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In the late 1970's the popularity of loglinear and logis-

tic model techniques for cross-classified categorical data

led to a resurgence of interest in models and methods

which directly incorporate information about the ordinal

structure of the categories corresponding to the classifi-

cation variables. In this paper we present an overview

of some of the models for dependence that have been

the focus of interest in this recent literature. In particu-

lar, we consider a class of association models extensively

developed by Goodman and we examine order restric-

tions on parameters corresponding to the ordinal struc-

ture of the underlying variables. We attempt to sum-

marize what is known about how these order restric-

tions for association and other models characterize mono-

tonicity constraints on the underlying cross-classification

probabilities or marginal totals. The principle context

for our discussion is the dependency structure for two-

dimensional ordinal contingency tables, but extensions

to multi-dimensional tables that build on loglinear model

ideas are relatively direct.

1. Introduction. The study of dependence among continuous random vari-
ables has a long history in statistics. The corresponding issue regarding depen-
dency for categorical random variables also has a long history going back to the
work of Yule (1900) and Pearson (1900); it has only been since the 1960's that a
coherent and elaborate literature has developed. Much of the emphasis before this
period was on the development of measures of association (e.g., see Goodman and
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Kruskal, 1954, 1979; Kruskal, 1958). In the mid-1960's attention of researchers
interested in categorical data shifted to the study of loglinear models and most of
the resulting literature was focused on the dependency or interaction structures for
nominal categorical variables, i.e., with unordered categories. That literature does
not exclude ordinal variables, and as was noted in Fienberg (1982), the ordinal
nature of some categorical variables is often crucial to the structural organization
of categorical data subjected to loglinear analysis (e.g., triangular arrays, social
mobility tables, and tables representing age-period-cohort structures). The key fea-
ture of these models involving ordinal structures is that they are not permutation
invariant, i.e., the categories of the variables cannot be permuted in an arbitrary
way without affecting the parameters describing the dependency structures.

The standard loglinear model approach to two-dimensional I x J contingency
tables represents the probability, P^, of an observation falling into the ith row and
jth column as

(1) log Pij = u + u1{ί) + u2(j) + u12(ij),

where

(2) Σ tti( ) = Σ UHJ) = Σ ui2(ij) = Σ wi2(ij) = 0,
i 3 i 3

and

(3)

The model may be rewritten in multiplicative form as

(4) Pij = αiβj exp{w12(lj)}.

The traditional approach for two-dimensional tables has been to treat the inter-
action terms, u12^j)j as being unrestricted (the so-called saturated model) or to
set them equal to zero, thereby assuming that row classification is independent of
column classification. Neither approach reflects any ordinal structure that may be
present in the row or column categories.

In the 1970's two separate approaches to the study of dependency structures
for ordinal variables emerged. The first of these was linked to the correspondence
analysis approach developed by Benzecri and his associates (e.g. see Benzecri,
et al. 1973; Greenacre, 1984) and focused on correlational-like ideas. This work
was later picked up by Goodman (1981, 1985) and Gilula (1982). The second
approach, proposed independently in the 1960's by Rasch (see Christiansen, 1966)
and by Fienberg (1968), was developed extensively by Haberman (1974a, 1974b)
and Goodman (1979,1981,1984, 1985,1986) and linked in a formal way to ordinal
variables by Agresti (1984), Agresti and Chuang (1985), and Fienberg (1982).

The association-model approach focuses attention on the interaction param-
eters, tti2(tj)? in model (1) and models them in terms of a reduced number of
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parameters that may be chosen to reflect ordinal structure. In this review, we con-
centrate our attention on these models and describe aspects of them that explicitly
incorporate montonicity constraints corresponding to ordinal structures.

In Section 2 we describe the class of association models developed by Goodman,
and in Section 3 we briefly outline the related correlation models. Then in Section
4 we turn to order restrictions imposed upon the parameters of association-models
from Section 2.

In the final section of this paper, we briefly consider extensions to multi-
dimensional tables, some of which are relatively direct.

2. Association Models. As we mentioned in the introduction, the class of
association models was proposed by Rasch (see Christiansen, 1966) and Fienberg
(1968) as a categorical analogue to the Tukey's one-degree-of-freedom model for
nonadditivity and its generalizations. The first careful development of these mod-
els and their formal linkage to ideas on cross-product or odds ratios were given
by Goodman (1979). Later elaborations by Goodman (1981, 1985) led to the
general model described below. We use Goodman's notation wherever possible.
Equivalent models and special cases have been formulated by several other au-
thors (see for example the stereotype model by Anderson (1984), and the general
base-comparison logit model by Cox and Chuang (1984)).

2.1. Model Formulation. Goodman (1985) puts forth the following reparametri-
zation of the standard loglinear model which he refers to as the saturated RC
association model.

M
(5) Pij = Oiiβj βxp{ Σ ΦmμimVjm},

m=l

where

• {Wm} and {vjm} are standardized row scores and standardized column scores
for row category i and column category j , respectively (these are parameters
to be estimated from the data);

• the {φm} are measures of the "intrinsic association" (if φm = 0 for m =
1,2,..., M then the table exhibits independence of rows and columns);

(6) M

Furthermore for m and m* = 1,2,,..,M, with m φ TO* we have the following
identifying restrictions:

I J

(7) Σwm
t = l
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(8) ][>
t=l j=l

/ J

(9) Σ WmWm Ή+ = X) ̂ jm^m *+j = 0.

These are the marginal-weight versions of Becker and Clogg's (1989) generalized

identification restrictions

(10) Y^hiμim = ΣΰjVjm = 0,

(11) Σhirim = Σ,9tfm = h

where the {Λt } and {gj} are row and column category weights, respectively, and

some restrictions are applied to the cross dimension correlations

(12) Pm,n =
t = l

and

j

(13) <rmyn

Becker and Clogg (1989) point out the importance of weighting systems both in
measuring association and in comparing sets of contingency tables, and suggest
some other possible choices for the weights.

This saturated RC model is essentially just an explicit rewriting of the original
loglinear model of expressions (1) to (4) where the interaction terms, {u12ίij\} and
the ANOVA-like constraints have been replaced by the sums

M

m = l

and somewhat different constraints.
If φm = 0 for m = M* + 1,..., M, then we get the unsaturated RC model of

order M*. When M* = 1, expression (5) reduces to

(14) Piά = cti

which is model II of Goodman (1979) expressed in terms of identifiable parameters.
Expression (14) is what Goodman refers to as the general multiplicative row-and-
column-effects (RC) model when the {μ, } and {VJ} are unspecified. Two special
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cases are (i) the row-effects (R) model when the {μ, } are parameters and the {VJ}
are known, or they are ordered and the spacing between them is specified; (ii) the
column-effects (C) model when the {VJ} are parameters and the {μt } are known,
or they are ordered and the spacing between them is specified. Gilula, Krieger,
and Ritov (1988) provide an interpretation of φ as a measure of stochastic order
entropy.

When the orders of the row and column categories are specified, and the rows
and columns are appropriately ordered, the U association model may be consid-
ered. In the case in which the rows are equally spaced and the columns are equally
spaced, we have (in Goodman's (1985) notation):

(15) μi - μ, +i = Δ', i = 1,2,...,/- 1,

(16) vά - i/i+i = Δ", j = 1,2,..., J - 1.

T h e local log odds ratios, for the cells in the 2 x 2 subtables formed from the

cells in adjacent rows and columns, are

(17) = φ(μi-μi+1)(^-Vj+1), i = l , 2 , . . . , J - l , j = 1,2,..., J - 1 .

For the equal spacing model of (15) and (16), we can rewrite expression (17) as

log θij = log - ^

(18) = constant.

The term linear-by-linear association is used to denote the generalized form of
this model, for which

(19) μt - μ t + 1 = Δ;. i = 1,2,.. .,/-!,

(20) VJ - i/i+i = A'- j = 1,2,..., J - 1,

but where the spacing values, {Δ, } and {Δj} are known. For these association
models there is an explicit (known) monotonic structure introduced by the fixed
spacings.

The various models with their degrees of freedom are as follows:
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Model
Independence
U
R
C
RC

d.f.

(J-1)(J-1)
(J - 1)(J - 1) - 1
(I - 1)( J - 2)
(J-2)(J-1)
(J-2)(J-2)

2.2. Estimation of Parameters. Let the observed value in the ijth. cell be
Then the maximum likelihood estimate mt j of the expected frequency mt j ==
for the RC association model will satisfy

i = 1,2,...,/,

= 1>2,...,./,
/> ?' ί ί ι i = X I ^ ^ i ' * = 1 » 2 , . . . , / ,

a > i = i , 2 , . . . , J ,

(21)

(22)

(23)

(24)

when the x, j follow any of the standard contingency table sampling models, i.e.,
Poisson, multinomial, product-multinomial (see, for example, Bishop, Fienberg,
and Holland, 1975).

Goodman (1979) suggests the following iterative procedure for solving the like-
lihood equations. Let

(25)

(26)

(27)

(28)

pi = μ% - μ ,
σi

μ = Σi

v =

We denote the values of the estimates at any given stage in the iterative procedure
by α*, βj, μ*,and Vj. Then we update the estimates one at a time, each update
being followed by a recalculation of the values of rriij. Denote the current expected
frequencies by m^ , then we replace (m^a*,/?*^*,!/*) by (mj^aj*,/?^*,^?*,^*)
where

(29)
(30)

(31)

β"

μT
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(32) v]* = ^

Here />*, σ^, /)**, σ^*, have the obvious meanings. The algorithm appears to
work in practice but to our knowledge there is no formal proof for its convergence.
Becker and Clogg (1989) extend this algorithm to deal with the case in which K
two way tables are considered and compared.

Alternative approaches to maximum likelihood estimation involve the use of
general nonlinear maximization routines and other variants of standard Newton
Raphson algorithms (e.g., see Chuang, 1980). See also Gilula (1982) who dis-
cusses the use of the singular value decomposition of the local odds ratio matrix
to estimate the model parameters. It should, however, be noted that thus far in
the literature, necessary and sufficient conditions for the existence of maximum
likelihood estimates for the RC model have not been formulated.

2.3. Ordering Properties Implied by the Association Models. At this stage,
we defer discussion of estimation under order restrictions. It is worth noting that
tables fit by these models exhibit ordering properties which relate directly to tra-
ditional notions of dependence. We summarize some of these properties as they
appear in the categorical data literature, and re-express them in the language of
the dependence literature.

Let A and B denote the variables corresponding to rows and columns in the
contingency table. Under the RC model, the association is isotropic, that is, rows
and columns can be ordered in such a way that the local odds ratios have the
property:

(33) θa = ζ i j P i γ + 1 > 1 = 1 , . . . , J - 1 , j = l , . . . , J - l .

Tables possessing the property (33) are totally positive of order 2, denoted TP2
(see Schriever, 1986, or Gill and Schriever, 1987).

Agresti (1984) defines the local-global odds ratio

0

k)
. j _

These odds ratios are local in the row variable, but "global" in the column variable,
and may be defined for any two rows, a and 6, rather than adjacent rows i and
i + 1. Analogous global-local odds ratios, global in the row variable and local in
the column variable may also be defined for columns j and j + 1 i.e.,

nc __ (Σk<i Pkj)(Σ,k>i
υj Tξ Fkj){Σ,k<i

__ -. o Γ 1

Then θlj > 1 for each j implies that the conditional distribution in row i + 1

is stochastically larger than the conditional distribution in row i, while θc- > 1 for
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each i implies that the conditional distribution in row j + 1 is stochastically larger
than the conditional distribution in row j .

In fact, when the rows and columns are ordered appropriately such that (33)
holds, we have the following stochastic ordering relationships (Goodman, 1981):

(i) The conditional distribution for the ith row of the table, Pij/P{+ is stochas-
tically smaller than the conditional distribution for the i'th row of the table
if i > i, i.e.,

1 < i < ϊ < I =» P(B < j\A = ί) > P(B < j\A = i')

(36) j = l,2,. . . ,J.

Barlow and Proschan (1981) denote this property by SI(B\A).

(ii) The conditional distribution for the jth column of the table, Pij/P+j is
stochastically smaller than the conditional distribution for the / t h row of
the table if j > j , i.e.,

l<j<j'<J=>P(A<i\B = j) > P(A<i\B = f)

(37) < = 1,2,...,/.

Barlow and Proschan denote this property by SI(A\B).

Schriever (1983,1986) refers to the variables A and B as being double regression
dependent of order 1 (DRi) where the order relationships (34) and (35) hold. Thus
tables satisfying the RC association models are double regression dependent up to
a permutation of rows and columns. This property Schriever refers to as order
dependence of order 1. Schriever (1983, 1986) carries these arguments further
noting that, for the RC association model with rows and columns reordered so
that μi and Vj are increasing in their indices, the table of probabilities is totally
positive of order M where M = min(I — 1, J - 1), i.e., the table is T P M

While the RC association model can always lead to a reordering of rows and
columns such that TP2 implies conditions (34) and (35), the reverse is not true.
Thus there exist tables exhibiting order dependence for which the RC association
model does not hold. This is a special case of results due to Schriever (1986) i.e.:

(38) TPk

Thus for k=2, we get the implication that TP2 implies DRi but the reverse is not
necessarily true (except for / x 2 and J x 2 tables) since any rank 2 probability
table can have its rows and columns permuted such that it is DRi (Schriever,
1986).
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At this point, we note that there is clearly a hierarchical relationship between
the dependence notions that have emerged thus far. In fact, we have identified the
upper levels of Barlow and Proschan's (1975) tree of notions of bivariate depen-
dence. These, and other dependence concepts forming nodes of the tree may be
re-expressed in terms of conditions on the odds ratios of the contingency table or
various subtables thereof. See Douglas et al. (1990) for a more detailed treatment
of these linkages in tree-like form. It is relatively straightforward to elicit the im-
plication structure once we view the dependence concepts in the contingency table
framework.

Agresti, Chuang, and Kezouh (1987) show that for the row (columns) associa-
tion model, since the estimated conditional distributions in the rows (columns) are
stochastically ordered according to the values of the {μt } and the {£j}, then the
{fii} and the {£>j} have the same ordering as the sample row and column means.
This result follows from a rewriting of the likelihood equations from expressions
(21), (22), (23), and (24).

3. Correlation Models. For completeness, we describe briefly the correlation
models corresponding to the association models in Section 2 above. Goodman
(1985, 1986) presents a much more careful treatment of these models and their
relationships to the association models. He is quick to point out that although
the association and correlation approaches are related not only may they yield
different results, but also one approach may be preferable over the other in specific
settings. The models are identical under independence of the row and column
variables, and turn out to be reasonable approximations of each other when the
intrinsic association (φm above) and correlation parameters (λm below) are close
to zero in value.

The saturated RC canonical correlation model may be formulated as

M

(39) Pij = P;+P+ i(l + £ λmXimyjm)
m=l

where

• Xim and yjm are standardized row scores and standardized column scores
respectively, to be estimated from the data.

• λm measures the correlation between X{m and yjm and

(40) λi > . . . > λ M ,

and

(41) M = m i n ( J - l , J - l ) .

• Furthermore for m = 1,2,...,M, we have the following identifying restric-

tions:
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I J

(42) £ ximPi+ = £ yimP+j = 0,

(43)
t=l j=l

/ J

(44) Σ XimXim*Pi+ = 5Z yJ™yjm*P+j = 0.
t'=l j=l

Maximum likelihood estimation is direct for these saturated correlation models;
not so for their unsaturated counterparts. Estimation for the unsaturated models
is described in Goodman (1985).

The saturated RC canonical correlation model is simply a reparametrization of
the saturated RC correspondence analysis model (see, e.g., Greenacre, 1984), i.e.

M

(45) Pa = Pi+P+Λl + £ x'iJiJXm),
m=l

where xim = λma? f m and yjm = λ m y j m .

Unsaturated RC correlation models, with λm = 0 for m = m* + 1 , . . . , M and U
correlation models may be formulated as in the association approach. Their order
restriction properties have been studied in depth by Schriever (1983, 1984). For
example, the RC correlation model with m* = 1 also demonstrates order depen-
dence of order 1 (i.e. expressions (34) and (35) hold after a suitable reordering of
rows and columns). Moreover, Schriever (1983, 1986) proves the following result:

THEOREM. Suppose that the row and column variables, A and B are double
regression dependent. Then the first set of correspondence analysis row and column
scores , that is , for m=l, can be chosen to satisfy

(46) xu < z 2 i . < xiu yn < ί/21 < < yji

Strict inequalities in (30) and (31) imply strict inequalities in (46)-

Schriever also generalizes this theorem to higher order sets of scores (i.e. m > 1).
Gilula, Krieger, and Ritov (1988) provide an interpretation of λi for the RC model
with ra* = 1, as a measure of stochastic order extremity. They also note the link
to Kimeldorf and Sampson's (1978) coefficient of monotonic dependence.

Canonical correlation analysis has also been used to develop tests for indepen-
dence of rows and columns. Haberman (1981) assigns scores φi and ψj to row
category i and column category j respectively, and maximizes the correlation
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/ J

(47) Λi

where p2j = riij/N, the observed relative frequency in cell j . NRf is shown to
be approximately asymptotically distributed according to the distribution of the
maximum eigenvalue of a central Wishart matrix with J — 1 degrees of freedom.
Approximate critical values for this distribution are available from existing tables.

In the case in which we consider the I X J table to represent observations on
a discrete bivariate random vector (X,Y) taking values (i,j), i = 1,...,/, j =
1,..., /, Sethuraman (1977) has shown the above distribution to be the limiting
distribution of ni?*. Here i£* is the sample Renyi maximum correlation

(48) K = R(x,y) = max p(f(x),g(y))
f(χ)g(y)

where

• the sample consists of n observations on the bivariate variable (X, Y),

• the maximum is over all functions / of X and g of Y such that E/ 2 and Eg2

are finite,

• p denotes correlation, and

• the following conditions are satisfied:

1. if pi = P(X = i), / < J, the I x I matrix with diagonal elements

Pi — Ph a n d °ff diagonal elements —piPj is of rank (/ - 1), and

2. R(X,Y) = 0, i.e., X and Y are independent.

4. Order-Restricted Association Models. In this section we consider
association models of the form (5) in which one or both of the following constraints
are assumed to hold:

(49) μι<μ2< ..<μi,

(50) uι < v2 < . . . < vj.

Before detailing parameter estimation and goodness of fit procedures, we present
three important illustrations of these models in order to better familiarize the
reader with their structure.

4-1. The Stereotype Model. Anderson's (1984) stereotype model is a special
case of the qualitative logistic regression model

— Va \ z ) —

where
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• y is an ordered categorical response with categories y\.. . y&.

• ηξ = (ηsι...ηsk) gives the regression coefficients for the odds of y
relative to y = yk-

In the stereotype model, the {775} are taken to be parallel, i.e.,

(52) ηs = -ξsη, s = l,...,fc,

and the {£s} are taken to be monotone decreasing, i.e.,

(53) l = &>6>...>ίfc = 0.

The resulting model is expressible as

= j / 5

(54)
Z ^ t = l

s =

This model is one dimensional in that only one linear function, viz. ητz, is
required to describe the relationship between y and z for all categories ys. The
importance of this model lies not only in the fact that it is ordered, but also
that it can be extended to incorporate a multidimensional regression relationship.
Anderson applies this model to the 2 x k contingency table, showing that the
stereotype model can be applied if and only if the cross product ratios are monotone
increasing or decreasing.

We can apply the stereotype model to the IxJ table if we consider the ordered
categorical response y with categories j/i,.. .,yj and the single predictor, z, with
values Zi,. . ., zj. Denoting the cell probabilities by P t j , we get

(55)

Thus

(56)

The RC association model of expression (5) gives

Pi,.
(57)

Thus we have that Anderson's model is really just the RC association model
with the monotonicity constraint of expression (53) and the following correspon-
dence of component parameters:

Stereotype Model

βoi

Φi

β

RC model

βj-βj

Vj - UJ

μ«

Φ
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The stochastic ordering properties of expressions (34) and (35) described in Section

2.3 above are noted by Anderson for his model.

4.2. The Proportional Odds Model. Another regression-like model for the anal-
ysis of ordinal data is proposed by McCullagh (1980), who distinguishes clearly be-
tween explanatory and response variables. The response has k ordered categories,
with probabilities τri(aL),7Γ2(x),.. .τrfc(x), where x_ is the vector of covariates. The
proportional odds model is expressed as

(58) ^ M
— ΊjKjϊL)

where

• β is the vector of unknown parameters.

The model is thus a cumulative logit model and induces the stochastic ordering

properties of expressions (34) and (35) as follows. The difference: logit(7j(x1))-

logit(7j(x2)) is equal to /?τ(#2 ""^1)? thus constant over j. McCullagh denotes this

difference by Δ. Since the logit function is monotonic, the sign of Δ determines

whether jj(xx) > lj{x2) or 7j(£i) < 7 i fe) for *& 3-

4.3. The Monotone Scores Association Model. Chuang and Agresti (1986)
give a detailed treatment of a model in which the row variable is nominal, and the
column variable is regarded as an ordinal response, with score parameters for the
columns constrained to be monotone increasing. The model is

(59) log Pij = μ + αt + bά + μ ^ ,

where

(60)
t=i j=i 1=1

and

(61) 1 = uι < ... < vj = J,

Model (58) is simply the RC association model of Section 2, with the added or-
dering constraint (61). This constraint produces a stochastic ordering among the
response distributions of the rows. Suppose that rows correspond to two drugs a
and b, with μa > μ&. Then, because of the ordering of the {J^ }, the log odds ratios
for adjacent responses,

(62) log ψ^ψ = (μb - μ
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are nonnegative, and the response distribution for the 6th drug, {P&j/P&+} is
stochastically greater than that for the αth drug, {Pαj/Pα+}. Chuang and Agresti
(1986) use the model to analyze a data set in which the column variable is the
response (on an ordinal scale) to treatment with different drugs (the row variables).

4 4> Parameter Estimation. In the monotone scores case we are essentially
concerned with fitting the RC association model of expression (5) under a mono-
tonicity constraint on the {fj}. Here we consider estimation for the order restricted
R, C, and RC models i.e. the R model under the restriction μ\ < . . . < μj, the C
model under the restriction V\ < . . . < I/J, and the RC model under one or both of
the preceding restrictions. Results will be stated for the most general case when
available, i.e., in terms of the RC model; if not, then in terms of the R model
(in which case it is implied that they hold analogously for the C model) or the C
model (in which case it is implied that they hold analogously for the R model).

If the true parameters are strictly monotone, i.e. they do not lie on the bound-
ary of the parameter space, then the estimates for the order-restricted RC model
and the RC model are asymptotically equivalent.

For estimation under order restrictions, Goodman (1985) discusses an approx-
imation yielding an ordered solution for the R or C models with φ > 0 when the
actual maximum likelihood estimates for the unrestricted model, are not in the
correct order. He notes that for each violated restriction the likelihood is maxi-
mized on the boundary where these adjacent values are equal to each other. Then
in his iterative procedure, he combines rows (or columns) corresponding to pairs of
scores violating the order constraints, and refits the model. This, in effect, enforces
an equality constraint on the score parameters for the rows (columns) concerned.
Thus the order restricted solution is the same as the ordinary ML solution for the
appropriately collapsed table.

For the R model, the following necessary and sufficient conditions that com-
pletely characterize this collapsing are given in Agresti, Chuang, and Kezouh
(1987):
(63)

(64)

(65)

(66) Σ (£ !/;*&) = Σ ( Σ w )
i<rk j i<rk j

where {ri,..., ra} are such that

(67) # = ... = / £ < # 1 + 1 = ... = / £ < . . . < # β _ 1 + 1 = ... = μμ*Ta.

A heuristic argument for conditions (65) and (66) may be formulated as fol-
lows: In the unrestricted case the inequality (65) is an equality (23). When order
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constraints are applied, the restricted maximum is lower than the unrestricted max-
imum; this is manifested by inequalities in the likelihood equations with equalities
only on the boundaries of the level sets. For the RC model, however, there are no
sufficient conditions. This is due to the fact that, because the RC model is not
loglinear, the log likelihood is not necessarily concave.

Agresti and Chuang (1985) and Agresti, Chuang, and Kezouh (1987) note
that the partition for the order restricted ML solution iϊi,...,/Zβ above, where
Rk = {vk-i + l,...,rjt}, is identical to the partition of level sets obtained in
using the Pool Adjacent Violators algorithm (PAV) to obtain the regression of the
sample row means (weighted by the row totals) in the class of functions isotonic
with respect to the simple order in the rows (see Barlow, et al., 1972).

Gilula (personal communication) has pointed out the kinds of problems that
come with the PAV approach. He considers the following 3 by 3 table:

1
1

1

1
2
1

1

1

1

and notes what happens when we fit the row-effects model of expression (14) with
the following fixed values of {ι>j} under constraint (61):

v\ = 0, v2 = 1, v\ = 1.

Then the unrestricted MLE's of {μi} are:

μi = -0.2582, μ2 = 0.3873, μ3 = -0.2582

and
φ = 0.6424.

Now, if we impose a monotonicity constraint on the {μi} and apply the PAV
algorithm we get

μ = (-0.4833,0.2065,0.2065)

and
φ = 0.3193

But the same maximum value of the likelihood is achieved by

μ = (0.4833, -0.2065, -0.2065)

and

φ = -0.3193.
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Ritov and Gilula (1987) point out that the problem with direct application
of PAV to the score parameters lies in the fact that these parameters are mutu-
ally dependent. Thus reordering a pair of μ 's may result in a violation of the
order constraint on the ι/j's. A solution is to apply the PAV algorithm to specific
functions of the parameters, viz.

j

(68) ^ ) = ΣV;7A.
3=1

and

(69) Fi{μ) = ΣPijμiIP.j
1 = 1

where P t J represents the empirical distribution in the observed contingency table.
The quantities (E{ — E{-i) and (Fj — Fj-i) a r e asymptotically uncorrelated and
amalgamation cap. be done separately (independently) for rows and columns. The
unrestricted maximum likelihood estimates for the collapsed table, in which the
E{ and Fj follow the desired order, are asymptotically equivalent to the order
restricted maximum likelihood estimates.

Dykstra and Lemke (1988) discuss this restricted maximization problem, and
its dual I-projection problem. They note the applicability of a general algorithm
from Dykstra (1985) to solve the I-projection problem, and thus the maximum
likelihood problem here.

4-5. Goodness-of-Fit Statistics. When the true parameters for the order re-
stricted model are in fact monotone, then the Pearson chisquare and Likelihood
Ratio chisquare are an asymptotic χ 2. When there are equalities between adjacent
parameters, the goodness of fit statistics are distributed as mixtures of chisquares.
For example, it follows from Agresti, Chuang, and Kezouh (1987) that in the RC
model, under monotonicity constraints on the {//*}, when the {μt } are strictly
monotone, except for one identical adjacent pair, the likelihood ratio statistic has
an asymptotic distribution that is an equal mixture of the one for the RC model
and one with an additional degree of freedom. This is because when one pair is
equal then

• with limiting probability 0.5, asymptotically, the ordinary MLE's will follow

the order restriction, and G2 under the order restriction will be the same as

the unrestricted G2 with X(/_2UJ-2) distribution.

• with limiting probability 0.5, the ordinary MLE's will have the estimates for
the pair of parameters concerned out of order. The order restricted solution
will be the same as the ordinary solution for the table with the two rows
concerned, collapsed.

From Agresti, Chuang, and Kezouh (1987), Theorem 4, the likelihood ratio
chi-square statistic in this case can be decomposed as:

(70) G2(RC*) = G2(RC') + G2(I),
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where

• G2(RC*) denotes the fit of the order restricted model to the original table,

• G2(RC') denotes the fit of the ordinary RC model to the collapsed table,
and

• G2(I) denotes the fit of the model of independence to the 2 x J table formed
from the pair of rows with parameters out of order.

The first of the quantities on the right hand side has an asymptotic χ?j_3\/j_2)

distribution, and the second a X?j_x\ distribution, and they are asymptotically

independent. Thus their sum is asymptotically distributed as X/I_2)(j-2)-\-i'

In general, however, the foregoing result does not tell us the asymptotic distri-
bution of G2 when the order constraints are included in the model because we do
not know the values of the true parameters and hence the equalities/inequalities
that may hold among them.

Ritov and Gilula (1987) show that the chisquare statistic for testing Ho: Or-
der restricted RC model against Hi: Unrestricted RC model has the following
asymptotic distribution:

f+f-2
(71) P(X2>c)=

where / and J denote the maximum number of row and column parameters that
can be equal and the mixture probabilities βk depend on the marginals P t and

P.i
The general problem of inference under order restrictions has been treated

in detail by Barlow et al. (1972), and, most recently by Robertson, Wright, and
Dykstra (1988) which includes some of the material in Barlow et al. and also
covers subsequent developments in the area of isotonic methods. Raubertas, Lee,
and Nordheim (1986) consider hypothesis tests for linearly constrained normal
means, and Robertson (1978) and Lee (1987) deal with tests for order restrictions
on multinomial parameters.

Robertson considers the following three hypotheses:

• Ho : p = 9, where p = (pi,.. .,Pk) is a probability vector of unknown
values and q is a known probability vector.

• Hi : p Φ q, but p satisfies some order restriction O on its components.

• H2: peRk,



184 Ruth Douglas and Stephen E. Fienberg

The asymptotic distribution of the test statistic for testing Ho versus JΪΊ is of the
χ2 form (see Barlow et al., 1972, ch. 3), i.e., a weighted sum of standard chi-
squares, depending on the alternate hypothesis through the weights. The test of
Hi versus #2 is not similar in that it depends on the particular p satisfying J?Ί;
however, asymptotically, an upper bound on the significance level of the test of Hi
versus H2 can be found. Raubertas, Lee, and Nordheim (1986) give similar results
for the normal means case. In both cases, the maximum likelihood estimates that
appear in the test statistics turn out to be projections onto polyhedral cones.

5. Parameter Constraints in Terms of Table Margins. Yet another
way to approach information on ordering is to incorporate it into the model in the
form of order restrictions on the marginal totals of the cross classification. This
has been explored by Eddy, Fienberg, and Meyer (1982). The motivation behind
this approach is similar to the motivation behind the structural zero method for
modelling contingency tables in which some cell frequencies are known to be zero
(see Bishop, Fienberg and Holland, 1975). There appears to be an interesting link
between this approach and ideas associated with loglinear models.

6. Association Models for Multi-Dimensional Tables. Natural exten-
sions of the association models from Section 2 to three and higher-dimensional
contingency tables are reasonably direct and have been explored previously by
Chuang (1980), Clogg (1982), Fienberg (1982), Agresti (1983), and Goodman
(1986). Rather than attempting an exhaustive treatment of the topic we present
some illustrative examples and features of these extensions, noting the links to the
association models for I X J tables and the kinds of stochastic ordering features
described in Section 2.

For the / x J x K cross-classification involving variables A, 2?, and C, let Pijk
be the probability of an observation falling into the ith row, j th column and A th
layer. The saturated loglinear model for this 3-dimensional table is usually written
in the form:

(72) log Pijk = U + Uι(i) + U2{j) + U3(k) + Ui2(tj) + ttl3(t*) + U23(jk) + U123(ijk)

with identifying constraints requiring the sum of any subscripted u-term over each
subscript to be equal to zero. Extensions of the association models to this situation
typically involve

1. setting one or more subscripted u-term equal to zero;

2. representing some of the remaining u-terms with 2 or more subscripts as
products of parameters.

For both (1) and (2) the choices must be in accord with the generalized hierarchy
principle (e.g., see Fienberg, 1980, p. 43 and p. 100) associated with ANOVA-like
models wherein restriction terms must be compatible with restrictions or structures
for the lower-order terms which are marginal to them. Thus representing U12 in
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multiplicative form implies related multiplication forms for u\2z. In particular
setting u\2 = 0 implies that variables A and B not be linked for any multiplicative
component used to model related higher-order terms, e.g. ̂ 123.

Chuang (1980), for example, described several choices for association models
based on (72) where the 3-factor term is represented as

( 7 3 ) ( a ) U123(ijk) = M (

(74) (b) t*123(ίjJb) = λvi(i) V23(jk)

In the multiplicative notation of Goodman (1985) these models are representable

as

(75) (*)Pijk = α*Bα?fαf

(76) (b)Pijk = X F λ t F x f f

Some other examples of loglinear-association models are:

U13(ik) =

(77) u23{jk) =

(d) uu(ij) = 0,

(78)

which are representable in Goodman's notation as

(79) (c)Piik = α f α f α ^ t f
(80) (ά)Pijk = e t f c f f

(see also Clogg, 1982).

Maximum likelihood estimates for these loglinear-association models require some
form of iterative procedure. Chuang (1980) proposes a variant on the Newton-
Raphson method and direct generalizations of Goodman's iterative method for
two-way tables are available.

The various mixed loglinear-association models described above can all be re-
formulated as models for the key parameters for three-way arrays, i.e. ratios of
odds-ratios of the form

The (θ{jk) do not readily lend themselves to any total postivity order restrictions
and, to date, no-one has considered appropriate generalizations of the stochastic
ordering properties discussed in Section 2.2.
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No one in the categorical data analysis literature has yet presented methods for
estimation of the higher dimensional loglinear-association models subject to order
on the multiplicative parameters such as in expression (49) and (50). The estima-
tion problems for the RC model alluded to in Section 4.4 come home in spades
when we move to higher dimensions and more than two sets of order restructures.
Again the log likelihood is not necessarily concave and approaches modelled after
the Pooled Adjacent Violators algorithm will not necessarily work.

Schriever (1983, 1986) considers some multi-dimensional generalizations of the
correlation models of Section 3, and related stochastic ordering properties. His
description allows a two-dimensional matrix representation involving submatrices
which are two-dimensional marginals. Thus his approach, while far more restrictive
than the one suggested here for loglinear-association models, does allow for the
direct examination of total-positivity and order-dependence properties.
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