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In this paper we present univariate and multivariate time
series models for processes with non-Gaussian marginal
distributions. These include bivariate autoregressive-type
models for processes with bivariate exponential marginals,
nonlinear autoregressive-type models for processes with
Dirichlet marginals, and nonlinear models for univariate
time series with arbitrary marginal distributions. Exam-
ples of applications to real data sets are given for some
of the models discussed. When applicable, the theory of
positive dependence is used to establish the association
of the processes.

1. Introduction. The classical model in multivariate time series analysis is
the m x 1 vector linear process given by

(1) X ( n ) = Σ £ _ 0 O A ( j > ( n - i ) , neZ

where Z = {0, ±1, ±2,...}, {^(n), n € 2} is a sequence of iid ra x 1 random vectors
with mean zero and unknown covariance matrix, and {A(n), n G 2} is a sequence
of unknown raxra matrices such that ΣJL^^ || A(j) | |< oo where || || denotes the
usual eigenvalue norm. Note that autoregressive (AR), moving average (MA), and
mixed autoregressive-moving average (ARMA) models are important particular
cases of the classical linear process (1).

If the €(n)'s are Gaussian then clearly so are the X(n)'s in (1). Furthermore,
if the X(n)'s are Gaussian with mean zero and absolutely continuous spectrum,
then there is a sequence of iid normal mean-zero random vectors e(n), n £ Zy

and a sequence of matrices A(n),n 6 Z, such that the two processes X(n) and
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ΣJL^ooA(n)e(n — j ) ,n £ 2 , are stochastically equal (see Hannan, 1970, p. 221).
If the X(n) process is non-Gaussian, then a decomposition (1) may not exist, and
the statistical inference procedures developed for processes satisfying (1) do not
apply.

There are, however, many physical situations in which time series are patently
non-normal. It has been suggested that time series that depart slightly from nor-
mality be handled by data transformations. For other cases, where the departure
from normality is more substantial, it has been suggested that new time series
models be developed (see, for example, Lewis, 1980).

Over the past decade, there has been a considerable amount of research on
modeling time series with exponential, gamma, geometric, or general discrete
marginal distributions. For example, Lawrance and Lewis (1980, 1981, 1985) and
Jacobs and Lewis (1977) present univariate ARM A-type models with exponential
marginals. Raftery (1982) generalizes their models to include multivariate time
series with exponential marginals. Gaver and Lewis (1980) present univariate AR-
type models with gamma marginals, and Jacobs and Lewis (1978, 1983) present
ARMA-type models for univariate discrete-valued time series. Block, Langberg,
and Stoffer (1988) present bivariate ARMA-type models with bivariate exponen-
tial and geometric marginals, and Langberg and Stoffer (1987) develop bivariate
MA-type processes with exponential and geometric marginals. Models and statis-
tical methodologies for the analysis of categorical time series have recently been
developed by Fahrmeir and Kauffmann (1987), Kauffmann (1987), and Stoffer
(1987).

In this paper we focus on three different problems. In Section 2 we present
a model and corresponding statistical methodology for analyzing univariate time
series with arbitrary continuous marginal distributions. The model is then used
to analyze wind speed data. In Section 3 we present the bivariate exponential
autoregressive (BEAR) model which can be used to analyze bivariate time series
in which the process of interest has bivariate exponential marginals. We show that
a BEAR process can have well known bivariate exponential marginal distribution
such as the Marshall and Olkin (1967) bivariate exponential distribution. The
theory of positive dependence is used to show that the BEAR model can consist
of associated random variables. Finally, in Section 4 we present a multivariate
AR-type model with Dirichlet marginal distributions. This model is useful for
modeling and forecasting vector processes in which the distribution of the random
vector at each point in time is a Dirichlet distribution. Estimation and prediction
methods are given for the model and the techniques are illustrated on a data set
from soil science.

2. Univariate Processes With Arbitrary Continuous Marginals. In
this section we present models and corresponding statistical methodology that
will allow an investigator to model and analyze time series with any continuous
marginal distribution, whether or not the investigator is willing to specify the
family of distributions. The method used here is essentially the translation method
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(see Mardia, 1970) via the probability integral transform. That is, the processes are
constructed by a monotone nondecreasing transform of a Gaussian linear process
and the data are assumed to be obtained by a simple instantaneous nonlinear filter
acting on a Gaussian process (see Hannan, 1970, section 2.7, for a discussion of
nonlinear filters applied to Gaussian processes). Both a nonparametric approach
(when the family of distributions is not specified) and a parametric approach (when
the family of distributions is specified) are taken. The techniques of this section
are then illustrated by analyzing a real data set.

Underlying both the nonparametric models and the parametric models is a
mean zero Gaussian process {Yn,n £ 2} , such that E{Y*} = 1. Thus, for each π,
Yn ~ Φ where Φ represents the Gaussian cdf. As an example of such a process,
consider a linear process where {en^n € Z} is a sequence of iid iV(0,σ2) random
variables, {φo, Φi, •} is a sequence of parameters such that Σ£l 0 | φq |< oo and
σ~2 = Σ™=oψ

2

q, and

(2)
o

First we present the nonparametric approach. Let {Xn, n G Z} be a process
of interest such that the cdf of Xn is H (that is, Xn ~ ί , n ζ 2 ) where H is a
continuous, unspecified cdf. For if, let Π"1 be a right continuous inverse of H
given by:

(3\ H-i( \ f i n f ix : #0*0 > P} 0 < p < 1
^ ^ ' ~" 1 sup {x : iΓ(x) < 1} p = 1.

We define the process {Xn>^ € Z} as follows:

(4) X n = H - ^ Φ i Y n ) ] , n e Z

where {Yn<>n € Z} is the Gaussian process. Noting that for all n, Φ(Yn) has a
uniform cdf on (0,1) it follows that Xn ~ H,n G Z.

Next we present the parametric approach. Let Ω be a subset of the fcth Eu-
clidean space and let {HQ : θ G Ω} be a specified family of absolutely continuous
cdf's which depends on the parameter θ. We define the process {Xn(θ); n G Z,θ G
Ω} as follows:

(5) Xn{θ) = H^fiiYn)], neZ.

By a preceding argument, it follows that Xn(θ) ~ H$; n G Z,θ G Ω.
For an example of some parametric models, let Ω = (0,oo) x (—00,00), let

Z be a random variable with cdf F, and let He be the cdf of Θ\Z + θ<ι,θ G Ω.
Then the class of processes {Xn(θ) = βxF^^Yn)] + Θ2;n G Z,θ G Ω} has if̂
marginals. So, for example, the class of processes could have Cauchy marginals:
F~λ(p) = tan πp, logistic marginals: F~1(p) = — ^ ( p " 1 —1), or shifted exponential
marginals: . F " 1 ^ ) = -ίn{\ — p), to mention a few.
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Estimation and prediction for each of the models is relatively simple if the
underlying Gaussian process {Yn,n G 2} is an ARMA(p,q) process. Henceforce
we assume that

(6) Σ^ooyYn-,- = Σq

k=Qβk€n-k, rteZ, a0 = βo = 1

where {en,n G 2} is the process described in (2), and with appropriate conditions
on {e*i,..., α p, /?i,..., /?ς} for (6) to be a stationary, causal and invertible process
(see for example, Brockwell and Davis, 1987). If xi, . . .,XJV are JV observations
from a process given by (4) or (5), let X(i), -^X(N) be the corresponding order
statistics and let Hjsr(t)yt G (—00,00), be the empirical cdf of the observations
given by:

(7) HN(t) = tf-1ΣJU1I(t)[«w,oo) + iV-1J(0(x(JV))oo)

where i^ denotes the indicator function of A. Note that in (7), ϋΓ/v(ί) < 1 for
t < X(N); the necessity of this definition will be apparent in (8). The properties of
the empirical cdf for dependent processes (that are mixing) are given in Gastwirth
and Rubin (1975). A Kolmogorov-Smirnov statistic for (correlated) data sampled
from an autoregressive process is given in Weiss (1978).

For the nonparametric model, estimation and prediction are accomplished by
first transforming the data as follows:

(8) yn = Q-^HNM], π = l,...,i\Γ

where HN is given in (7), and then by treating the yn as a sample of length N
from the Gaussian process (6). Parameter estimates and forecasts based on the
yn are obtained via standard methods and the forecasts of the original model are
approximated by setting z $ + J = 5Γ^1[Φ(y^+ J )], j = 1,2,..., where j/$+J- are the
estimated j-step-ahead forecasts of the Yn process based on the data jfo,..., yw,
and Htf1 is given in (3).

For the parametric model, parameter estimation can be obtained via maximum
likelihood. Let OL = ( α i , . . .,αp),/3 = (/?i,.. .,/39), and for yu . . .,y;v, N observa-
tions from the Gaussian ARMA(p, q) process given by (6), let iy(α,/3, yi,. . . , yjy)
be the likelihood function of yi,. . ., y^. Recall that σ2 is a function of α and β
alone. The likelihood function of the data a?i,...,xjv? is given by

(9) Lχ(θ,a,β,xl9...9xN) =

X

where denotes differentiation. We note that in (9) we may write
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Let ΘN denote the MLE of 0, and let

(10) Vn = *-1[H§N(xn)], n = l ,2 , . . . , JV,

then the forecasts for the parametric process (5) may be approximated by setting

%N+J(ΘN) = £r^"1[Φ(yJv+j)]' J = 1,2,..., where y%+j denotes the forecast obtained

from the yn, n = 1,..., JV, based on the MLE's of α and /3, and the model (6).
As an example of the kind of data that can be handled by the models, we fit

both a parametric and a nonparametric model to wind speed (mph) measurements
in Washington, D.C., May - September, 1977, 133 observations (which we denote
XQ, 9̂ 132) made daily at noon. Since wind speeds have been modeled using
the Weibull distribution (see Lawrance and Lewis, 1985), our parametric model
assumes that the data comes from a process with shifted WeibuU marginals, that
is,

(11) Hθ(x) = 1 -

where θ = (7,μ,£) with 7 > 0, μ > 0, and -00 < ζ < 00. Also, the data indicated
an AR(1) model for the {Yn} process given by (6), that is,

(12) Yn = αy n _χ + €n, | OL |< 1

where {en} is white Gaussian noise, en ~ i\Γ(0,cr2), with σ2 = 1 — α 2 .
Figure 2.1 shows a plot of the data as well as the one-step-ahead forecasts using

the parametric approach. The actual data is shown by a solid line in Figure 2.1,
with the data points represented by circles; the extreme observations are 5.0 mph
and 18.8 mph. Maximum likelihood estimation (cf. 9) under model assumptions
(5), (11) and (12) yielded the foUowing MLE's:

ηN = 1.732, μN = .069, £N = 4.920, άN = .388.

The one-step-ahead forecasts (shown in Figure 2.1 by a dashed line) were calcu-
lated by first computing the transformed data (10), then forecasting yn as y™""1 =
.388yn-i, and then setting X^ΦN) = tfΓ1^^-1)], n = 1,..., 132, as the one-
step-ahead wind speed forecasts. The analysis of the yn values {n = 0,1, . . . , 132)
using the parametric model verified the model assumption (12).

Figure 2.2 compares the empirical distribution function (solid line) of the wind
speed data with HQ (dashed line), showing satisfactory results. It is clear from
Figure 2.2 that the nonparametric approach for this data set leads to relatively
the same results as the parametric approach. The only parameter to be estimated
in the nonparametric case is α in (12). For this example we obtained a value of
.386 as an estimate of α; this compares well with the corresponding estimate άjv
in the parametric case. As the one-step-ahead forecasts of the wind speed data do
not differ visually from those obtained from the parametric model, we do not show
these forecasts. The analysis of the yn(n = 0,.. .,132) using the nonparametric
approach (cf. 8) verified the model assumption (12).
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Figure 2.1: Observed (solid line) and predicted (dashed line)
wind speed data (mph) using a parametric model.
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Figure 2.2: Empirical distribution (solid line) of the wind speed
measurements and the fitted Weibull c.d.f. (dashed line).

CD
<
CD
O
α:
o_

LJ
>

o

MILES PER HOUR 19



Models for Non-Gaussian Processes 75

3 Bivariate Exponential Autoregressive Processes. In this section we

present the BEAR(l) model and discuss some of its properties. A detailed account

of the BEAR(l) process as well as some related models, statistical methodology,

bivariate dependence mechanisms, and a data example may be found in Block,

Langberg, and Stoffer (1988). Throughout this section we will say that a random

vector E = (El, E2) has a bivariate exponential distribution if the marginal distri-

butions of E\ and E<ι are exponential. First we introduce the concepts of random

mixing (Lemma 3.1) and random summation (Lemma 3.2). We shall write U = V

to mean that random variables (or vectors) U and V are stochastically equal.

LEMMA 3.1. (Random Mixing). Let X and Z be independent random variables
s

with exponential distributions where X = Z. Let I be a Bernoulli random variable
independent of X and Z, and such that Pr{/ = 1} = 1 — π. Then the random
variable given by

has the same exponential distribution as X and Z.

LEMMA 3.2. (Random Summation). Let Xj, j = 1,2,..., be iid exponential
random variables with mean τr/λ,0 < π < 1. Let N have a geometric distribution
(N > 1) with mean π""1 and be independent of the Xj. Then the random variable
given by

Y = Σf= 1X,

has an exponential distribution with mean X"1.

The proofs of Lemmas 3.1 and 3.2 follow easily by computing characteristic
functions. In the following theorem we connect the concepts of these two lemmas
and show how these results may be used to extend the concepts of random mixing
and random summation to bivariate exponential random vectors. The proof of
this theorem may be found in Block, Langberg, and Stoffer (1988, Lemma 2.17).

THEOREM 3.1. Let (Xij,X2j), j = 1,2,..., be iid random vectors with a fixed
bivariate exponential distribution. Let (Nι,N2) be independent of the (Xij,X2j)
and have the bivariate geometric distribution given by

wherepij > 0 (ij = 0,1), P00+P01+P10+P11 = 1, P10+P11 < 1, andpOι+pn < 1.
Let (Jijii) be a bivariate Bernoulli random vector where Pr{/i = i,/2 = j} = pij,
ij = 0,1, such that 1 - πi = pι0 + Pn < 1, and 1 - π 2 = poi + pn < 1. Then

yΣfl^j) I (IιZuI2Z2)
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where (Zχ,Z2) I ( Σ ^ X ^ , Σ^Xij) , (Xi,* 2 ) = (π^1Xlj,π^1X2j

(X\,X2), and (Z\,Z<ι) are mutually independent.

The bivariate geometric distribution given in (13) is discussed in detail in Block
(1977). In order to provide insight into the connection between the concepts of
random summation and random mixing and the BEAR(l) process, we present the
following theorem.

THEOREM 3.2. Let (Yι,Y2) and (Zι,Z2) have the same unknown bivariate
exponential distribution. Let (Xι,X2) have a known bivariate exponential distri-
bution. Let (/i, J2) be as defined in Theorem 3.1, and let all the aforementioned
random vectors be mutually independent. If

(YUY2) I (I1Z1J2Z2) + (πιXuπ2X2)

then (Yi,Y2) and (Z\,Z2) have the same bivariate exponential distribution as

PROOF. Let Φy, Φx, and Φ^ be the characteristic functions of the random
vectors (Y\,Y2), (X\,X2), and (Zι,Z2), respectively, and note that Φy = Φ#.
Then for real numbers w, v, we have the characteristic function equation:

Φy (u, υ) = Φχ(τriu, 7r2t>)boo + PioΦzK °) + PoiΦz(0, v) + pu^z(u, υ)].

Letting u = 0, we may solve for Φy (0, v) and Φz(0, v). Similarly, letting v = 0, we
may solve for Φy(u,0) and Φ^(u,0). Inserting these results into the characteristic
function equation and noting that Φx is specified, the result then follows easily
by solving for Φy(w,v) and

We are now ready to present the BEAR(l) model. First, we shall need some
notation. Let (Iι(n),I2(n)) and (Nι,N2) be as in Theorem 3.1 and let {E(n),n =
±1, ±2,...} be an iid sequence of bivariate exponential random vectors with mean
vector (λj" 1^^ 1) which is independent of (Nι,N2) and (Iι(n),I2(n)). We set

(14) E(0) = (Σf:l1π1E1(-j), Σ?21π2E2(-j))'

where we have written E(n) = (i?i(n), E2(n))f. Note that by Lemma 3.2, E(0) has
a bivariate exponential distribution with mean vector (λ]"1, λ^"1), but the joint dis-
tribution of E(0) is not completely specified unless the distribution of E(n) is given.
Define A(n) to be the 2 x 2 diagonal random matrix A(n) = diag{Ji(n), ^(ft)}
and B to be the 2 x 2 diagonal matrix B = diag{7Γi, π2}.

The BEAR(l) process is defined as follows:

χ ( n ) = |
E(0) n = 0
A(n)X(n - 1) + BE(n) π = l ,
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The following useful characterization of the BEAR(l) process is established in
Block, Langberg, and Stoffer (1988). This characterization is primarily based on
the preceding lemmas and theorems.

LEMMA 3.3. Let {X(n),rc = 0,1,2,...} be a BEAR(l) process. Then for

X(n) = E(0)

where E(0) is given in (14)-

From Lemma 3.3 and results given in Block (1977), we may show that a
BEAR(l) process can have well known bivariate exponential distributions. These
include the Marshall-Olkin (1967), Downton (1970), Hawkes (1972), and Paulson
(1973) bivariate exponential distributions. Details may be found in Block, Lang-
berg, and Stoffer (1988, Remark 4.5). As an example we specify a particular E(0).
Let E be an exponential random variable with mean 0, 0 < θ < (λi + A2)""1,
TΓi = λχ0, π2 = A20, and let E(l) = (πf 1£,πJ 1 jE) / . Let 61,62^12 be nonneg-
ative real numbers such that λi = 61 + 612, λ2 = 62 + &12? and let poo = 0&i2,
pio = 0&2? P01 = 0δi> and pn = 1 — θ{b\ + 62 + 612), then the resulting X(ra) has a
Marshall-Olkin (1967) bivariate exponential distribution.

In view of Lemma 3.3, we also have the following result on the positive de-
pendence of the random variables of the BEAR(l) process. If Z = (Zi, . . . , Zq),
q = 1,2,..., is a random vector we say that the random variables Z\y..., Zq are
associated if cov{f(Z),g(Z)} > 0 for all / and g monotonically nondecreasing in
each argument, such that the expectations exist.

LEMMA 3.4. Let {X(n)} be a BEAR(l) process and suppose E\(l) and E2(l)
are associated, then {X{(nj);i = l,2,j = l,2,...,fe}, A: > 0 integer, are associ-
ated.

The proof of Lemma 3.4 follows by using the result of Lemma 3.3 in conjunc-
tion with a theorem on the association of a sequence of random variables that
is conditionally increasing in sequence, see Barlow and Proschan (1981, Theorem
4.7).

4. Multivariate Dirichlet Processes. In this section we are concerned
with modeling (k + 1)-dimensional series, say P(n) = (Pi(n),.. .,P*+i(n)); n =
0,1,2,..., where at each time point n, P(n) has a Dirichlet distribution with pa-
rameter vector ( α i , . . . , αjfe+i). That is, we are interested in modeling and forecast-
ing multivariate time series in which the data are proportions and are constrained
so that Σ**lPj(n) = 1 at each point in time.

Before presenting the model we establish some results. Throughout this section
let αi,...,αjfe+i > 0, let Yj be independent gamma(l,αj) random variables, and
define Zά = Yj/Σj

e=zlY£, j = l,...,fc + 1. Note that Zλ = 1 and that Zh j =
2,..., k + 1 are independent beta(αj, Σ^~Jα^) random variables. Finally let
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j = k + 1

and note that Uj = Yj/Σ^Yi, j = 1,..., k + 1. It then follows that

-> Dirichlet (αi, . .

We now define a univariate autoregressive-type process with beta marginals.
This process will then be used to build the multivariate Dirichlet process. To ease
the notation, we define Aq = Σq

£=1ct£.

LEMMA 4.1. (Beta Processes). For each j , j = 2, . . .,& + 1, let {Bnj,n =
1,2,...} be a sequence of iid Bernoulli random variables such that Fτ{Bnj = 1} =
ctjAj1, let {Qnjin = 1,2,...} 6e α sequence of iid beta(lyAj) random variables,
and let ZQJ be a beta(θίj,Aj-ι) random variable. Assume that {Bnj}, {Qnj}, and
{Zoj} are mutually independent, n= 1,2,... ]j = 2 , . . . , k + 1. Then the processes
{Znj,n = 1,2,...; j = 2,...,fc + 1} defined by

(15) Znj = QnjBnj + (1 - Qn^Zn-u

have beta(aj,Aj-ι) marginals, that is,

(16)

P R O O F . Let YQ be a gamma(l,l) random variable which is independent of

. . . ,lfc+i. Then we have the following results:

(i) Qnji

(ii) Znj I YjiV^Yt)-1 for n = 1 , 2 , . . . ; j = 2,...,k+ 1,

and by Basu's Theorem the random variables

(iii) Yo&'^Yt)-1 and YjίΣ^Yi)-1 are independent, j = 2,..., k + 1.

We now establish (16) by an induction argument on n. By (i), (ii), (iii), and (15)

we have that

(17)

= \YOBU + YjKZUYt)-1, j = 2, . . . , * + 1.
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Let / j , gj be the density function of Zij, Zoj, respectively, j = 2,. . . , A; + 1, and
let j/G (0,1). Then by (17), for j = 2,.. . , * + 1,

Hence (16) holds for n = 1. The induction proof now proceeds by assuming that
(16) holds for a given ra, n > 1, then using a similar argument, one can show that
(16) holds for n + 1. Hence (16) holds for all n. ||

We are now ready to define the stationary autoregressive-type sequence of
Dirichlet random vectors, {P(n), n = 0,1,2,...}. Let Zn\ = 1, n = 0,1,2,..., and
let {Znj, n = 0,1,2,... j = 2,...fc + 1} be as defined as (15). Let

and let

(19) P(n) = (Pi(n) , . . . , f t + 1 (n)) , n = 0,1,2,....

It follows by Lemma 4.1 and the preceding results on the joint distribution of
(E/i,..., Uk+i) that for each n, P(n) has a Dirichlet distribution with parameter
vector (αi,...,αfc+i),n = 0,1,2,

Estimation of the parameter vector θ = (α i , . . .,αfc+i) of the Dirichlet pro-
cess (19) may be carried out by maximum likelihood. Let P ( l ) , . . .,P(iV), be a
realization of length N of the process (19). Maximum likelihood estimation is
accomplished as follows:

(1) Transform the data to the beta sequences by setting

Znj = Pj(n)[Σi=1P£Γ\ i = 2 , . . . , * + l ; n = l , . . . , A Γ .

(2) From the Z n j , calculate the Qnj and Bnj defined in Lemma 4.1:

(a) If Znj > Zn-!j then Bnj = 1 and

Qnj = (Znj - Zn

(b) If Znj < Zn-ij then £ n j = 0 and

Qnj = (Znj ~ Z

for j = 2, ...,& + 1, and n = 1,..., JV. These calculations are direct conse-

quences of (15).
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(3) Maximize the log-likelihood function of the observations {Qnj ? Bnj \n= 1 , . . . , JV, j

2 , . . . , k + 1}, say £ ( 0 ) , given by

L(θ) =

where At = Π* = 1 (l - Q^), and 5/ = Σ%=1Bn£, for / = 2,. . . , * + 1.

For the cases A: = 1,2 an explicit solution to dL(θ)/dAt = 0, i = 1,..., k + 1,
exists so that for k = 1 (that is, the process of interest is the univariate beta
process given in (15) with j = 2)

&i = (ΛΓ - S2)/(-lnA2)

ά2 = S2/(-£nΔ2)

and for A: = 2,

ά i = (27V - £

ά 2 = (2ΛΓ

&3 = S3/(-ίn(A3)

are the MLE's. For arbitrary fc, the MLE's can be obtained by a numerical method
such as a Newton-Raphson or scoring procedure.

As an example of the kind of data that can be handled by the model, we
consider spatial data presented in Mechergui (1984). As part of a study of the
water table in the vicinity of drainage tiles, Mechergui analyzes the content of 72
equally (and linearly) spaced auger holes each dug to a depth of 2.4 meters. The
sampling rate was 10 auger holes per 52 meters and the proportions of silt, clay,
and sand are obtained for each sample with the constraint that the percentages of
silt, clay, and sand in each auger hole sample sum to 100%.

We fit a Dirichlet model (19) to the proportions of silt, clay, and sand, Pi(n),
P2(n), and Pa(n), respectively, based on the 72 observation vectors P(n) = (Pχ(n),
P2(π), P3(n)), n = 0,1,2,..., 71, and then used the estimated model to obtain one-
step-ahead forecasts for the time points n = 1,...,71. Figure 4.1 shows the silt
series, Pi (ft), as well as the one-step-ahead forecasts based on the estimated model;
Figure 4.2 shows similar plots for the clay series, P2(n).
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Figure 4.1: Observed (solid line) and predicted (dashed line) silt content series.

D I S T A N C E (1 p o i n t = 5 . 2 m e t e r s ) 7 1

Figure 4.2: Observed (solid line) and predicted (dashed line) clay content series.
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Maximum likelihood estimation was carried out as previously discussed. In
this case we found the MLE's to be:

άi = 2.573, ά 2 = 2.963, ά 3 = 2.137.

Forecasting was accomplished by first forecasting Zn2 and Znz obtained in estima-
tion step (1), and then using these forecasts to predict P(n) via the transformation
(18). Then one-step-ahead forecasts of Z n j , j = 2,3 based on (15) is given as fol-
lows:

Znj = (1 + Σ i ^ r ^ Σ i ^ ) - 1 + (^ά^Zn-u], j = 2,3

for n = 1,..., 71. Recall that Zn\ = 1 for all n, and hence we put Zn\ = 1 for all
n. From (18) we obtain the one-step-ahead forecasts for Pj(n), j = 1,2,3:

(20) Pj{n) = < « ^
^ Anz, j — ό.

The root mean square prediction errors for the silt, clay, and sand series based
on the preceding prediction equations are .040, .036, and .037 respectively.
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