00, aj) or Ij = (6j, 00). We

are interested in studying the approximations for
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(2) P1 --

or equivalently,

(3) 1 - P

where B{ = A? is the complementary event of A. These approximations play an
important role in many areas of statistics; to list just a few: multiple comparison
analysis (Fuchs and Sampson, 1987; Games, 1977; Kenyon, 1986a; Sidak, 1971;
and Tong, 1970), simultaneous prediction (Chew, 1968), location and scale shift
detection (Bauer and Hackl, 1978, 1980, and 1985; Glaz, 1983; Glaz and Johnson,
1987; and Worsley, 1979), scan statistics (Berman and Eagleson, 1985; Gates and
Westcott, 1984; Glaz, 1989; Glaz and Naus, 1983; Naus, 1982; and Samuel-Cahn,
1983), sequential testing (Bauer and Hackl, 1985; Glaz and Johnson, 1986; and
Kenyon, 1986b), and outlier detection (Ellenberg, 1976; Galpin and Hawkins, 1981;
and Joshi, 1972).

In Section 2 of this article, we briefly outline the up-to-date development in the
area of Bonferroni-type inequalities. In Section 3 the product-type inequalities will
be introduced along with the necessary dependence concepts. We then compare the
Bonferroni-type and product-type inequalities for certain dependence structures
for XL, . . . , Xn. In Section 4 three examples will be presented for the evaluation of
Bonferroni-type and product-type inequalities. A brief discussion comparing these
two classes of inequalities and evaluating the numerical results from Section 4 will
be given in Section 5.

2. Bonferroni-Type Inequalities. The Bonferroni-type inequalities have
been used by many authors to obtain bounds for Pi given in equation (2):

(4) SΊ,n - S2,n < Pi < 5i,n,

where

V5) ώ l,n = ^»=i Pii *ί>2,n = ^ t = i ^ j=t+l PiJ

and

(6) Pi

As these bounds can be quite inaccurate, attempts have been made to improve
their performance. Kwerel (1975) has shown that

(7) Pi > aShn + 65 2 | n,

where a = 2/fc, b = -2/k(k - 1) and k - 2 is the integer part of 252,n/5Ί,n. The
inequality of (7) is the tightest, given the probabilities (6). The computation of this
lower bound, for large n, can be quite tedious and the performance unsatisfactory
(Glaz, 1989).
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The study of upper bounds for Pi have received more attention, the reason

being that it provides a conservative test or a confidence coefficient in a mul-

tiple comparison procedure (see references mentioned in the Introduction). Let

v\j.. ,jVn be the vertices of the graph G, representing the events Aι,. ..yAn, re-

spectively. The vertices V{ and Vj are joined by an edge e^ if and only if AiΠAj φ φ.

Hunter (1976) and Worsley (1982) proved that for a subgraph T of G

( 8 ) Pl ^ Shn - Σ{(t,j);eOeT} Pij,

if and only if T is a tree. An important member of this class of upper bounds is

(9) i > i < 5 i , n - Σ ? = l Λ f t + i ,

which under certain conditions is the least upper bound in that class. The above

statement is valid if the events A\,..., An are exchangeable or are ordered in such

a way that for 1 < i\ < %2 < ft, P(A t l Π A{2) is maximized for ij — ΐj_i = 1 (see

Worsley, 1982, Examples 3.1 and 3.2).

DEFINITION 2.1. An inequality for Pi or 1 - Pi is of order k if it is given in

terms of P{Γ\1JL1Aij} for 1 < m < k < n, and contains the term P{Πj_1Aί i } for

some 1 < ii < ι*2 < . . . < ΰ < ft.

Recently, Hoover (1989) has derived a sequence of Bonferroni-type upper bounds

of order fc, 1 < k < n — 1:

Pi <

(10)

where Sj is a subset of {1,2,... , j — 1} of size k — 1 and j > k + 1. For k = 1 and

k = 2 the upper bounds in (10) reduce to the Bonferroni upper bound in (4) and

the Hunter-Worsley upper bound in (8), respectively. In the case that Ai , . . . , An

are naturally ordered in such a way that P(f]1Jι

=1Aij) is maximized for ij — ij_i = 1,

2 < j < m and 2 < m < n—1, the natural ordering with Sj = {j — 1, j — 2 , . . . , j—k}

is recommended for the upper bound of order k. In this case (10) reduces to:

where

Σ } = 2 dj = 0 and for j > 2

(12) p*,»+i,...f»+i = ^ ( ^ n AUi π . . . n A?+J β l n

For k = 2 equation (11) reduces to equation (9). If the events Ai, A2,.. .,An are

exchangeable, a further simplification of (10) is obtained:
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(13) Pi < tin - (n - l)pi f2 - Σj~£ (n - j

where p\ 2,...,j+i *s given by equation (12). In Section 4 three examples will be
presented to evaluate these Bonferroni-type inequalities.

3. Product-Type Inequalities* Let X\,..., Xn be a sequence of dependent
random variables and let A{ be the events defined in equation (1). The so-called
product upper bound for Pi is given by:

where pi is defined in equation (6). This inequality along with the conditions
for its validity has been studied by Dunn (1958), Esary, Proschan and Walkup
(1967), Jogdeo (1977), Khatri (1967), Sidak (1967, 1968, 1971, and 1973), and
Scott (1967).

The following concept of positive dependence introduced by Esary, Proschan,
and Walkup (1967) is useful in establishing the inequality (14). X\,..., Xn are said
to be associated if for every pair of coordinatewise increasing real valued functions
/ and g,

Cov[/(X),5(X)]>0,

where X = (X\,...,Xn). Esary, Proschan, and Walkup (1967) proved that
X\,...,Xn being associated is a sufficient condition for the validity of (14). It
is well-known that the product bound for Pi is tighter than the Bonferroni upper
bound in (4). On the other hand, the upper bound (9) outperforms the prod-
uct bound (14) (Worsley, 1982, Example 3.1). According to the definition (2.1),
the product bound (14) is a first order inequality. The rest of this section is de-
voted to presenting the product-type inequalities of order k and comparing them
with the Bonferroni-type inequalities of corresponding order. In what follows we
will assume that the events A\,..., An are naturally ordered in such a way that
P{C\7jL1Aij} is maximized for ij — ϊj_i = 1, 2 < j < m and 2 < m < n - 1.

To study the higher order product-type inequalities for Pi, the following con-
cepts of dependence play an important role.

DEFINITION 3.1. (Karlin, 1968). A nonnegative real-valued function of two
variables, /(x,y), is totally positive of order two, TP2 (reverse rule of order two,
RR2),if

for all xι < x2 and yi < y2

DEFINITION 3.2. (Karlin and Rinott, 1980a, 1980b). A nonnegative real-
valued function of n variables, /(a?i,..., xn) is multivariate totally positive of order
two, MTP2 (multivariate reverse rule of order two, MRR2), if for any pair of
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arguments X{ and Xj the function /, viewed as a function of X{ and Xj while the
rest of the arguments are kept fixed, is TP2 (RR2). /(#i, . . . ,#n) is said to be
strongly MRR2, S-MRR2, if for any set of PF2 functions {φj} (a function φ is PF2
if and only if φ(x - y) is TP2 in the variables -00 < z, y < 00), the marginals

g(xil9. ..,Xik) = J. ..Jf(xu - ,»n) KΓ=i Φ(xim)dxk .. .dxjn_k

are MRR2 in the variables (x^,..., x;fc), where the set {1,..., n} = {ii,..., i*} U
{ji? >jn-fc} A sequence of random variables, -XΊ,.. .,Xn, is said to be MTP2
(S-MRR2) if its joint density is MTP2 (S-MRR2).

The class of random variables with MTP2 or S-MRR2 densities is quite rich.
For a listing of these densities, see Karlin and Rinott (1980a, 1980b). Barlow and
Proschan (1975) defined the TP2 in pairs property for (ΛΊ,..., Xn). If the support
of its distribution function is a product space, then TP2 in pairs is equivalent to
MTP2.

We introduce the following concept of dependence that is closely related to the
higher order product-type bounds.

DEFINITION 3.3. A sequence of random variables Xi,. . .,X n is said to be
sub-Mαrkoυ (super-Markov) with respect to a sequence of intervals 7χ,..., In if for
any 1 < i < k < n

P{XkεIk I fήlliXμlj)} > (<)P{Xkeh \ n}"?^!,-)}.

In Glaz and Johnson (1984, Theorems 2.3 and 2.8) it is proved that if the joint
density of X[,...,Xn is MTP2 (S-MRR2), then Xχy...,Xn is sub-Markov (super-
Markov) with respect to the intervals Ij = (-00, ay) or Ij = (6j, 00), j = 1,..., n.
Moreover, if Xi,.. ., Xn are MTP2 (S-MRR2), we construct a decreasing (increas-
ing) sequence of upper (lower) bounds for Pi:

(15) 7*,n = 1 - P{n^=14}Π^=fc+1P(A^ I n ^ 1 - * - ^ ) ,

where 1 < k < n - 1 and A? is the complementary event of Aj = (XJSIJ),

j = l , . . . ,n . Note that if k = 1, then jιjU is the product bound given by the
inequality (14) (in the positive dependence case). For k > 1, ηk,n is the &th order
product-type bound for Pi. We now proceed to compare the product-type bounds
with the Bonferroni-type bounds. For k > 2 let

?
denote the kth. order Bonferroni-type bound where SΊ,n, pf ,«+i, and p*)t+i}...>t+j are
given by equations (5), (6), and (12), respectively. The following result is true:

THEOREM 3.1. Let Xi,.. .,X n be a sequence of dependent random variables
and Ax,...,An be the events defined in equation (1). Assume that 0 < Pi < 1.
Then fork>2
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(17) 7*,n < ίjfefn»

wftere 7fc>n and ^,n are flfit en δy equations (15) and (16), respectively. Moreover,
if n > k and for some 1 < m < k and 1 < j < n — k

(18) P{An n (n^AJU)} > o,

Λe inequality in (17) is sharp.

PROOF. We prove this result by induction on n, the number of the events Aj.
For n = fc,

7 M = l - P{nj = 1 iφ = P{uJ = 1 ^ } = δktk.

Assume the conclusion of the theorem is true for n—1 events with a weak inequality
in (17), and show that it holds for n events. Write for k > 3

Ίk,n = 7*,»-i + (1 - Ίk,n-i)P(An I n]ll_k+1 Ac

ά).

Then by the induction hypothesis, it follows that

Ίk,n < ^ , n - l + ( l - 7 f c , n ^ +

= δk,n - (δk,n ~ ίfc,«-l) + (1 - Ίk,n-l)P(An

= δk,n - {P(An) - P(An-! Π An)

-lήzlPiAn-j n {ri£t_j+1Ai) n An)}

- Ίk,n-i)P{An n [ n J - ί ^ ^

Since

we get that

(19) 7fc,n < δk,n - P{An n [ n j - ϊ ^

As the second term on the right-hand side of the inequality (19) is nonnegative, we
obtain the inequality (17). It follows from the inequality (19) that if the conditions
(18) hold, then the inequality in (17) is sharp. This concludes the proof of Theorem
3.1 for k > 3. For k = 2 the proof is similar, with equation (9) being used instead
of (11). ||
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The following two results are a direct consequence of Theorem 3.1 and Glaz
and Johnson (1984, Theorem 2.3 and Theorem 2.8, respectively).

COROLLARY 3.2. IfXu...,Xn are MTP2, then for k > 1

Pi<Ίk< δk.

Moreover, ηk and δk are nonincreasing sequences of k.

COROLLARY 3.3. IfXu.. .,Xn are S-MRR2, then for k > 1

lk<Pi< δk.

Moreover, the sequences jk and δk are nondecreasing and nonincreasing, respec-
tively, in k.

REMARK. The condition of Xi,...,X n being MTP2 (S-MRR2) in Corollary
3.2 (Corollary 3.3) can be relaxed to Xi,...,Xn being sub-Markov (super-Markov)
with respect to the intervals I{,..., J£.

In Section 4 we present three examples to evaluate the performance of the
product-type inequalities.

4. Examples. To illustrate the inequalities discussed in Sections 2 and 3 and
to compare their performance, we present three examples. A brief discussion will
follow in Section 5.

J^Λ. Boundary Crossing Probabilities. Let Zi , . . . , Z n , . . . be independent ran-
dom variables from a normal distribution with mean 0 and variance 1 and Sj =
Σj

i=1Zi. Denote by

the first time that the sequence of partial sums cross a symmetric boundary given
by the constants Cj. We are interested in approximations for

P(τ > n) = P{n?= 1(| Sj \< CJ)},

n = 1,2,... . Based on these approximations, one can evaluate approximations
for E(τ) and Var(r), the expected time and the variance of the time for the first
crossing of the boundary, respectively. It follows from Glaz and Johnson (1986,
Theorem 2.1) and Karlin and Rinott (1982) that | Sx | , . . . , | Sn \ is MTP2. Hence,
Corollary 3.2 implies that for k > 1

P(τ >n)> Ί*Kn > δ*k>n,

where
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7fc,n = 1 - 7fc,n and δ^n = 1 - ^ , n

are given in equations (15) and (16), respectively. Here, we will evalute the bounds
in the case of a triangular boundary

= a — a > 0, 6 > 0,

that has been introduced by Anderson (1960) in the context of sequential tests of
hypotheses. For a more elaborate discussion of this subject, the reader is referred
to Glaz and Johnson (1986).

In Table 4.1 we compare the Bonferroni-type and product-type bounds of order
k < 3 with the simulated values for P(τ > n). The triangular boundary in this
example is given by Cj = 7.5 - ,2j. The simulated values for P{τ > n) are denoted
by P(τ > n) and have been estimated from a simulation with 10,000 trials using
IMSL (1975).

Table 4.1

Approximations for P(τ > n), Cj = 7.5 — .2j

n

5

10

15

20

25

30

35

«ί.» 7ί.n

.9955 .9955

.7878 .8038

.3029

.0325

.0006

.0000

.0000

.9961

.8945

.6384

.2949
-

-

-

72%

.9961

.8953

.6555

.3824

.1657

.0413

.0015

.9961

.8996

.6717

.3811

.0755
-

-

73,n

.9961

.8998

.6789

.4229

.2030

.0573

.0022

P(τ > n)

.9963

.9025

.6939

.4534

.2333

.0683

.0028

NOTE: The - in the table corresponds to values less than 0.

4-2. Moving Window Detection Probabilities. Let Zi , . . . , Z n , . . . be indepen-
dent observations from a normal distribution with mean 0 and variance one unit.
For fixed m > 2, define

3 d-

and

r m = inf{j > 1; 5j,m > a} + m - 1.

Then τm is the first time that the process of moving sums of length m crosses the
straight line boundary specified by the constant α, a > 0. Applications to quality
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control are discussed in Bauer and Hackl (1980) and Lai (1974), who employ the
first-order product bound η^n to approximate P(τm > n).

Note that in this example the sequence of moving sums, {£m,j}"-m, is as-
sociated but not MTP2. Hence we cannot argue that 7j£n is a lower bound for
P{τm > n)- O n e c a n show (Glaz and Johnson, 1988) that

lim P(τm > n \ τm > n - 1) = α,
n—» o o

where 0 < α < 1, and use this asymptotic stationarity property of P(τm > n \
τm > n - 1) to justify the use of 7^ as an approximation for P(τm > n). The
quantity 6% n is still a lower bound for P(τm > n) and from Theorem 3.1 we have

that Ί*k,n >n,n-
In Table 4.2, for specified values of m, α, and n, we present the fcth order

Bonferroni-type bounds and product-type approximations, k < 3, and compare
them with the simulated values P(τm > n). P(τm > n) have been estimated from
a simulation with 10,000 trials using IMSL (1975).

Table 4.2

Approximations for P{T\Q > w), α = 2.0

n

15

20

25

30

35

40

45

50

60

70

80

90

100

*ϊ.n 7ί.»

.1595

- .0346

.0075

.0016

.0004

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

«2.» tin

.4436 .4866

.1508 .3216

.2125

.1404

.0928

.0613

.0405

.0268

.0112

.0051

.0022

.0010

.0004

V
3,n /3,n

.4976 .5148

.2723 .3650

.0470 .2588

.1835

.1300

.0922

.0654

.0463

.0233

.0117

.0059

.0029

.0015

P(τ
10
 > n)

.5278

.3866

.2785

.2002

.1443

.1039

.0762

.0572

.0236

.0159

.0072

.0036

.0019

NOTE: The - corresponds to values less than 0.

4-3. Multinomial Distribution. Let X = (Xi,.. .,Xm) be a multinomial ran-
dom variable with parameters p = (i?i,...,Pm) and n = ( n i , . . . , n m ) , where
ΣgLi Pi = 1 and Σ ^ n{ = N. It follows from Karlin and Rinott (1980b) that X
is S-MRR2. We are interested in approximations for P(X{ < αt ; i = 1,..., m) or
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P(Xi > b{] i = 1,..., m). We will assume that p\ = p<ι = . . . = pm = V-> m which
case -XΊ,.. .,Xm are exchangeable. It follows from Corollary 3.3 that

(20) δlm < P(Xi < α, ; i = 1,..., ro) < 7 £ m

and

(21) «2tm < P(X, > 6, ; i = 1, .., m) < 7ί f m,

where η^m = 1 - 7*,™ and ££m = 1 - η/k,m. Mallows (1968) has proved that η^m

is an upper bound for the above probabilities.
An important special case of the approximations given in (20) and (21) is when

d\ = α2 = . . . = am = a and 61 = 62 = . . . = bm = b. In these cases we obtain
approximations for the distribution of

X ( m) = max(X1 ?..., Xm) and X ( 1 ) = min(Xi,..., Xm\

respectively. We illustrate the performance of these approximations in the follow-
ing example. Consider a roulette with m = 38 numbers. We would like to test the
null hypothesis that p\ = P2 = . . . = P38 = 1/38. Consider the test that rejects
the null hypothesis for large values of X(m).

In Table 4.3 we present bounds for the P-values of this test when N = 100.
The P-values are given by P(X(38) > n), where n is the largest observed cell count.

Table 4.3

Bounds for the P-Values for the Test of Equal Cell Probabilities

n

73,38

^3,38

5

.9944

> 1

6

.8562

> 1

7

.4758

.6200

8

.1744

.1894

9

.0496

.0507

10

.0121

.0121

11

.0026

.0026

5. Discussion. The Bonferroni-type and product-type inequalities, presented
in Sections 2 and 3, have the same degree of complexity. In fact, one can show
that both types of the fcth order inequalities for P{Uj_1(Xjε/j)} can be expressed
in terms of P{rij=ι{XμIj)}, for 1 < i < k.

If Xij..., Xn possesses a positive dependence structure (MTP2 or sub-Markov
with respect to //s), the product-type inequalities dominate the Bonferroni-type
inequalities (Corollary 3.2). In this case, Table 4.1 of Example 4.1 illustrates
the amount of improvement achieved by the A th order product-type inequality
over the fcth order Bonferroni-type inequality for k = 1,2,3. The order of the
inequality plays an important role in improving the approximations. Example
4.2 supports the use of product-type inequalities as approximations in cases when



Bonferroni and Product Type Inequalities 233

Xi,.. ., Xn are positively dependent but does not necessarily satisfy the conditions
of Corollary 2.2. In this situation, the Bonferroni-type inequalities along with
the simulations provide a tool for evaluating the accuracy of the product-type
approximations. Numerical results in Table 4.2 indicate that 73^ can serve as a
respectable approximation for the tail probabilities P(τm > n).

If Xι,..., Xn have a negative dependence structure (S-MRR2 or super-Markov
with respect to ij's), the product-type inequalities complement the Bonferroni-
type inequalities in approximating Pi and 1 — Pi, given by equation (2) and (3),
respectively. This result is quite useful, as there are no tight lower (upper) bounds
available for Pi (1 — Pi). In Example 4.3 both types of inequalities are utilized to
approximate the P-value of the test for equal cell probabilities in a multinomial
experiment. The numerical results in Table 4.3 indicate that these inequalities can
provide us with quite accuracte approximations.

In conclusion, we would like to point out that the product-type bounds have the
advantage of always having a value in the interval [0,1], while the Bonferroni-type
bounds could have values outside the unit interval (see Tables 4.1-4.3).

REMARKS. Recently, Block, Costigan, and Sampson (1988) developed an op-
timized version of the second-order product-type inequality under conditions of
positive dependence. As part of their work, they show that the second-order
product-type inequality developed in Glaz and Johnson (1984) is superior to the
corresponding second-order Bonferroni-type inequality, and both are based on the
same spanning tree. Their proof of the result is analytical in nature. Hoover (1988)
independently used a similar approach to the one used in this paper to derive the
proof of Theorem 3.1.
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