
CONDITIONAL INDEPENDENCE AND PROBABILISTIC
INFLUENCE DIAGRAMS

BY RICHARD E. BARLOW1 AND CARLOS ALBERTO DE BRAGANCA PEREIRA1

University of California, Berkeley, and Uniυersidade de Sao Paulo, Brazil

A graphical approach to conditional independence is dis-
cussed. Some well known results concerning conditional
independence are proved using simple influence diagram
arguments. This material is, in part, from a book in
progress tentatively titled Applied Bayesian Statistics, by
the present authors.

1. Introduction. Influence diagrams with decision nodes were invented in
1976 by Miller et al. [cf. Howard and Matheson (1984)]. Shachter (1986) further
developed methods for analyzing influence diagrams. S. Wright (1934) used di-
agrams to aid in understanding his "method of path coefficients." Although his
diagrams pictorially resemble Gaussian influence diagrams [cf. Shachter and Ken-
ley (1988)], they are not based on the Bayesian paradigm. They are not in any
sense influence diagrams. I.J. Good (1961) invented "causal nets" that resemble in-
fluence diagrams. He used them to illustrate his ideas of causality and conditional
independence. In this respect they are similar to influence diagrams. However
he did not develop a comparable methodology for analyzing the diagrams. His
diagrams are not influence diagrams as we define them below.

Influence diagrams are useful for modeling statistical problems. Construction
of the diagram is helpful in understanding the problem and communicating the
interdependencies to others. In the process of constructing the influence diagram, a
representation of the joint distribution of random quantities related to the problem
of interest is developed. Usually one does not start with the joint distribution
but uses the influence diagram model to determine a useful representation of the
joint distribution. In the case of decision influence diagrams, the diagram can
be used to help solve the decision problem(s) of interest. Examples of the use of
influence diagrams can be found in Barlow and Zhang (1987) and Lauritzen and
SpiegelhaJter (1988).
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1.1. Definitions and Basic Results. An influence diagram is, first of all, a
directed graph. A graph is a set, V, of nodes or vertices together with a set, A,
of arcs joining the nodes. It is said to be directed if the arcs are arrows (directed
arcs). Let V = {t>i,..., vn} and let A be a set of ordered pairs of elements of F,
representing the directed arcs. That is, if [vt*,Vj] G A for 1 < i9j < n, then there
is a directed arc (arrow) from vertex V{ to vertex vj (the arrow is directed from V{
to Vj). If [v;,Vj] £ A, Vi is said to be an adjacent predecessor of Vj and Vj is
said to be an adjacent successor of V{. The direction of arcs is meant to denote
influence (or possible dependence).

Circles (or ovals) represent random quantities which may, at some time, be
observed and consequently may change to data. Circle nodes are called proba-
bilistic nodes. Attached to each circle node is a conditional probability (density)
function. This function is a function of the state of the node and also of the states
of the adjacent predecessor nodes.

A double circle (or double oval) denotes a deterministic node which is a
node with only one possible state, given the states of the adjacent predecessor
nodes; i.e., it denotes a deterministic function of all adjacent predecessors. Thus,
to include the background information, if, in the graph, we would have to use a
double circle around H.

The following concepts formalize the ideas used in drawing the diagrams of this
paper.

DEFINITION 1.1. A directed graph is cyclic, and is called a cyclic directed
graph, if there exists a sequence of ordered pairs in A such that the initial and
terminal vertices are identical; i.e., there exists an integer k < n and a sequence
of k arcs of the following type:

K , vi2], K , vt 3 ] , . . . , [vik_λ, ViJ, [v^Vi,].

DEFINITION 1.2. An acyclic directed graph is a directed graph that is not
cyclic.

DEFINITION 1.3. A root node is a node with no adjacent predecessors. A
sink node is a node with no adjacent successors. Note that any acyclic directed
graph must have at least one root and one sink node.

DEFINITION 1.4. A Probabilistic Influence Diagram is an acyclic directed
graph in which

i) nodes represent random quantities while directed arcs indicate possible de-
pendence; and

ii) attached to each node is a conditional probability function (for the node)
which depends on the states of adjacent predecessor nodes.
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Given a directed acyclic graph together with node conditional probabilities (i.e.,
a probabilistic influence diagram), there exists a unique joint probability function
corresponding to the random quantities represented by the nodes of the graph.
This is because a directed graph is acyclic if and only if there exists a list ordering
of the nodes such that any successor of a node x in the graph follows node x in
the list as well. Consequently, following the list ordering and taking the product
of all node conditional probabilities we obtain the joint probability of the random
quantities corresponding to the nodes in the graph. Note that in a cyclic graph
the product of the conditional probability functions attached to the nodes would
not determine the joint probability function.

The following basic result shows that the absence of an arc connecting two
nodes in the influence diagram denotes the judgment that the unknown quantities
associated with these nodes are conditionally independent given the states of all
adjacent predecessor nodes.

REMARK 1.5. Let X{ and Xj represent two nodes in a probabilistic influence
diagram. If there is no arc connecting X{ and Xj, then X{ and Xj are conditionally
independent given the states of the adjacent predecessor nodes; i.e.,

p(Xi,Xj I Wi9Wj,Wij) = p(X{ I Wi,Wj,Wij)p(Xj I Wi,Wj,Wij)

where Wi(wj) denotes the set of adjacent predecessor nodes to only Xi(xj) while
Wij denotes the set of adjacent predecessor nodes to both X{ and Xj.

REMARK 1.6. In a probabilistic influence diagram, if two nodes, X{ and Xj, are
root nodes then they are independent.

EXAMPLE 1.7. (Forensic Science). A robbery has been committed and a
suspect, a young man, is on trial. In the course of the robbery, a window pane was
broken. The robber had apparently cut himself and a blood stain was left at the
scene of the crime. Let x represent the blood type of the suspect, y the blood type
of the blood stain found at the scene of the crime, and θ the quantity of interest,
"the state of culpability" (guilt or innocence) of the suspect. Formally, and before
using the actual values of the observable quantities, we have:

1 if the suspect's ί 1 if the blood ί 1 if the suspect
x = < blood type is A, y = < stain type is A, θ = < is guilty,

0 otherwise. I 0 otherwise. I 0 otherwise.

The following diagram is a probability model constructed for this case. Note that
the actual values of x and y that are known at the time of the analysis are not yet
used. In fact, the diagram describes the dependence relations among the quantities
and the conditional probabilities to be used.
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P(yTχ,θ)

Figure 1.1. Influence Diagram for a
Problem in Forensic Science

If p represents the proportion of people in the population with blood type A and
if, for a jury member that happens to be interested in probability, q represents his
probability that the suspect is guilty before the juror has learned about the blood
evidence, then a reasonable probability model is:

ί q if 0 = p

p(y\χ,θ) =

ιfθφy=l

0

if 0 = land

otherwise.

The objective of the jury member is to obtain the probability of guilt (0 = 1) after
observing the evidence (x = y = 1) namely that the blood type of the suspect is
the same as that of the stain. That is, the jury member needs to obtain p(θ | x, y)
evaluated at {0 = x = y = 1}.

2. Probabilistic Influence Diagram Operations. The Bayesian approach
to statistics is based on probability judgments and as such follows the laws of
probability. You are said to be coherent if i) you use probability to measure
your uncertainty about quantities of interest and ii) you do not violate the laws
of probability when stating your measurements (probabilities). Probabilistic influ-
ence diagrams (and influence diagrams in general) are helpful in assuring coherence.
Clearly, from coherence, any operation to be performed in a probabilistic influence
diagram must not violate the laws of probability. The three basic probabilistic
influence diagram operations that we discuss next are based on the addition and
product laws. These operations are: 1) Splitting Nodes, 2) Merging Nodes, and 3)
Arc Reversal.

2.1. Splitting Nodes. In general a node in a probabilistic influence diagram
can denote a vector random quantity. It is always possible to split such a node
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into other nodes corresponding to the elements of the vector random quantity.
To illustrate ideas, suppose that a node corresponds to a vector of two random
quantities, x and j/, with joint probability function p(x,y). From the product law
we know that

;>(z, y) = p(χ)p(y \ x) = p(x \ y)p(y).

Hence, Figure 2.1 presents the 3 possible probabilistic influence diagrams that can
be used in this case showing the two ways of splitting node ($, y).

Figure 2-1.
Probabilistic Influence Diagrams for Two Random Quantities

The following property is also a direct consequence of the laws of probability
and it is of special interest for statistical applications.

PROPERTY 2.1. Let a: be a random quantity represented by a node of a proba-
bilistic influence diagram and let f(x) be a (deterministic) function of x. Suppose
we connect to the original diagram a deterministic node representing f(x) using a
directed arc from x to f(x). Then, the joint probability distributions for the two
diagrams are equal. (See Figure 2.2 for illustration.)

PROOF. Let w and y represent the sets of random quantities that precede and
succeed x, respectively, in a list ordering. Note that p(f(x) | w, x) = p(f(x) \ x) =
1 and consequently from the product law p(x,f(x) \ w) = p(x \ w). That is, node
x may be replaced by node (#,/(#)) without changing the joint probability of the
graph nodes. Using the splitting node operation in node (x, /(#)) with x preceding
/(#), we obtain the original graph with the additional deterministic node f(x) and
a directed arc from x to f(x). Note also that no other arc is necessary since f(x)
is determined by x and p(y | w, /(#), x) = p(y \ w, x). \\

Figure 2.2. Addition of a Deterministic Node
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2.2. Merging Nodes. The second probabilistic influence diagram operation is
the merging of nodes. Consider first a probabilistic influence diagram with two
nodes, x and y, with a directed arc from x to y. The product law states that
p(xyy) = p(x)p(y I x). Hence, without changing the joint probability of x and y,
the original diagram can be replaced by a single node diagram representing the
vector (#,y). The first two diagrams of Figure 2.1 in the reverse order illustrate
this operation. In general, two nodes, x and y, can be replaced by a single node,
representing the vector (x, y), if there is a list ordering such that x is an immediate
predecessor or successor of y.

It is not always possible to merge two adjacent nodes in a probabilistic influence
diagram. Note that two adjacent nodes may not be neighbors in any list ordering.
For example, consider the first diagram of Figure 2.3. Note that all pairs of nodes
in this diagram constitute adjacent nodes.

Figure 2.3 Diagram with Adjacent Nodes, w and £/,
Not Allowed to Be Merged

However, w and y cannot be merged into a node representing (w,y). Clearly the
only list ordering here is w < x < y and w and y are not immediate neighbors
in this ordering. The problem here is that to merge w and y we would need an
arc from (w,y) to x and another from x to (w,y). The reason for this is the
existence of arcs [w,x] and [x,j/] in the original graph. If we were to have arcs in
both directions between (w,y) and x, we would not obtain, in general, the joint
probability function from the diagram since p(w,x,y) φ p(x \ w,y)p(w,y \ x).
Also it can be seen from the first diagram of Figure 2.3 that there exist two paths
from w to y. This is the graphical way to see that w and y cannot be merged into
a single node. To construct a graphical technique to check if two nodes can be
merged, we need the following definition and theorem.

DEFINITION 2.2. A directed path from node xt to node Xj is a chain of
ordered pairs

corresponding to directed arcs which lead from X{ to Xj.

THEOREM 2.3. (Merging Nodes Theorem) In α probabilistic influence diagram,
nodes x and y can be merged if either

1) the only directed path between x and y is a directed arc connecting x and y;

or
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2) there is no directed path connecting x and y.

PROOF. TO be definite, suppose that x precedes y in an associated list order-
ing corresponding to a probabilistic influence diagram. Let wx(wy) be the set of
adjacent predecessors of x{y) but not of y(x) and let wxy be the set of node which
are adjacent predecessors of both x and y. Since there is no directed path from x
to y except, possibly, for a directed arc from x to y, we may add arcs from each
node in wx to y and from each node in wy to x without creating any cycles. This
is possible because directed arcs indicate possible dependence not necessarily strict
dependence. We have of course lost some graph information as a result of these
arc additions.

In the associated list ordering of nodes for our modified diagram, the family
of nodes {wx,wy,wxy} precede both x and y. Since there is no other directed
path from x to y other than possibly a directed arc from x to y, there exists an
associated list ordering of nodes for which x is an immediate predecessor of y in
this list ordering. The product

p(x I wX9 wy, wxy)p(y I x, wx, wyy wxy)

must appear in the representation for the joint probability function for all proba-
bilistic nodes based on the list ordering. Since

P{y, x I w*, wy, wxy) = p(x I wXJ wy, wxy)p{y \ x, wx, wy, wxy)

by the product law, we can merge x and y.
Finally, suppose that there is a directed path from x to y other than a directed

arc from x to y. In this case it is not difficult to see that merging x and y would
create a cycle which is not allowed. ||

The above result is related to arc reversal, an important operation discussed
next.

2.3. Reversing Arcs. The probabilistic influence diagram operation correspond-
ing to Bayes' formula is that of arc reversal. Consider the diagram on the left in
Figure 2.4. Using the merging nodes operation we obtain the single node diagram
in the center where the probability function of the node (x,y) is obtained from
the first diagram as p(x,y) = p(x)p(y \ x). Using the splitting nodes operation
we can obtain the diagram on the right of Figure 2.4. Note that to obtain the
corresponding probability functions we use

1) the theorem of total probability for p(y) = Tιxp{y \ x)p(x), where Σ^ is the
sum (or integral) over all possible values of x, and

2) the multiplication law for p(x \ y) = p(x, y)/p{y) since p(y)p(x \ y) = p(x, y).
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By substituting the appropriate expression in p(x \ y) we obtain Bayes' formula.
That is,

p(x I y) = {p(x)p(y \ x)}/{ΣxP(x)p(y \ x)}.

Hence, by using the theorem of total probability and Bayes' formula when
performing an arc reversal operation, we can go directly from the left diagram to
the right one in Figure 2.4 without having to consider the one in the center.

Figure 2 4. Reversing Arc Operation in a Two Node
Probabilistic Influence Diagram

Although the diagrams are different they have the same joint probability func-
tion for node random quantities. This fact is formalized in the following definition.

DEFINITION 2.4. Two probabilistic influence diagrams are said to be equiv-
alent in probability if they have the same joint probability function for node
random quantities.

Consider the diagram of Figure 2.5 where wx, wy, and wXyV are sets of adjacent
predecessors of x and (or) y as indicated by the figure. If arc [x,y] is the only
directed path from node x to node y, we may add arcs [wx,y] and [t%,x] to
the diagram without introducing any cycles. (See left diagram of Figure 2.6.)
Remember that a directed arc only indicates possible dependence.

The following result introduces the conditions under which arc reversal opera-
tions can be performed.

THEOREM 2.5. (Reversing Arcs Theorem) Suppose that arc [x,y] connects
nodes x and y in a probabilistic influence diagram. [x,y] can be reversed to [y, x],
without changing the joint probability function of the diagram if

1) there is no other directed path from x to y,

2) all the adjacent predecessors of x(y), in the original diagram, become also
adjacent predecessors of y(x), in the modified diagram, and

3) the conditional probability functions attached to nodes x and y are also mod-
ified in accord with the laws of probability.

PROOF. Let wx(wy) be the set of adjacent predecessors of x(y) but not of
y(x) and wXtV be the set of adjacent predecessors of both x and y. Since arcs
represent possible dependence, we can add arcs to the diagram in order to make
the set (wxy wXJ wXyV) an adjacent predecessor of both x and y. Since there is no
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other directed path connecting x and y, there is a list ordering such that x is
an immediate predecessor of y in the list. Note also that the elements of the set
(wx, wx, wXiV) are all predecessors of both x and y in the list ordering. To obtain
the joint probability function corresponding to the first diagram we consider the
product, following the list ordering, of all node conditional probability functions.
As a factor of this product we have

p(χ I Wx,Wx,y)p(y I X9Wy,WX9y) = P(X I Wχ,Wy,Wχ,y)p(y \ X,Wx,Wy,Wx,y) =

p(x,y I wx, wy, wXiV) = p(y \ wx, wy, wXiV)p(x \ y, wx, wy, wx,y).

The first equality is due to the fact that x and wy are conditionally independent
given (wx,wXiy) and y and wx are conditionally independent given (wy,wXiy). [See
Figure 2.5.] The other two equalities follow from the product law.

Replacing p(x \ wx,wXiy)p(y \ x,wyjwXyy) in the product of the conditional
probability functions for the original diagram by p(y \ wx,wy,wXyy)p(x \ y,wx,wy,
wχ,y) w e obtain the product of the conditional probability functions for the second
diagram. This proves that the joint probability functions of the two diagrams are
equal. Finally, we notice that if there were another directed path from x to y, we
would create a cycle by reversing arc [#,y], which is not allowed. ||

In general, reversing an arc corresponds to applying Bayes' formula and the
theorem of total probability. However, it may also involve the addition of arcs and
such arcs, in some cases represent only pseudo dependencies. In this sense, some
relevant information may have been lost after arc reversal.

Figure 2.5.

Figure 2.6. Equivalent Probabilistic Influence Diagrams. Probability Nodes in
the Right Diagram are Obtained From the Left Diagram by Using Bayes'

Formula and the Theorem of Total Probability
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3. Conditional Independence. The objective of this section is to study the
concept of conditional independence and introduce its basic properties. We believe
that the simplest and most intuitive way that this study can be performed is by
using all the visual force of the probabilistic diagram.

We now introduce the two most common definitions of conditional indepen-
dence.

DEFINITION 3.1. (Intuitive) Given random quantities x, y, and z, we say that
y is conditionally independent of x given z if the conditional distribution of y given
(X)Z) is equal to the conditional distribution of y given z.

The interpretation of this concept is that, if z is given, no additional informa-
tion about y can be extracted from x. The influence diagram representing this
statement is presented in Figure 3.1.

Figure 3.1. Intuitive Definition of
Conditional Independence

DEFINITION 3.2. (Symmetric) Given random quantities x,y, and z, we say
that x and y are conditionally independent given z if the conditional distribution
of (x,y) given z is the product of the conditional distributions of x given z and
that of y given z.

The interpretation is that, if z is given, x and y share no additional information.
The influence diagram representing this statement is displayed in Figure 3.2.

Figure 3.2. Symmetric Definition
of Conditional Independence

Using the arc reversal operation, we can easily prove that the probabilistic
influence diagrams in Figures 3.1 and 3.2 are equivalent. Thus, Definitions 3.1 and
3.2 are equivalent, which means that in a specific problem we can use either one.
To represent the conditional independence described by both Figures 3.1 and 3.2
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we can write either x11y | z or ylLx \ z. This is a very general notation since z,
y, and z are general random quantities (scalars, vectors, events, etc.). If in place
of 11 we use Ĵ _, then x and y are said to be strictly dependent given z. We obtain
independence (dependence) and write xlLy (x^.y) if z is an event which occurs
with probability one. It is important to notice that the symbol JLL corresponds to
the absence of an arc in a probabilistic influence diagram. However, the existence
of an arc only indicates possible dependence. Although J\|_is the negation of 11,
the "absence of an arc" is included in the "presence of an arc."

The following proposition introduces the essence of the DROP/ADD principles
for conditional independence which are briefly discussed in the sequel.

PROPOSITION 3.3. If xlLy \ z then, for every f = f(x), we have:

(i) fA±y I z; and

(it) xlLy\(zJ).

The proof of this property is the sequence of diagrams of Figure 3.3. First
note that (by Property 2.1) to obtain the second diagram from the first we can
connect to x a deterministic node / using arc [#,/] without changing the joint
probability function. Consequently, by reversing arc [#,/] we obtain the third
diagram. To obtain the last diagram from the third we use the merging nodes
operation. Relations i) and ii) of Proposition 3.3 are represented by the second
and the third diagrams of Figure 3.3.

Figure 3.3. Proof of Proposition 3.3

As direct consequences of Proposition 3.3 we have:
Cl— If g = g(z) then xlLy \ z if and only if x±L(y,g) \ z.
C2— Let / = f{x,z) and g = g(y,z). If xlLy \ z then, flLg \ z and xlLy \

(z,f,g).
The concept of conditional independence gives rise to many questions. Among

them are the ones involving the DROP/ADD principles that we describe next.
Suppose that x, y, z, w, /, and g are random objects such that xlLy \ z, f = f(x)
and g = g(z). What can be said about the relation 11 if / is substituted for x,g for
2, (y, w) for y or (2, w) for zΊ In other words, can x, y, and z be reduced or enlarged
without destroying the 1L relation? In general, the answer is no. However, for
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special kinds of reductions or enlargements the conditional independence relation
is preserved.

First we present two simple examples to show that arbitrary enlargements of z,
y, or z may destroy the 11 relation. The forensic science example shows that ΘlLy
but ΘJ±l-(x,y) or, in the present notation, considering z a sure event and w = x,
ΘlLy I z but ΘJS^(y,w) \ z. Consider now that w\ and w2 are two independent
standard normal random variables; i.e., w\ ~ w2 ~ iV(0,1), and w\lLw2. If
x = wι — W2 and y = w\ + w2, then xlLy but certainly xJ^-y | w2. Note that if z
is a constant and w = wι9 we conclude that xlLy \ z but xJs^y \ (z,w).

Secondly, we present an example to show that an arbitrary reduction of z,
the conditioning quantity, can destroy the 11 relation. Let wχy w2j and w be
three mutually independent standard normal random quantities; i.e., wι±L(w2j w),
(WI^W^ILWJ w2±L(wι,w), Wι,±Lw2j WilLw, W2-LLw, and Wι ~ w2 ~ w ~
iV(0,1). Define x = w\ — w2 + w and y = w\ + w2 + w, and note that xlLy \ w
but xJi^y. As before, if z is a constant we can conclude that xA±y \ (z,w) but

χM-y I z.
The destruction of the JLL relation by reducing or enlarging its arguments is

known as Simpson's paradox (for more details, see Lindley and Novick, 1981).
The paradox, however, is much stronger since highly positively correlated random
variables could be highly negatively correlated after some Drop/Add operations.
For instance, let z and w be two independent normal random variables with zero
means. Define x = z + w and y = z — w and note that the correlation between
x and y is given by correlation^, y) = (/ — r)(l + r)""1 where r is equal to the
variance of w divided by the variance of z. Also, if z is given it is clear that the
conditional correlation is — 1. In order to make cor(x, y) close to 1 we can consider
r arbitrarily small. This shows that we can have cases where x and y are strongly
positive (negative) dependent but, when z is given, x and y turn to be strongly
negative (positive) conditionally dependent.

The following is another important property of conditional independence. It is
presented in Dawid (1979).

PROPOSITION 3.4. The following statements are equivalent:

(i) xlLy I z and xlLw \ (y,z);

(ii) x±L(w,y) \ z; and

(Hi) xlLw I z and xlLy \ (w,z).
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Figure 3.4. Proof of Proposition 3.4

Figure 3.4 is the proof of Proposition 3.4. Again, only the basic probabilistic
influence diagrams operations are used. The second graph is obtained from the
first by merging nodes w and y. The third graph is obtained from the second by
splitting node (to, y) and the first is obtained from the third by reversing arc [w, y].

The above simple properties are very useful in some statistical applications and
they are related to the concept of sufficient statistic. In the context of comparisons
of experiments a very general concept of sufficiency was introduced by Blackwell
(1953). We next discuss Blackwell's concept of sufficiency using probabilistic in-
fluence diagrams.

3.1. Blackwell Sufficiency. Suppose that we can perform either one of two
experiments to learn about a random quantity θ. In the first experiment, we
observe x, knowing p(x \ θ). In the second experiment, we observe ι/, knowing
p(y I θ). If, furthermore, there exists a random quantity x1 such that θ±Lx' \ y
and p(x' | θ) = p(x | 0), then we say that y is Blackwell sufficient for x relative
to θ.

In terms of probabilistic influence diagrams, we construct two diagrams, the
first with nodes θ and x connected by arc [0, x] and the second with three nodes
0, y, and x1 connected by arcs [0,y] and [y,x^. If in the second diagram, after
eliminating node y, we obtain a diagram having only two nodes, θ and x1, equivalent
to the first diagram, then we have Blackwell's concept of sufficiency. See Figure
3.5. In this sense x1 is a "garbling" of y. If we cannot observe both x and y, it is
better to observe y and use p(y \ θ) to make inferences about θ.

Figure 3.5. Blackwell Sufficiency When the
Right and Left Diagrams are Equivalent



32 Richard E. Barlow and Carlos Alberto de Braganca Pereira

DEFINITION 3.5. (Blackwell Sufficiency). A random quantity, y, is sufficient
for a random quantity, xy relative to a random quantity, 0, if there exists another
random quantity, x'y such that

(i) θA±x' I y and

(ϋ) P(x'\θ)=p(x\θ).

To conclude, we present the following example which shows the usefulness of
Blackwell sufficiency in comparing experiments.

EXAMPLE 3.6. Let x and y be two Bernoulli quantities such that, given a
parameter 0, Pr{z = 1 | 0} = 0/2 and Pr{y = 1 | 0} = 0. Suppose that we want
to learn more about the parameter 0, but we can only observe one of the random
quantities x or y, but not both. The question of which one to observe involves the
cost of observation and other considerations. For the moment let us suppose they
have the same cost. If we can prove that y is Blackwell sufficient for x relative to
0, we must prefer y since it is at least as good as x for learning about 0. We now
prove that y is in fact Blackwell sufficient for x.

Suppose that we toss a fair coin and record r = 1 if we obtain a tail and r = 0 if
we obtain a head. Define now the random quantity x' = yr. Figure 3.6 shows, on
the left, a diagram relating 0, y, r, and x'. After eliminating node r we obtain the
diagram in the center of Figure 3.6. The right diagram of Figure 3.6 is obtained
after the elimination of node y. This last diagram is equivalent to the probabilistic
diagram relating x and 0. Hence, y is Blackwell sufficient for x relative to 0.

Pr{x'=lly=l)=l/2

Pr{χ'=lty=O}=O

-HxΊ
P(θ) ber(θ/3

Figure 3.6. Proof of Blackwell Sufficiency

REFERENCES

BARLOW, R.E. and PEREIRA, C.A. DE B. (1987). The Bayesian operation and proba-
bilistic influence diagrams. University of California Engineering Systems Research
Center Technical Report ESRC 87-7.

BARLOW, R.E. and ZHANG, X. (1987). Bayesian analysis of inspection sampling proce-
dures discussed by Deming. J. of Stαt. Planning and Inference 16 285-296.

BASU, D. (1975). Statistical information and likelihood (with discussion). Sankhyά (Ser.
A) 37 1-71.



Probabilistic Influence Diagrams 33

BASU, D. and PEREIRA, C.A. DE B. (1983). Conditional independence in statistics.
Sαnkhyά (Ser. A) 45 324-337.

BLACKWELL, D. (1953). Equivalent comparisons of experiments. Ann. Math. Statist.
24 265-272.

DAWID, A.P. (1979). Conditional independence in statistical theory. J.R. Statist Soc.
B 41 1-31.

GOOD, I.J. (1961). A causal calculus I and II. Br. J. Phil. Set. XI, 305-318 and XII,
43-51.

HOWARD, R.A. and MATHESON, J.E. (1984). Influence diagrams. In Readings in the
Principles and Applications of Decisions Analysis. Two volumes. Howard and
Matheson, eds., Strategic Decision Group, Menlo Park, CA.

LAURITZEN, S.L. and SPIEGELHALTER, D.J. (1988). Local computations with probabili-
ties on graphical structures and their application to expert systems (with discussion).
J. Roy. Statist. Soc. B 50 (to appear).

LlNDLEY, D.V. and NOVICK, M.R. (1981). The role of exchangeability in inference.
Ann. Statist. 9 45-58.

SHACHTER, R. (1986). Evaluating influence diagrams. Oper. Res. 34 871-882.
SHACHTER, R. and KENLEY, C.R. (1988). Gaussian influence diagrams. Man. Set. To

appear.
WRIGHT, S. (1934). The method of path coefficients. Ann. Math. Statist. 5 161-215.

4177 ETCHEVERRY HALL INSTITUTO DE MATHEMATICA

UNIVERSITY OF CALIFORNIA, BERKELEY E ESTATISTICA

BERKELEY, CA 94720 UNIVERSIDADE DE SAO PAULO

CAIXA POSTAL 20570 (AG. IGUATEMI)

CEP 05508 SAO PAULO, S.P.
BRASIL






