
Chapter 4

First order asymptotic theory

for sequences of analytic models

1 Introduction

In this section we consider first order asymptotic theory for sequences of analytic
models defined on the same parameter space. It will be assumed that the sequence
of indices of the models at a given point tend to zero, and this condition essen-
tially guarantees the usual first order asymptotic results to hold; for example, the
asymptotic normality and efficiency of the local maximum likelihood estimator,
cf. Section 3, and the asymptotic chi-squared distribution of some commonly used
test statistics, cf. Section 4. No assumptions concerning independence or identical
distributions are needed. Such assumptions may instead be used to prove that the
index tends to zero as the number of observations tend to infinity. In particular,
we show a number of examples in Sections 6-11 and 12-13 of sequences of inde-
pendent observations for which we derive sufficient conditions for the asymptotic
results to hold. These examples are within the frameworks of the generalized linear
models, described in Section 5, and the generalized non-linear models, described
in Section 12. In Section 2 we outline the general setup for the chapter and prove
some auxiliary results.

The results proved in Sections 3 and 4 are well known from the theory of first or-
der asymptotics for independent replications; it is the assumptions needed to prove
these — partly their generality and partly their simplicity — that is of interest
here. Therefore no great effort is spent on going through the wide spectrum of
such asymptotic results, only a few basic ones are included. Instead we go through
a number of examples in Sections 5 to 14 to demonstrate the applicability of the
results to models for random variables that are independent, but not identically
distributed.

In fact, the condition that the index tends to zero is sufficiently strong to prove
much more refined results, such as higher order stochastic expansions of various
statistics. To turn such expansions into expansions of their distributions requires,
however, one further and rather awkward condition, namely a condition that gen-
eralizes Cramer's condition concerning a bound for the 'tail' of the characteristic
function. This is the condition that, i.a., excludes discrete distributions from the
classical Edgeworth expansions of densities. Discrete models are not excluded
from the present framework of analytic models, and if we wanted higher order
expansions for general sequences of analytic models we would need to impose such
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100 SECTION 4.2 Sequences of analytic models

a generalized Cramer condition on the sequence of models. While this would
definitely be feasible, the condition would usually be almost impossible to ver-
ify unless the models were within a much more restricted class. Such a class
might be a class of generalized linear models with absolutely continuous densities,
for which higher order expansions then might be proved by use of theorems of
Edgeworth expansions for independent, but not necessarily identically distributed,
random variables. Such results may be found in Bhattacharya and Rao (1976)
or in Skovgaard (1986b). The crucial simplification for these models is that the
characteristic functions for the individual, independent, observations all belong to
the same family of distributions. Therefore the Cramer condition can be imposed
on these characteristic functions, corresponding to single observations, instead of
on the characteristic function for the entire vector of observation.

The higher order asymptotic theory is deferred to the next chapter where we
restrict ourselves to the simpler class of models for independent and identically
distributed random variables. Thus, the more complicated development of higher
order expansions for more general sequences will not be considered.

2 Sequences of analytic models

In this section we describe the setup of sequences of models considered together
with a few basic technical results. The setup and notation described here will be
used throughout the chapter.

We consider a sequence of models

{(#n\»><n>);/<n>(.;/?);/? € B C V}, n e N, (2.1)

on measurable spaces E^ with underlying measures ι/(n\ Notice that the densi-
ties /(n) are assumed to be parametrized by the same parameter space B for all
n E N. This parameter space is assumed to be a subspace of a finite-dimensional
real vector space V on which we shall consider a fixed (but arbitrary) inner prod-
uct denoted ( , •) and the corresponding Euclidean norm || ||. No relations are
assumed between the sample spaces E^n\ For applications it would be reasonable
to assume that each sample space was an augmentation of the previous one and
that the models similarly were models for more and more observations, but we
have no need for that assumption in the general theory.

The differentials of the log-likelihood functions at the point y^ 6 E^n\ cf.
(2.2.1), are denoted

D[n\β) = Dklog/(»)(j/(»>;/?) 6 Linfc(F;R), (2.2)

whenever they exist. The cumulants of these differentials, from (2.3.15), are

(2.3)
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for Vj G V, kj G N, and m G N. In particular the Fisher information in the nth
model at β G B is

{\ ί? (2.4)
as in (2.3.16).

We shall be concerned with asymptotic properties of sequences of statistics with
distributions corresponding to a fixed point βo G int(i?). In the sequel we adopt,
without further mentioning, the previously used convention that if the argument
or subscript β is omitted, then evaluation at β = βo is understood. That the argu-
ment βo is sometimes included, despite this convention, is either for typographical
reasons or for ease of reference in theorems, etc.

The norm induced by the Fisher information, /(n), at βo will be denoted briefly
by H lln- Thus,

N|2n = / ( n V ) (2.5)

for v g F , corresponding to (2.5.2). Finally we recall Definition 2.5.1 of the index
of an analytic model. For the nth model this will be denoted \(n\β).

In the following sections we shall be referring to the conditions listed below,
the first two of which will be the bases of any of the theoretical results derived in
Sections 3 and 4.

Conditions 2 1.
(A) The models in (2.1) are analytic at the point βo G int(S).
(B) The indices X^ = λ^n)(βo) of the models in (2.1) at the fixed point β0

satisfy
λ ( n ) -> 0 as n -» oo. (2.6)

(C) The models in (2.1) are analytic in the neighbourhoods U^n\βo), satisfying

oo as n -> oo. (2.7)

(D) For some no G N and all n > no, the Fisher information 1^ = I^n\βo) is
positive definite.

(E) All eigenvalues of the Fisher information, relative to the fixed inner product
on V* induced by the fixed inner product on V, tend to infinity as n tends
to infinity.

Obviously (C) implies (A). Whenever (A) and (B) hold, the condition (D) does
not impose any genuine restriction on the sequence of models considered, because
Lemma 2.5.9 shows that if the index is finite we can always parametrize the model
by the projection of the parameter onto a linear subspace of V on which the
Fisher information is positive definite, without reducing the class of probability
measures considered. Thus, condition (D) simply states that the model is not
over-parametrized.

In relation to condition (C) it is helpful to introduce the sets

Bn(S) = {βe U^(βo) : \\β - ftlln < Sp-1}, (2.8)
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and their relative closures

Bn(δ) = {βe U^(βo) : \\β - βo\\n < δp-1}, (2.9)

for n € N and δ > 0, where pn = 2(ev/p)λ^n^ is the 'inverse radius of convergence'
from Corollary 2.5.4. The set Bn(δ) is identical to the set Ua(βo) in (2.3.1) with
a = δp~x for the nth model, except that we use the Fisher information norm in
(2.8). The set Bn(δ) is a sphere in V, restricted to the domain of analyticity of the
model. The condition (C) above guarantees that for any δ > 0, any sphere with
fixed radius in the Fisher information norm will eventually be contained in Bn(δ).

This assumption will be required for any kind of asymptotic result concerning
likelihood based inference in the neighbourhood of βo because the region in which
the likelihood function needs to be approximated by a Taylor series expansion
around βo must eventually include any point within a fixed distance in terms of the
Fisher information norm. In fact, condition (B) ensures the radius of convergence
of such expansions to tend to infinity, while the condition (C) guarantees the
functions to equal their Taylor series expansions in regions increasing beyond any
boundaries, still in terms of the Fisher information norm.

The condition (C) will be satisfied if all the models, for sufficiently large n,
are analytic in some fixed neighbourhood of βo in V and the condition (E) holds.
Notice that in condition (E) it does not matter which fixed inner product on V is
chosen, the important thing is that it does not change with n, so the eigenvalues in
this condition may be computed in the familiar way as the eigenvalues of the Fisher
information matrix with respect to a fixed coordinate system. Although condition
(E) is very weak in view of the asymptotic results that are to be proved, such as
the asymptotic normality of the local maximum likelihood estimator, it will not
be necessary in the general theory developed in Sections 3 and 4 to assume that
it holds. Thus, the sequence of models considered may converge towards a linear
normal model with limited information, in which case the asymptotic results hold
without condition (E) being fulfilled. The convergence to a normal linear model
will essentially be guaranteed by condition (B). Note that the estimator will usually
not be consistent for such a sequence of models, but despite that its asymptotic
normality may be proved. For the examples of the generalized linear or non-linear
type considered later in this chapter the situation is different. Here the condition
(E) will almost always be required to hold and the problem is usually what extra
conditions are needed, if any, for condition (B) to hold also.

A natural question is to what extent Conditions 2.1 depend on the particular
choice of parametrization. We consider only analytic reparametrizations of the
form (2.6.1), i.e., including analytically parametrized sub-models. Furthermore we
restrict the parametrizations to be of maximal rank, i.e., the first differential of the
mapping in (2.6.1) must map the new parameter space, W say, onto a subspace of
V of dimension equal to dim W. We know from Theorem 2.6.1 that the models in
the new parametrization are analytic if the original models are. Thus, condition
(A) implies the same condition to hold in the new parametrization also. The
same is trivially true for each of the conditions (D) and (E). For the more crucial
condition (B) it is seen from (2.6.9) that we cannot expect the same condition
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to hold in the new parametrization unless the quantity R from (2.6.8) tends to
zero as n tends to infinity. This will be the case if condition (E) holds, as is
easily seen from (2.6.8). Thus, if (A), (B) and (E) all hold then (B) holds for
the new parametrization. Similarly, conditions (C) and (E) together imply that
(C) holds in the new parametrization. In conclusion, for the majority of cases,
namely whenever condition (E) holds, the parametrization does not matter for the
asymptotic results that we are going to prove in subsequent sections, because it
will always be assumed that the models considered are analytic at /?o, and then
each of the conditions will hold for the new parametrization if it holds for the
original one.

To prove the convergence of the distribution of the score function or of the
local maximum likelihood estimator to a normal distribution we need some kind of
standardization of the variances. An estimator, /3n, say, takes values in the space
B CV which is independent of n, but its asymptotic variance, usually / ^ ( β o ) " 1 ,
depends on n and the distribution typically converges to a single point. The usual
method is to transform the statistic, βn — βo say, by a square root of the inverse
variance, e.g., by I^n\βoΫ^2- Although this method may be shown to be equivalent
to the approach chosen below, it is, in some sense, unsatisfactory because the
square root is not unique unless V is one-dimensional. It is more in line with the
development in Chapter 2 to consider β - βo as a vector in the Euclidean space V
equipped with the inner product I^n\βo). The standardized normal distribution on
this space has variance /^(βo)"" 1 and we want to consider 'convergence' to those
standardized distributions as n tends to infinity. Since these standardized normal
distributions depend on n we need a modification of the concept of convergence in
distribution. A method would be to identify these Euclidean spaces with a fixed
Euclidean space through a sequence of linear mappings, but that involves arbitrary
choices of linear mappings, equivalent to the choices of square roots above. Instead
we shall define the convergence through the convergence of any such sequence of
linear transformations for which the asymptotic variance becomes constant. Thus,
our definition of asymptotic normality below will replace the usual definition of
convergence of the standardized distribution towards a normal distribution. First,
however, we include a definition of the normal distribution, primarily to emphasize
that we allow the variance to be singular. In particular, the normal distributions
on R with variance zero are defined as the one-point distributions.

Definition 2.2. For any μ e V and positive semi-definite Γ E Sym2(F*;R), we
define the normal distribution JV(μ,Γ) on the finite-dimensional real vector space
V as the unique distribution with moment generating function

ί~exp{ί(//)-ir( ί 2 )} , teV*. (2.10)

In the following definition we use the identification of an element in Lin2(V*; R),
namely the variance Γ from above, with an element in Lin(F*; F), cf. (1.1.11). We
do not distinguish notationally between these two mappings.

Definition 2 3 The distributions of a sequence of random variables Xn on
finite-dimensional real vector spaces Vn is said to be asymptotically normal with
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asymptotic expectations μn G Vn and asymptotic variances Γn E Lii^V^; Vn), if
the distributions ofAn(Xn—μn) converges to the normal distribution iV(0, Γ) on W
for any sequence of linear mappings An £ Lin(Vn; 1 )̂ into some finite-dimensional
real vector space W satisfying the condition that for all sufficiently large n the
'transformed asymptotic variance'

does not depend on n.

Γ = AnTnAl e Lin(VT W) (2.11)

As noticed earlier this definition is equivalent to the convergence in distribution
towards a standardized normal distribution for any particular sequence of stan-
dardized random variables Γn (Xn - μn), provided that the spaces Vn are of
the same dimension and that the asymptotic variances Γn are positive definite
for sufficiently large n. Thus, the choices of square roots has no impact on this
convergence.

An important well-known fact is that to prove the asymptotic normality for a
sequence Xn according to the definition above, it is sufficient to consider sequences
of real mappings, i.e., to take W = R in the definition. We shall use this fact
without further comments in proofs in Section 3.

We conclude this section with a technical result of some independent interest,
concerning the behaviour of the log-likelihood differentials. Recall from Corol-
lary 2.5.4 and Lemma 2.4.1 that if the model is analytic at βo then

ί { } (2.12)

and

l l ^ - X ^ I U ^ f c ! ^ " 1 ^ , (2.13)

where pn = 2(e^p)\(n\ and Hn = Hn(γW;β0) from (2.4.2) and (2.4.3) is a
non-negative real random variable satisfying

E Λ exp{ίfΓn} < 7(ί>)exp{2ί>(e£)2/(l - δpn)} (2.14)

for any δ < p^ 1 , where η(p) is a constant depending only onp = dimV.

Lemma 2.4. Consider any sequence of random variables Hn, satisfying (2.14)
above for which the sequence pn is bounded. Then the βo-distribution of Πn is
tight, i.e.,

(2.15)

as A —> oo, uniformly in n. Furthermore, for any m E N, the sequence of random
variables H™ is uniformly integrable, i.e.,

^ O (2.16)
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as A —> oo, uniformly in n. Also the sequence exp{sHn} is uniformly integrable
for sufficiently small s > 0.

Proof. From (2.14) and Lemma 1.4.13 we get

>A}< -Y(p)exp{2p(e6)2/(1 - δpn)}exp(-A6)

for any δ < p"1. If we keep δ fixed with δ < αp"1 for all n, where 0 < α < 1,
and let A tend to infinity, then the right hand side tends to zero uniformly in n
because pn is bounded as a function of n.

Next, let s > 0 and δ > 0 be such that δ + s < αp~x for all n, where still
0 < α < 1. Then

Γexp(sHn)dPβo(y) < exp(-Aδ) Γexp{(s + δ)Hn}dPβo(y)
JA JA

< exp(-Aδ)7(p)exv{2pe2(δ + s)2/(l - {δ + s)pn}

which also tends to zero as A tends to infinity, uniformly in n. This shows the
uniform integrability of exp(sϋΓn). The uniform integrability of H™ for m G N
follows from the inequality

H™ <m\exφHn)s-m.

In the bounds (2.13) it would have been nice if the random variables Hn could
be chosen independently of n and still possess finite exponential moments. The
lemma states that this is "nearly so" in the sense that bounds for tail probabilities
and Hail moments', even in exponential form, hold independently of n. The basic
result showing this is, of course, the inequality (2.14) taken from Lemma 2.4.1.
With this result it is easy to provide uniform bounds for the error arising from
the truncation of Taylor series expansions of the log-likelihood function when this
is used to derive distributional approximations, as we shall see in the following
section.
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3 Asymptotic normality of the local maximum likelihood esti-
mator

For sequences of analytic models for which the indices tend to zero we demon-
strate the asymptotic normality of the local maximum likelihood estimator in this
section. By ΊocaP we mean the maximum likelihood estimator for the model re-
stricted to some neighbourhood of βo; a precise formulation is given below. Since
the assumptions concern only the behaviour of the model in such a neighbourhood
there is no way that these assumptions can lead to results concerning the be-
haviour of the global maximum likelihood estimator, i.e., the maximum likelihood
estimator for the full model. Thus, quite different techniques have to be used to
investigate whether the local maximum likelihood estimator agrees with the global
one. That subject will not be pursued here for the general case, but for the case
of independent replications the consistency of the maximum likelihood estimator
is discussed in Section 5.4.

The basic argument for the local maximum likelihood estimator /?n, a precise
version of which follows later in this section, is the following well-known simple
approximation. The first differential, D[n 0n)-> of the log-likelihood function at
βn, is zero. An expansion around βo yields

0 = D[n\β0) + D\n\βo)0n - A,) + Rn(βn), (3.1)

where Rn(βn) is the error term of this Taylor series approximation to D^ {βn)

In terms of the Fisher information norm, Rn(βn) is of order O(\^) and so is

D{

2

n\β0) + / (n)(A)) Thus, to first order we have

0 ~ D[n\β0) - I^(βo)(βn - βo), (3.2)

which implies that

βn - βo ~ / ( n )(A>rx (D[n)(β0)) (3.3)

The asymptotic normality of the score statistic D[n (βo) follows from the fact
that all its cumulants, except the variance, tend to zero in terms of the Fisher
information norm as n tends to infinity, because of the assumption that the index
tends to zero. Then the asymptotic normality of the local maximum likelihood
estimator follows from (3.3). We shall first prove the asymptotic normality of the
score statistic.

Lemma 3.1. For a sequence of models fulfilling Conditions 2.1 (A) and (B) the

βo-distributions of the sequence of score statistics Dι(βo) E V* is asymptotically

normal with asymptotic expectations 0 and asymptotic variances l(n\β0).

Proof. Consider a sequence An G Lin(y*;R) of real linear mappings, such that

ξ = A,
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say, is independent of n. According to Definition 2.3 we need to show that the
distribution of An{D[n\β0)} converges to N(0,A). The mapping An may be
identified with a vector in V, and A% with a vector in V*. Thus, A may be
identified with a non-negative real number, namely

A = I<n\βo)(Al) = \\An\\l

which is the variance, in the traditional sense, of D\ (An). The rath cumulant of
this random variable satisfies

-2Am'2 (3.4)

for any ra > 2. From (3.4) we see that for any ra > 3, the rath cumulant tends
to zero as n tends to infinity, because λ(n) tends to zero, while the means are
identically zero for all n and the variance is constantly equal to A. Thus, all
cumulants converge to the cumulants of the normal distribution iV(0, A). Since
the normal distribution is characterized by its cumulants, also in the case A = 0,
the convergence in distribution towards N(Q,A) follows. I

Notice that since any analytic reparametrization induces a linear transformation
of the score statistic, the conclusion of the lemma holds for any reparametrized
model, even if the index does not tend to zero in the reparametrized model.

For a more precise version of the argument given in the beginning of this section
we now give a precise definition of the local maximum likelihood estimator.

Definition 3.2. Any measurable function βn(δ) : E^ -> Ίϊn(δ), where ~Bn(δ)
is the set denned in (2.9), which maximizes the likelihood function

as a function ofβ G Bn(δ), is called a local maximum likelihood estimator (LMLE).

Notice_that when Conditions 2.1 (B) and (C) hold, then for sufficiently large n,
the set Bn(δ) is closed in V and with probability one an LMLE exists, but it may
not be unique and it may be on the boundary of Bn(δ). The following theorem
excludes those two possibilities with probability tending to one, and demonstrates
the asymptotic normality of the LMLE for sufficiently small δ.

T h e o r e m 3.3. Assume that Conditions 2.1 (B), (C) and (D) are satisfied. Then,
for some sufficiently small δ the following assertions are true:

(1) With probability tending to one as n tends to infinity, there is a unique so-
lution in Bn(δ) to the likelihood equation D\(β) = 0, uniquely maximizing
the likelihood function on Bn(δ).

(2) Any LMLE sequence βn{δ) ^ asymptotically normal with asymptotic ex-
pectations βo and asymptotic variances / ^ 1
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(3) Any LMLE sequence βn(δ) satisfies

(3.5)

as n —• oo.

Proof. The technique of proof follows that of Theorem 4.1 in Lehmann (1983),
Chapter 6. There the result was proved in a somewhat more restricted setting,
namely for independent identically distributed observations and for efficient max-
imum likelihood estimators, but the bounds in (2.12) and (2.13) allow essentially
the same proof to hold.

Let (αn, n £ N) be a sequence of positive numbers satisfying the conditions

c 1anPn < v < 77
o

α n —• oo as n —» oo. (3.6)

Wejirst want to show that with probability tending to one, the likelihood function
on Bn(δ) is smaller anywhere outside the sphere {\\β - βo\\ < an} than at βo. To
do this write the log-likelihood function on Bn(δ) in the form

*»>(/?)= log /<*>(»<»>;/?)

= £(">(A>) + D[n)(β - β0) - l-I^\β - β0)
2 + R[n)(β) (3.7)

where it follows from (2.12) and (2.13) that

\R[n\β)\ = Σ π ( 4 n ) - xϊn))(β -
k2 K

^Hn\\β - βot + ΣPn'2 W ~
k=2 k=3

(3.8)

where pn = 2{ey/p)\^ and Hn is the random variable from (2.13). Also, we have

\D[n)(β-βo)\<Hn\\β-βo\\n (3.9)

and hence

1 -£Hn \\β - βo\\n. (3.10)- \\\β - /?o||2 + γ^-δ \\β

From Lemma 2.4 we know that Hn/an tends to zero in probability, and therefore
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that for any β £ Bn(δ) with \\β - βo\\n > an we have

\ + Y^-6 + ̂ ) H/3 - A>||2n

The probability that the quantity in the parenthesis on the right is negative tends
to one as n —• oo. Condition 2.1 (C) shows that there is some sequence of αn 's,
satisfying (3.6), such that

{β e V : \\β - βo\\n <an}C Bn{δ), (3.11)

for all n £ N, i.e., such that the range of analyticity of the nth model contains the
closed sphere on the left in (3.11). For such a sequence it appears from above that
with limiting probability one the likelihood function on Bn(δ) will be maximized
somewhere in the interior of the sphere { \\β — βo\\n < an }, because the log like-
lihood function is smaller anywhere on the boundary of, and outside this sphere
than at its center. The maximum must be a solution to the likelihood equation

0 = D[n)(β) = D[n) - /<*>(/? - β0) + R[n\β),

where, for any v E V,

\{4n\β)Kv)\ =

ίΓαtfn \\β - \\β ~

(3.12)

If the sequence (αn) satisfies a2

npn —> 0 as n —> oo, still with an —• oo, then the

factor in curly brackets in the last expression in (3.12) tends to zero in probability

as n tends to infinity. Consequently any solution, βn say, to the likelihood equation,

satisfying \\βn - βo\\ < «n fulfils the relation

\\l(n)(βn-βo)-D[n)\\nϊ>0 (3.13)

as n —> oo, where we have used || | | n to denote the I^iβo)"1 norm on V*,
cf. (1.1.17). The result (3.13) is equivalent to (3.5) because the mapping 1^ from
V to V* is isometric with respect to the two Fisher information inner products,
/(n)(/?0) on V and I^iβo)'1 on V\
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Next we want to show that the solution to the likelihood equation is unique on
Bn(δ) with probability tending to one. We show this by showing that the second
differential of the log-likelihood function is negative definite on Bn(δ) with limiting
probability one. Analogously to the computations above we see that for any υ EV,
this second differential satisfies the inequalities

fc=2

{ fc=2

oo

/c=3 )

( 2 ί 2 \ Ί
< \ - 1 + TΛ T^PnHn + - TΓTΓ - 2 > | | t ; | | * . (3.14)

[ (1 - o)3 \ ( l - ί ) 3 ) J y

Since />n#π -* 0 in probability as n —• oo, the probability that this expression is
negative for all υ φ 0 tends to one if δ is chosen such that (1 - δ)3 > 2/3. This
concludes the proof of (1) and shows that any δ satisfying δ < y/2/3 is sufficiently
small. The assertion (3) was proved above and this together with Lemma 3.1
trivially implies (2). I

Notice that the regions Bn(δ) on which we can prove the unique maximization of
the likelihood function, increase at the rate of p~x in the scale of the standardized
distribution of the LMLE, i.e., in the Fisher information norm. For the case of
independent identically distributed observations, p~ι will be proportional to y/n
and the regions Bn(δ) will be equal to a fixed set in V.

Unlike Lemma 3.1, the result of Theorem 3.3 may well depend on the particu-
lar choice of parametrization. This is easily seen from the case when the model
for any n is identical to a fixed linear normal model. This constant sequence of
models satisfies the conditions of the theorem, but a non-linear reparametrization
will not in general lead to a normally distributed estimator. However, if Condi-
tion 2.1 (E) holds, it follows from the discussion of reparametrizations following
Conditions 2.1 that the conditions for the theorem will also be fulfilled in any ana-
lytically reparametrized model, provided that the reparametrization is of maximal
rank, so for those cases the parametrization is not important for the asymptotic
results.

In the assertions (2) and (3) in Theorem 3.3 we might replace the Fisher in-
formation l(n\βo) anywhere by l(n\βn), or by the 'observed Fisher information'
-D2 (fin), or by — 2?2 (A))> without affecting the results. Since these alterna-
tives are random it does not make sense, according to Definition 2.3 to use them as
inverse asymptotic variances, but the statement in (2) might be modified to read
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that the standardized version of βn — βo, e.g., I^φnΫ^Φn - βo) converges to a
standard normal distribution for any sequence of square roots. That we may use
minus the second differential instead of its expectation follows from (2.13) along
the lines of the majorizations used in the proof of the theorem. That we may
replace βo by βn as the argument for the Fisher information follows from the fact
that (βn - βo) converges to zero in probability in the Fisher information norm,
combined with Lemma 2.5.6 and the assumption that the index tends to zero as
n tends to infinity. By use of these results we conclude that

converges in probability to the identity mapping on V, where we have identified
the two informations with mappings in Lin(F;F*) a described in (1.1.11). The
possibility of replacing the information at βo by any of its three estimates men-
tioned above also applies to its use in the definition of the n-norm used in (3) in
the Theorem.

4 Asymptotic distributions of test statistics

It is easy on the basis of the results from the previous section to derive the
limiting chi-squared distributions of some test statistics for the simple hypothesis
β = βo. Thus, in the framework of Section 3, we may consider the three test
statistics

(4 i)

τ 2 = \\βn - βo\\l = /(n)(A>) (βn - βo)2, (4.2)

Γ3 = 2 {log/(")(y(");/3n) - log/(")(y(");/?0)} , (4.3)

referred to in the sequel as the score test, Wald's test, and the log likelihood
ratio test, respectively. In (4.2) and (4.3) we have omitted the 6 from the local
maximum likelihood estimator βn(δ) from Section 3. It follows immediately from
Lemma 3.1 that if Conditions 2.1 (A), (B) and (D) hold, then the score test statistic
T\ converges in distribution to a chi-squared distribution on p degrees of freedom,
where p = dim V. If also the condition (C) holds then Theorem 3.3 implies the
limiting chi-squared distribution of Wald's test statistic T2. In fact, it follows that
the difference Γi — T2 tends to zero in probability, so the two test statistics are
asymptotically equivalent to first order. This equivalence also comprises the log
likelihood ratio test statistic T3, because it follows from Theorem 3.3 that the
LMLE βn satisfies
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= D[n\βn - βo) - \l(n\βn - βo)2 + oP(l)

= \l(n\βn - βo)2 + op(l), (4.4)

where op(l) is a term that tends to zero in probability as n tends to infinity. Thus,
all three test statistics are asymptotically equivalent and have limiting chi-squared
distributions on p degrees of freedom.

Moreover, the asymptotic equivalences mentioned at the end of Section 3 imply

that in (4.1) and (4.2) we may replace J<n)(A)) by -D{

2

n)(β0), by -D (

2

n )(/3n),

or by /(n)(/3n), without affecting the first order asymptotic behaviour of the test

statistics.
In the remaining part of this section we shall generalize these results to compos-

ite hypotheses. As the results above, these results are well-known from likelihood
theory for regular models in the case of independent identically distributed obser-
vations. The generalization to the present setting is quite trivial on the basis of
Theorem 3.3 and the proofs are therefore given here in a somewhat abbreviated
form.

We consider first linear hypotheses. The notation introduced below follows that
in Section 2.6 in relation to Theorem 6.1. Thus, let

β : A -* int(5) (4.5)

denote a mapping from A C W into the parameter space 5 , where W is a real
vector space with dimΐy = q < oo, and assume that the mapping is a linear
mapping of full rank, i.e., that β{aχ - a2) = 0 implies OL\ - a<i = 0. Beside the
sequence of models described in Section 2, parametrized by β G 5 , we consider
the sequence of submodels

(4.6)

parametrized by a and with the densities defined by

)). (4.7)

The common misuse of the notation β as a parameter and as a mapping should
not give rise to ambiguities.

Quantities in the submodel (4.6) are denoted with a tilde, e.g.,

Dln\a) = Dklogf(n\yW;a). (4.8)

Let αo E int(A) be a fixed point with βo = β(&o) € int(i?). Again an omitted
argument implies evaluation at αo or at βo.

The Fisher information semi-norm on W is denoted || | | n , which is distinguished
from the norm || | | n on V by the fact that the argument is a vector in W. Thus,



CHAPTER 4 First order theory for sequences of analytic models 113

for w EW we have

||H|2n = / ( n V ) = I(n) ( W M } 2 ) = \\Dβ{w)\\l. (4.9)

Although Dβ = Dβ(ao) is the notation for the differential of β at αo, it should be
noticed that presently Dβ(a) is independent of α E A and equals the mapping β.

In the submodel (4.6) we denote the local maximum likelihood estimator by
άn = άn(δ) and let βn = /?(αn). We still let /?n = /3n(ό) denote the LMLE in the
original model.

Lemma 4.1. Assume that Conditions 2.1 (B), (C) and (D) hold and consider
the submodel (4.6) induced by the mapping β, which is assumed to be a linear
mapping of full rank. Then the Conditions 2.1 (B), (C) and (D) also hold for the
submodel, and for sufficiently small δ > 0 the LMLE άn = άn(δ) satisfies

\\(άn-αo)-ϊn(αo)-1(D[n))\\n^0 as n - oo. (4.10)

Furthermore, βn—βo = β(άn) — β(oto) &ndβn—βn are asymptotically independent,
and

4 ^ ( ) 1 ( M n ) ^ ) as n - 00. (4.11)

Proof. It follows directly from Theorem 2.6.1 that the submodel (4.6) is analytic
at αo and that the index at αo satisfies the inequality λ^n^(αo) < ^n\βo) since
the condition (2.6.8) holds with R = 0 for a linear mapping. Hence Condition 2.1
(B) holds for the submodel. By use of the same argument at any other point of
analyticity, and by use of the equality

which follows from (4.9), we see that also Condition 2.1 (C) holds. Finally, (D) is
seen from (4.9) to be satisfied because (Dβ) is assumed to be of full rank.

Since all the conditions hold for the submodel also, the results from Lemma 3.1
and Theorem 3.3 apply. In particular, (4.10) is the submodel version of (3.5).
Now, (4.11) follows from the computation

D[n\βn) = D[n\β0) - I(n\βn - βo) + op(l)

n - βθ) + I{n\βn ~ βn) + Op(l)

where op(l) refers to a vector for which the || ||n-norm tends to zero in probability.
This estimation of the remainder follows the line of proofs from Section 3.

The asymptotic independence between βn - βo and βn - βn follows from Lemma
3.1 together with the asymptotic equivalence of these two vectors with two or-
thogonal projections, with respect to I^n\ of D^ onto the subspace spanned by
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(Dβ) and its orthogonal complement, respectively. This asymptotic equivalence
with the orthogonal projections will not be proved here, but is given in the proof
of Theorem 4.2 below. |

We want to consider the hypothesis β € β(A), i.e., that the parameter β be-
longs to the subspace parametrized by a G A. We shall establish the asymptotic
equivalence and the limiting chi-squared distribution of the three test statistics

\\D[n\βn)\\l =

||/Jn - βn\\l = I(n\βn) {(/§» - βnf) (4.13)

2 {log/<n>(y<w>;/?n) - log/<n>(y<n>;)§»)} , (4.14)

which are natural generalizations of (4.1), (4.2) and (4.3).

Theorem 4 2. Under the conditions of Lemma 4.1 the three test statistics in
(4.12), (4.13) and (4.14) are asymptotically equivalent, i.e., their pairwise differ-
ences tend to zero in probability. Their (common) limiting distribution as n tends
to infinity, is a chi-squared distribution on p — q degrees of freedom.

Proof. Consider first the modified forms of (4.12) and (4.13) obtained by replac-
ing J(n)(/3n) by J(n)(A)) These two tests will be referred to as Tx and T2 in the
sequel. The asymptotic equivalence of 2\ and T2 follows immediately from (4.11)
in Lemma 4.1.

Define the linear mapping P<n) : V* -> V* by

P<") = J(n)(/?o) o (Dβ) o /(^(αo)" 1 o (Dβf,

which is the orthogonal projection with respect to the inner product
onto the subspace spanned by (Dβ), and notice that

p(n)

where op(l) here, as in any vector equation in the sequel, denotes a term that
tends in probability to zero in the norm || | | n On combination with (3.5) we see
that

D(n) _ p ( n )

and hence that

= 2D[n\βn - ~βn) ~ I{n)(βo)0n - βof + I{n)(βo)Φn - βo)2 + op(l)
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- P ( n ) (M n ) ) }2 + op(l) (4.16)

because P^ is a projection with respect to /^(/ϊo)""1- Since D^ is asymptot-
ically normal with asymptotic expectation 0 and asymptotic variance I^n\βo) it
follows that the last expression in (4.16), except for the error term, as the squared
length of the orthogonal projection of D^ onto a p - q dimensional subspace,
is asymptotically chi-squared distributed with p - q degrees of freedom. Thus,
the limiting distribution of the log likelihood ratio test (4.14) is established. Its
asymptotic equivalence with T<ι follows directly from (4.15) together with (4.16).
Finally, the fact that

λ ( n ) P n - / ? θ | | n ^ 0 as n - 0

together with Lemma 2.5.6 shows that TΊ and Ύ2 are asymptotically equivalent to
the test statistics in (4.12) and (4.13). I

In the test statistics (4.12) and (4.13) we may replace I^n\βn) by either of

the quantities /(n)(A)), I{n)(βn), -D{

2

n\β0), -D{

2

n\βn), or -D{

2

n)(βn) without
affecting the asymptotic properties. The first of these equivalences has already
been used in the proof and the others are easily verified.

For the more general problem of testing a non-linear hypothesis, or more pre-
cisely a hypothesis given by a submodel as (4.6), generated from an analytic
mapping of the form (4.5), we need stronger conditions to prove the results in
Lemma 4.1 and Theorem 4.2. Obviously, Conditions 2.1 (B), (C) and (D) are
not sufficient because these are satisfied by a sequence of linear normal models
with bounded information. We might, for example, consider a constant sequence
consisting of a fixed linear normal model, the same for each n. A non-linear hy-
pothesis in this model would not, in general, lead to the results of the lemma and
the theorem. To obtain these results, we only need the extra condition that the
index λ^n^(αo) for the submodel tends to zero as n tends to infinity. Since this is
assumed to be so for the full model, a comparison with the inequality (2.6.9) from
Theorem 2.6.1 shows that it will be sufficient to demonstrate the existence of a
sequence of constants Rn > 0 tending to zero, such that

\\Dkβ(a0)(wk)\\n < k\Λj^HDflαoXuOH* (4.17)

for all k > 2. The natural supplementary condition, namely that all eigenvalues
of the Fisher information, relative to a fixed inner product, tend to infinity, is not
sufficient to guarantee the existence of such a sequence. The problem is that the
eigenvalues may tend to infinity at different rates, e.g., such that for some fixed
w 6 W the ratio

\\D>β(ao)(w>)\\n/\\Dβ(ao)(w)\\l
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is unbounded. A sufficient, but far from necessary, condition that ensures i2n, and
hence λ(n)(αo), to tend to zero, is that all eigenvalues of the Fisher information
tend to infinity at the same rate, i.e., in such a way that their ratios stay bounded.
With that extra condition it is easy to modify the proofs above and deduce that the
results in Lemma 4.1 and Theorem 4.2 hold for the non-linear hypothesis. Notice
that this extra condition is not related to which particular non-linear hypothesis
is being tested. While the condition of the same rate of increase of the eigenvalues
may seem quite strong in the present framework, it is certainly weak enough to
cover the case of independent replications, in which case all the eigenvalues are
proportional to n. We shall not go through the proof of this modified theorem,
the basis of which is established in Section 3.

The results in this and the previous section are closely related to the fact that
if the index of a sequence of analytic models tends to zero, then the sequence
of experiments converge, in a neighbourhood of that point, towards a Gaussian
shift experiment, in the sense of LeCam (1986). More precisely, it is not hard to
verify that the LAN condition in Definition 1 from LeCam (1986, Chapter 11, Sec-
tion 7) holds at the point considered. Our conditions, and the type of convergence
obtained here, is, however, stronger than those considered by LeCam. Thus, the
convergence of the index to zero allows an expansion of not only the log-likelihood,
but also of its derivatives. While certain sequences of experiments are therefore ex-
cluded from the theory given here, the conditions permit the derivation of stronger
results, in particular in the sense of higher-order expansions as we shall see in the
next chapter. The fact that the LAN condition from LeCam (1986) holds is, in
turn, partly related to the fact that the two sequences of probability measures with
densities

respectively, are mutually contiguous (LeCam, 1986, Chapter 6, Section 3, Defi-
nition 4) whenever I^n\v\) is bounded, still provided that the index at β0 tends
to zero. This may easily be seen from the bounds in (2.12) and (2.13) together
with the tightness of the sequence Hή(Y^) proved in Lemma 2.4, and by use
of Proposition 4 in LeCam (1986, Chapter 6, Section 3) which states the mutual
contiguity of any two sequences for which any convergence to zero in probability of
a sequence of random variables with respect to one of the sequences of probability
measures implies the same convergence to hold with respect to the other sequence
of probability measures.
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5 Generalized linear models

This section contains the basic notations and results for the class of generalized
linear models based on an analytic model. The notation introduced in this section
will be used in the following sections which contain examples of asymptotic results
for such models. The class is somewhat bigger than is usually implied by the
notion of generalized linear models, cf. McCullagh and Nelder (1983).

Let g(y\ φ,φ) be a family of densities parametrized by two (vector) parameters
φ e Φ C W and φ e Φ C V2. Assume that Y^ = (Yu..., Yn) where Yu..., Yn

are mutually independent and the density of Y{ with respect to some underlying
measure on the sample space is

ΦuΦ) (5.1)

where
Φi = ai(θ) (5.2)

is a known linear function of the vector parameter θ. Typically the linear mapping
ai is given in terms of a matrix [aί\jk of covariates for the ith observation YJ. In
that case the coordinate version of (5.2) might be written

M<% = N;*0U (5.3)

where sub- and superscripts outside square brackets refer to coordinates, and sum-
mation over k on the right side is implied by the summation convention.

Often, and in all our examples, the parameter φ is one-dimensional and the
index j then disappears from the expression above. We may then write

ai(θ) = [oilifί]! + + [ai]r[θ]r £R = W, (5.4)

where θ = ([0]i> ?[0]r) 1S a coordinate representation of θ and dimVΊ = r.
Typically the first covariate [α, ]i will be 1 such that [θ]ι is the intercept in the
model. For this case of one-dimensional ^-parameter we let An denote the design
matrix given by

( [oi]r

: : : (5.5)and [A]i the row vector equal to the ith row of An.
The parameter φ is the part of the parameter which is common to all of the

observations. Typically this is a one-dimensional parameter such as the variance
for models based on the normal distribution. In some cases there is no 0-parameter,
e.g., for log-linear models based on the Poisson distribution. Although such models
might be incorporated into the framework of (5.1) by allowing vector spaces of
dimension zero we prefer the more natural approach of simply omitting the φ-
parameter. Some obvious modifications of notations and results in the sequel are
required for this case.
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As described here any parametric model may be formulated as a generalized
linear model in a trivial sense with n = 1, but the concept is, of course, useful only
when it leads to a simplification of the problem at hand. For an infinite sequence
of independent random variables YΊ, Y2,... the class of generalized linear models is
a genuine restriction of the class of parametric models that permits the derivation
of asymptotic results.

For our purpose we restrict the class further by assuming that the model

{giv;Ψ,Φ) ΛΨ,Φ) € Φ x Φ C W X V2}, (5.6)

which we shall denote the reference model, is analytic on Φ X Φ, and that

a{ : Θ -> Φ, (5.7)

where θ G Θ C Vi, and Vi, V2 and W are finite-dimensional vector spaces. It then
follows immediately from Theorem 2.6.1 and Theorem 2.5.3 that the model

{fin)(y{nh,θ,φ);(θ,φ) eθxΦCVixV 2} (5.8)

is analytic at any point of its domain, where

f{n)(y(n) AΦ) = f[f(vϊ,θ,φ) = f[g(yi Mθ),φ). (5.9)
t = l i = l

If it is also assumed that the index of the reference model in (5.6) is finite through-
out its domain then the same two theorems imply that the index of the model (5.8)
is finite everywhere.

A somewhat more important problem is whether the indices from a sequence
of models of the form (5.8) tend to zero as n tends to infinity. This problem is
explored in the following theorem.

We denote the index of the reference model by \{ψ,φ) while \(n\θ, φ) denotes
the index of the model for Y^n\ Similarly, let I(φ, φ) denote the Fisher information
in the reference model, Jj(0, φ) the Fisher information for the model for the single
observation Yi, and for (vi,ι?2) G Vi x V2 we then have

(5.10)
t = l

which is the Fisher information in the model for Y^n\

Theorem 5.1. Assume that the reference model in (5.6) is analytic with a
finite index \(φ,φ) on Φ x Φ. Then the index \<<n\θ,φ) of the model in (5.8) for



CHAPTER 4 First order theory for sequences of analytic models 119

Yi,..., Yn tends to zero as n tends to infinity if both of the following conditions
hold:

(1) The smallest eigenvalue of the Fisher information l(n\θ,φ), relative to a
fixed inner product on V\ x V2, tends to infinity as n tends to infinity.

(2) Uniformly in (vι,v2) G V\ x V2, (vχ,v2) Φ (0,0), we Λave

\\φnA){ln{ΘA){vUV2)
2}lI^\θ,φ){v1,V2f - 0 (5.11)

as n —• oo, where ψn = αn(0), cf (5.2).
Provided that (1) holds, then the condition (2) holds if the sequence \(φi, φ),
i = 1,2,..., is bounded and the following condition holds:

(3) Uniformly in (vι,v2) G V\ x V2, {v\,v2) φ (0,0), we have

In(θ,φ)(vuv2)
2/I^n\θ,φ)(vuv2)

2 -> 0 (5.12)

as n —> oo.

Proof. From Theorem 2.6.1 it is known that the index of the model for a single
observation Yi, say, is bounded by \(φi,φ). Let υ = (vijV2) φ (0,0) and define

xi(v) = \\ψi,φ)Ii(θ,φ)(vι,v2)
2

and
Sn(v) = I^\θ,φ)(v2).

Condition (2) states that there is a sequence (£n)> say, such that for all v we have

Xn(v)/Sn(υ) < en -> 0

as n —• oo. We want to show that

α2

n = sup{ Xi(υ)/Sn(v) : υ E V, 1 < i < n }

tends to zero as n tends to infinity, in which case the result that the index tends
to zero will follow from Theorem 2.5.3. Note that αn here as throughout the proof
is the quantity from (2.5.14), not related to the sequence of linear mappings from
(5.2). Let 6 > 0 be given and choose m such that €j < δ for all j > m. Next,
choose n such that

Sm(v)/Sn(v) < 6

for all υ € V. It follows from condition (1) that this is possible. Then,

Xi(v)/Sn(v) < €iSi(υ)/Sn(v)

< sup{€j :jEN}Sm(v)/Sn(v) + 6Si(υ)/Sn(υ)

< sup{ €j : j 6 N }δ + δ
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from which it is seen that an —• 0 as n —• oo.

The statement that condition (2) follows from the conditions (1) and (3) when

λ(Φijφ) is bounded is trivially verified. |

Although the last version of the theorem with λ ( ^ , φ) bounded and conditions
(1) and (3) fulfilled is a trivial consequence of the first version, it is useful in
some situations because it reduces the problem to an investigation of the Fisher
information only. For this all eigenvalues must tend to infinity, which is definitely
a weak requirement if asymptotic results are to be proved, and the condition (3)
bears some similarity to the Lindeberg condition in the sense that it states that no
single observation may contribute an asymptotically non-negligible amount to the
variance of the score statistic. The condition that the indices \(φi,φ) are bounded
is, for example, fulfilled either if the covariates take values in a compact subset of
the parameter space, such that the sequence φi also stays within a compact set, or
if the model is a location model, with or without an unknown scale parameter, and
φ is the location parameter, as we saw in Sections 3.4 and 3.6. The condition may
also be satisfied for more general transformation models but we shall not explore
such possibilities here.

The theorem provides conditions for the index of the model to tend to zero as n
tends to infinity. If all eigenvalues of the Fisher information tend to infinity, i.e.,
if the condition (1) of the theorem, or equivalently Condition 2.1 (E), holds, then
the Conditions 2.1 (A)-(E) all hold and all of the asymptotic results in Sections 3
and 4 apply. Thus, the main difficulty in the application of these results is to derive
conditions in terms of the covariates, implying that the conditions (1) and (2) of
the theorem hold.

Notice that if the Fisher information {l(n\θ,φ)}(υι, V2)2 tends to infinity for
any fixed non-zero vector (^1,^2) in Vί X V2 then it follows that all eigenvalues of
this Fisher information tend to infinity. This follows from Dini's theorem which,
briefly speaking, states that monotone convergence of continuous functions on a
compact space, here the unit sphere, is uniform.

6 Linear normal models with known variance

In the setup of the generalized linear models from Section 5, consider the case
where the reference distribution is normal, i.e.,

g(y; φ) = (2πσ2)-1'2 exp{-|[(» - φ)/σ]2}, y G R, (6.1)

where σ > 0 is known, φ £ R, and there is no (^-parameter. This is, of course,
a usual linear normal model with known variance, for which we know that the
distributional results for estimators and test statistics considered in Sections 3
and 4 are exact. This type of model is included here for comparison with other
models.
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The Fisher information in the reference model is I(ψ) = σ~2 and for the model
for y(") it is

(t,)2, (6.2)

where v eVi. In terms of the design matrix, the matrix representation of /(n) is

where A% denotes the transpose of An. The log-likelihood function is concave
and the maximum likelihood estimator θ is the unique solution to the likelihood
equation, provided that the Fisher information is non-singular. The distribution
of θ is then exactly normally distributed with mean ΘQ and variance /^(flo)""1-
This well-known result may be deduced from the fact that the index of the model
is exactly zero. More precisely, λ(ψ) = 0 for all ψ, and since the mapping from θ to
φi is linear it follows from Theorem 2.6.1 and Theorem 2.5.3 that also λ<n)(0) = 0.

For the estimator to be consistent we need the requirement that all eigenvalues
of the Fisher information, or equivalently of the matrix A^An, tend to infinity as
n tends to infinity.

For other generalized linear models this condition will be a minimal requirement
for the derivation of any asymptotic result, as may be expected from Theorem 5.1,
and we therefore state it as a condition below.

Condition 6.1. The sequence of linear mappings α; : V\ —• R satisfies

as n —• oo. In terms of the design matrix this means that all eigenvalues o
tend to infinity as n tends to infinity.

7 Linear normal models with unknown variance

Consider again the model (6.1) but now with unknown variance φ = σ2 > 0.
Observe that since the model is still a linear exponential family, when suitably
reparametrized, the maximum likelihood estimator is again the unique solution to
the likelihood equation and agrees therefore with the local maximum likelihood
estimator from Section 3. For the reference model we have the Fisher information

I(φ,φ)(w,v2)
2 = w2/φ + v2/(2φ2), (7.1)

where (w, ^2) G W X Vi = R X R. In matrix notation this information takes the

more familiar form
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The main feature of this information, viewed in the general context, is that it does
not depend on the parameter φ, while the orthogonality of the φ and φ parameter
makes things a little easier. Direct computations along the lines shown in Section 9
for the Gamma distribution show that the index X(φy φ) is constant as a function
of both parameters, and that (less important)

2y/2<λ(φ,φ)<3y/2. (7.3)

It is conjectured that, in fact, the lower bound applies, but that has not been
proved.

For the generalized linear model based on this reference model the Fisher infor-
mation is given by

(7.4)

where v\ £ V\ and v<ι G V2 = R. In terms of block matrices this is written

(*A\A" 1 ) . (7.5)

Thus, all eigenvalues of the information tend to infinity if and only if Condition 6.1
is satisfied. To apply Theorem 5.1 we furthermore need the following condition.
Recall the notation [A]i for the row vector of covariates for the ith observation.

Condition 7.1. The linear mappings in (5A) satisfy

[AUAUnY^l -> 0 (7.6)

as n —• 00.

It is easily verified that this condition implies the condition (3) in Theorem 5.1
which then can be applied to verify that all the asymptotic results from Sections
3 and 4 hold. To summarize, this conclusion holds under the assumption that
Conditions 6.1 and 7.1 hold for the covariates.

The condition 7.1, or equivalently the condition (3) in Theorem 5.1, states that
in the limit no non-negligible contribution to the Fisher information stems from
a single observation. From the well-established theory for the normal models we
know that this condition is, in fact, not necessary here; the asymptotic normality
of the maximum likelihood estimator is implied by the fact that the number of
observations tends to infinity, even when the variance is unknown. For the con-
sistency of the estimator we need Condition 6.1. Thus, the asymptotic results are
exactly the same as for the case of known variance, although the distribution of
the estimator is no longer exactly normal. That Condition 7.1 is not necessary
here, although it is needed to apply the general results, is related to the special
structure of this model in terms of the 'directional index' as defined in Section 2.5,
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cf. the comments following Corollary 2.5.4. This directional index is zero in any
^-direction, i.e., in the direction of any vector with ^-coordinate equal to zero,
due to the fact that the linear normal model with known variance has index zero.
That the index is not zero in the ^-direction does not matter because the Fisher
information for the ^-parameter tends to infinity independently of the covariates.
A precise version of this argument, which requires more careful considerations re-
garding mixed cumulants for the two kinds of 'directions', would require a much
more elaborate development of the theory involving directional indices. This de-
velopment has been avoided here because it does not seem to be of much use in
'realistic' examples, i.e., in examples where the answer is not known beforehand.

8 Location models with fixed unknown scale

In this section we consider generalized linear models for which the variable pa-
rameter φ is a location parameter and the fixed parameter φ is a scale parameter.
Thus, the reference model (5.6) has densities

on R, where h is assumed to be a strictly positive density function, cf. (3.6.11).
Conditions were given in Section 3.6 for such a location and scale model to be
analytic. In the present section we work from the assumption that it is analytic;
otherwise no restrictions will be imposed on the density function h.

From Lemma 3.6.4 we know that the index λ(ψ,φ) of the reference model is
constant. From Theorem 2.6.1 it then follows that the same is true for the index,
λj(0, φ) say, of the model for the single observation Yi, since this is a linearly
reparametrized version of the reference model.

As in Section 3.6 we introduce the standardized variable

U = ^ (8.2)

which has a distribution that is independent of the parameters when the distribu-
tion of Y is the reference distribution based on (ψjφ). In terms of this random
variable we may write the Fisher information matrix for the reference model as

λ(
φ2 y_E{UD2logh(U)} -E{U2D2logh(U)} -

as is easily seen by differentiation of the log-density. We know from Lemma 3.6.3
that this Fisher information is positive definite and hence defines a norm on R2.
Since any two norms on a finite-dimensional vector space are equivalent there exist
two constants, c and C say, such that for any vector (s,t) G R2 we have

)(M)2<C||(M)||2 (8.4)
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where || || here denotes the usual Euclidean norm on R2. From (5.10) we then see
that for any v\ E V\ and υ2 € V2 = R we have

In{θ,φ){vι,V2)2

 < (C\ {an(vi)}2 + v2

2

τ(n)(ύ jΛί X2 - I "c" / Yίa(υ ) \ 2 + nv2

where the notation In is recalled to denote the information for the nth observation
alone.

It is now immediate to apply Theorem 5.1, the version based on the conditions
(1) and (3) to conclude that the asymptotic results of Sections 3 and 4 hold for
this type of model, if Condition 6.1 and 7.1 both hold. Thus, for example, the
asymptotic normality of the LMLE for any of the models considered here follows
under these two conditions on the covariates. It does not follow for this type of
models that the LMLE agrees with the global maximum likelihood estimator, and
it is indeed not true in general as is known from the example based on the Cauchy
distribution.

9 The Gamma distribution with fixed unknown shape

Consider again a generalized linear model as described in Section 5, this time
with the reference distribution being the Gamma distribution with densities

g{y- φ,φ) = Γ(^)-V" V " 1 exp{-y/φ}, y > 0, (9.1)

where the parameters φ and φ are both positive. Since the mean of this distri-
bution is φφ we are considering models for which the means are linear functions
of unknown parameters, while the shape parameter is fixed and unknown. This
type of model is described in McCullagh and Nelder (1983), Section 7.3. Apart
from being of interest in themselves these models occur, i.a., in connection with
variance components models.

For once, in this example, we go fairly thoroughly through the calculations
leading to conclusions concerning the index of the reference model. Once this is
done, the step to the asymptotic results in the generalized linear models based on
this distribution is quite small.

From (9.1) we have

logg(y;φ,φ) = -logΓ(0) - φlogφ + (φ- l)\ogy - y/φ, (9.2)

the differentials of which, with respect to the two parameters, are

Dφ\ogg(y;φ,φ) = - | + X = ±(-φ + u) (9.3)

and

Dφ\ogg{y;φ,φ) = -DlogT(φ) + log(y/φ) = DlogT(φ) + log«, (9.4)
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where u = y/ψ. The higher order differentials, with k > 2, are given by

= -(-φ)~k{kl u-(k- 1)! φ} (9.5)

and
Dk

φlogg(y;ψ,φ) = -£>fclogΓ(^), (9.6)

while all the mixed differentials are noticed to be non-random. Since all these
differentials are affine functions of the statistic (ί7,logί7), where U = Y/ψ follows
a Γ-distribution with scale parameter ψ = 1, we need the joint cumulant generating
function for this two-dimensional statistic.

Lemma 9.1. The cumulant generating function of (?7,log U) is

logEexp{sU + tlogU} = logT(φ + t) - \ogT(φ) - (φ + t)log(l - s), (9.7)

for s < 1 and / G R, wiiere ί7 follows a Γ-distribution with scale parameter ψ = 1
and shape parameter φ, cf (9.1).

Proof. Trivial.

By differentiation of the cumulant generating function we obtain the following
expressions for the cumulants of (U,logU) :

(m-l)lφJ (9.8)

cumm{log U} = Dm logT(φ), (9.9)

= (m- 2)!, (9.10)

for m > 2, where the number of EΓs that appear in the last cumulant expression is
m— 1, and all mixed cumulants with two or more log ί/'s are zero. On combination
with (9.3) and (9.4) we see that the Fisher information is given by

b)2 = α2φ/ψ2 +2αb/ψ + b2D2logT(φ), (9.11)

for (α,6) 6 R2. In matrix notation this Fisher information becomes

(Φ/Φ2 VΨ \
\/φ D2logT(φ))

In the computation of cumulants of higher order, non-random terms may be dis-
regarded. Thus, we consider terms of the form

= αkD^logg(Y]ψ,φ) + bkDk

φ\ogg(Y\ψ,φ) + non-random terms

= _fcf (-.α/ψ)kU + bk(\og l/)/{tei} + non-random terms. (9.13)
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Now consider a fixed sequence (&χ,... ,fcm) E N m with m > 2 and Σkj > 3 and
consider the joint cumulant from (2.3.15) of the log-likelihood differentials, still
working in the reference model. From (9.13) and (9.8)-(9.10) we see that if we let
J = {j:kj = 1}, then

+ Σ

logtf,...,&mlogί/}

cum{6jlogU,U,... ,U}

Notice that this expression depends on φ and on the vectors («j,δj) only through
the vectors (aj/φ,bj), and that the same is true for the Fisher information in
(9.11). Hence, it follows that the index \(φ,φ) is independent of ψ, because each
of the expressions of the two sides of the inequality in (2.5.3), for a particular φ
and particular vectors (βj,6j), is matched by the corresponding expressions with
φ = 1 and each aj replaced by aj/φ. That the index is finite follows from the fact
that no linear combination of U and log U has a one-point distribution, implying
that the Fisher information in (9.11) and (9.12) is positive definite.

Now that we know that the index λ(φ, φ) is constant, and hence bounded, as
a function of φ9 the verification of the conditions (1) and (3) in Theorem 5.1
will suffice to prove that the index λ(n) for the generalized linear model tends
to zero, and hence that the asymptotic results from Sections 3 and 4, relating
to the local maximum likelihood estimator, hold. These two conditions can be
simplified somewhat more. In fact, we show below that they are equivalent to
the same two conditions for the model with known shape parameter φ. Thus, the
asymptotic results for the generalized linear models with unknown shape parameter
are derived under exactly the same conditions as for the corresponding model with
this parameter known.

To see this, notice first that we may rewrite the Fisher information (9.11) as

, (9.15)

where (α,fe) € R2 and Aψ = 1(1, φ) is the inner product on R2 given by

Aφ(s,t)2 =s2φ + 2st + t2D2\ogΓ(φ), (s,t)eR2, (9.16)
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with the matrix representation

(f(f <••">

From the equivalence of any two norms on R2 we know that there exist two con-
stants c > 0 and C > 0 such that

c\\(s,t)tf<Aφ(s,tγ<C\\(s,t)\\2, (9.18)

where ||(s,/)||2 — s2 +t2 is the square of the usual Euclidean norm on R2. For the
generalized linear model we see from (5.10) that for any v\ G V\ and V2 G V2 = R
we have

{θ),v2Y (9.19)
ΐ = l

and hence

Thus, l(n\θy φ)(vχy V2)2 obviously tends to infinity as n tends to infinity, if V2 Φ 0.
Therefore condition (1) in Theorem 5.1 reduces to the condition that the infor-
mation on θ tends to infinity, φ being regarded as fixed. This condition may be
expressed

-* 00 as n —»• 00 (9.20)

for all υ = ([υ]u..., [υ]r) G V with υφO, cf. (5.4).
For the special case of a simple linear regression, i.e., with r = 2, [αt ]χ = 1, and

one covariate [a^2 = xt , say, this reduces to the condition

έ{j^H}2-oc - n̂ oo (9.21)

for all ([v]i,[v]2) φ (0,0). Notice that the denominators in (9.20) and (9.21) equal
φi and must be positive by assumption.
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Concerning condition (3) in Theorem 5.1 we see in a similar way that this holds
if and only if the corresponding condition holds for the model with known φ, i.e.,
if

0 as n -> oo (9.22)

uniformly in υ E V, v φ 0. In the general case (9.20) may hold but (9.22) fail,
heuristically speaking, e.g., if the length of the vector ([αn]i5 > [a>n]r) increases
with n while the angle between this vector and the vector ([#]i,..., [#]r) decreases
in such a way that the inner product of these two vectors, i.e., the denominator
in the nth term in (9.20), is constant. In such a case the numerator may "blow
up" such that the nth term of the sum constitutes a non-decreasing fraction of the
sum in (9.20).

However, for the simple linear regression, corresponding to (9.21), this cannot
happen if we impose the natural conditions [θ]ι > 0, [0J2 > 0, and X{ > 0 for all i.
In that case we have

H i + Xn[v]2

[Θ]l+Xn[θh

which is bounded in n. In conclusion, for the simple linear regression with positivity
conditions on the ^-parameters and on the covariates, the condition (9.21) suffices
to establish the asymptotic results for the local maximum estimator from Sections
3 and 4. For the general case the conditions (9.20) and (9.22) must both be required
to hold for the same conclusions to be valid.

10 Log-linear Poisson models

Consider the Poisson distribution with mean μ > 0, given by the point proba-
bilities

g(y; φ) = P(Y = y) = ̂ e " " , μ = e*,y e N, (10.1)

where φ = logμ denotes the canonical parameter in this exponential family of
distributions. The log-linear Poisson models are the generalized linear models as
described in Section 5, based on this reference distribution with no (^-parameter.
Thus, φi is a known linear function of the unknown parameter θ € Θ C V\.
Since this generalized linear model is a linear exponential family it follows that the
results obtained for the local maximum likelihood estimator in Sections 3 and 4
apply to the (global) maximum likelihood estimator whenever the conditions for
these results hold.

Direct computations give

Dφ\ogg(Y;φ) = Y-e* (10.2)

while higher-order derivatives are non-random. It follows that all cumulants of log-
likelihood differentials of the form (2.3.15) with m > 2 vanish if any differential
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of order kj greater than 1 is involved, and consequently we need only consider
the cumulants of the score function in (10.2) to compute the index X(φ) in the
reference model.

The cumulants of Y are all equal to μ = exp(φ) and therefore we have

cumm{Dφlogg(Y;φ)} = e*, m > 2. (10.3)

In particular, the Fisher information is the variance

I{φ) = e*. (10.4)

From Definition 2.5.1 we then see that the index of the reference model is

X(φ) = exp{-<0/2} sup Urn - 1)! -Vί^-a) 1 1 eχp{-V>/2}. (10.5)

Returning to the generalized linear model with φi = aiiβ) as in (5.2) we obtain
the Fisher information

(10.6)

where v e V = VΊ Theorem 2.5.3 now gives the following bound for the index
λ(n>(0):

λ < n ) ( 0 ) 2 < s u p { λ ( ^ ) 2 [Ii(θ)(v2)} I I ^ ( θ ) ( v 2 ) : l < i < n , v e V , v ^ 0 ]

1 n

= - sup{ α, (t,)2 / Σ aΛv)2 exp{αj(0)} • 1 < » < »,» € V, υ φ 0 }.

(10.7)

The validity of the asymptotic results for the maximum likelihood estimator now
follows under the single condition that this quantity tends to zero as n tends to
infinity. The supremum in (10.7) is exactly the quantity d] from Haberman (1977),
Section 2, and his Condition 2 for this type of model states accordingly that dt
tends to zero, on the basis of which he proved similar results. The ease with which
the condition was derived above cannot be compared directly with the proof in
Haberman's paper since his results were adapted to models for which the dimension
of the parameter space may change with the sample size.

Just as it was shown in the proof of Theorem 5.1 the supremum in (10.7) tends
to zero as n tends to infinity if and only if

Γ=i ai(vY exp{αt (θ)}
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uniformly in v φ 0 as n —• oo. For this to be the case we must assume, as usual,
that the denominator in (10.8), i.e., the Fisher information from (10.6), tends to
infinity for any fixed v φ 0. This assumption is, however, not sufficient to imply
(10.8). For example, (10.8) may be violated if a;(0) stays bounded while at(v)
tends rapidly to infinity.

Instead of basing the results concerning the index on the inequality (10.7), de-
rived by use of Theorem 2.5.3, we may in this case derive an expression for the
index A^n) directly from its definition. Proceeding from (10.3) and (10.4) we see
that for the generalized linear model we have

n

cumm{D[n\φ)} = ΣaWexpiφi}, (10.9)

for any m > 2. Hence, the definition in (2.5.3) of the index of this model becomes

λ ( n )(0) = sup j Λm(t;;0)1 / ( m"-2 ) : m > 3,υ G V> ̂  0 j , (10.10)

where

™ π ; ( ro-1) !

'(10.11)
From this expression it is fairly easy to derive sufficient conditions on the sequence
of covariates for the index to tend to zero. It is a delicate matter, however, to
determine precisely for which sequences the index tends to zero, even in the case
of a simple linear regression. In this case, with only one covariate, it takes some
effort to provide a sequence of covariates such that the Fisher information tends
to infinity but the index does not tend to zero.

11 Logistic regression

As a final example of a generalized linear model in the framework of Section 5,
consider the reference model with point probabilities

where φ = log{p/(l - p)}, 0 < p < 1. Again the model for ψi = aι{θ) is linear in
θ G Θ C V\ and there is no ^-parameter. The results and methods for this type of
model are quite similar to those for the log-linear Poisson model and we include
it here mainly because it is of some independent interest. The basic scheme of
development is exactly the same as for the Poisson case and is therefore described
less detailed here.
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The first differential of the log-density in the reference model is

Dφlogg(Y;ψ) = Y- e*/(l + e*)9 (11.2)

which has the cumulants

cumm{D^logg(Y;φ)} = cumm(Y) (11.3)

for m > 2. The Fisher information is

I(ψ) = var(y) = p(l - p) = e*/(l + e*)2. (11.4)

For the higher order cumulants we show below that

|cumm(Y)| < e(e - l)(m - 1)! var(Y) = e(e - l)(m - l)\p(l - p)9 (11.5)

for m > 3, from which we see that the index λ(^) satisfies the inequality

= e ( e - l ) { e ψ / ( l + e ψ ) 2 } " 1 / 2 . (11.6)

It is not hard to improve on the constant e(e — 1) but that is not of importance
here.

A proof of (11.6) starts from the cumulant generating function for Y — p,

κ{z) = logEexp{z(y - p)} = logO>e* + (1 - p)} - zp, ze C, (11.7)

the first derivative of which is

This is an analytic function without singularities on the disc \z\ < 1. Therefore
Cauchy's inequalities tell us that

\Dmκ(0)\<(m-l)\Mu

where

^^{\Dκ(z)\}<p(l-p)-.

justifying the claim from (11.5).
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For the generalized linear model the Fisher information is

ai(υ) 2e^7(l + e φi)\ (11.9)
t = l

for υ G V = Vi, and from Theorem 2.5.3 it then follows that

\(n\θ)2 <e(e-l)sup|α^)2 / f α ^ / ί l + e*;

:1 < i < n,t>€ V > ^ θ l , (11.10)

where V>ί = a>i(θ). The condition that \(n\θ) tends to zero as n tends to infinity
implies again that the asymptotic results for the maximum likelihood estimator
from Sections 3 and 4 hold, and this is the case if

an(v? I Σ aΛv)2eaj(θ) / ( l + e a j { θ ) ) ~+ 0

uniformly in v φ 0 as n —• oo.
As for the Poisson model we may compare with Condition 2 in Haberman (1977),

Section 2, which for the present model reduces to the condition that dt —> 0, where
dt in our notation equals

1 < i< n,ve V,vφO\. (11.11)

The inequality | < max{l — Pi,Pi} < 1 immediately shows the equivalence of
Haberman's condition to the condition that the right hand side of (11.10) tends
to zero as n tends to infinity.

Finally, we may also for this model improve the result from (11.10) by working
directly from the definition of the index of the generalized linear model. Then,
analogously to the Poisson case, we arrive at the result that

λ<n)(0) = e(e - l)sup{ Λm(ι;; θ)1/im-2) : r o > 3 , t ; e V > # θ } , (11.12)

where

W 2

t = l

(11.13)
The considerations of which sequences of covariates that make the index tend to
zero are almost the same as for the log-linear Poisson models. The fact that the
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Fisher information from a single observation is bounded for the logistic models
does not lead to any simplification or change of importance. Thus, beside the
condition that the Fisher information tends to infinity, we need the condition that
the right hand side of (11.12) tends to zero for the asymptotic results to hold.

12 Generalized non-linear models

In analogy with the generalized linear models from Section 5 we consider here
the generalized non-linear models, which differ from the linear ones only by the
relaxation of the requirement that the mappings α; in (5.2) are linear to the re-
quirement that they are analytic. Despite the term 'non-linear' we do not exclude
the special case of linear αt 's here. In view of the generality of the models cov-
ered by this framework it is somewhat surprising that the complexity of proofs
of asymptotic results for sequences of such models may not be much greater than
for the generalized linear models, indicated by the examples in Sections 8-11. The
basic technique is again to use Theorem 2.5.3 and Theorem 2.6.1 to derive condi-
tions for the index of the model to tend to zero as n tends to infinity. Although
the conditions on the mappings (α;) for this to be the case, are usually weaker for
the special case of a normal non-linear regression model than for other generalized
non-linear models, the considerations involved in the proof are mainly related to
the computation of the constant R from (2.6.8) corresponding to each of the map-
pings αi, and this computation is not more complicated for general models of this
type than for the case of a normal reference distribution.

Let us first quickly review the basic setup for a generalized non-linear model
in our context. The reference model is a model for Y G E parametrized by two
(vector) parameters φ G Φ C W and ̂ G $ C 7 2 , where W and V2, like V\ below,
are finite-dimensional real vector spaces. This reference model has densities

g{y\Φ,Φ), (Φ,Φ) e Φ x Φ C W X V2, (12.1)

with respect to some underlying measure v on E. The reference model is assumed
to be analytic throughout its parameter space. A generalized non-linear model is
a model for a sequence Y^ = (Yi,..., Yn) of independent random variables in E.
The distribution of Yi is assumed to have density

ΦuΦ), (12.2)

with respect to z/, where

Φi = ai(θ), (12.3)

and α* : Θ —• Φ is a known analytic function of the unknown parameter ί G θ C

Vi Thus the parameter space for the generalized non-linear model is

B = ΘxΦCV = V1xV2
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and it follows immediately from Theorem 2.6.1 and Theorem 2.5.3 that the model
is analytic. In some cases the model contains no (^-parameter, and consequently
some trivial notational changes are required.

Often the functions α* are given as some fixed function of the parameter θ and
some covariates for the zth observation, but we have no need for that assumption
here. In specific cases, however, it may be a useful as well as natural assumption.

The Fisher information and the index of the reference model are denoted I(ψ, φ)
and λ(V>, 0), respectively. The corresponding quantities in the model for Y{ are
denoted Jt (0,</>) and λt (0,</>). For the entire generalized non-linear model the
index is denoted λ(n)(0,0), and the Fisher information is given by

= Σ / ( ^ . ^ ( { P α i ^ X n ) , ^ ) 2 , (12.4)
t = l

for (ι>i, V2) G Vi X V2. This information differs from that for the generalized linear
models in (5.10), only by the appearance of the first differential, Da,i(θ) : Vi -> W,
instead of α;. In the linear case the two expressions agree.

To investigate whether the index of a sequence of generalized non-linear models
tends to zero as n tends to infinity we need a generalization of Theorem 5.1. In the
proof of that theorem we used the fact, proved in Theorem 2.6.1, that the linear
reparametrization αt does not increase the index. For the case of a non-linear
mapping α; we must instead use the bound in (2.6.9) for the index of the model
for Y{. Otherwise the theorem and its proof are the same.

Let Ri(θ) denote a constant satisfying the inequality (2.6.8) for the model for
Yi, where the reparametrization in this connection is the mapping α, . Thus, the
inequality (2.6.8) becomes

< klRtf^WDoiWWWΪ^, (12.5)

where vi G V\ and this inequality is required to hold for all V\ and all k G N. This
quantity measures the 'degree of non-linearity' of the mapping αt in relation to
the model, and bounds the amount by which the index of the model for Y{ can be
inflated by this non-linear mapping, as is seen from (2.6.9).

Theorem 12 1. Assume that the reference model from (12.1) is analytic with a
finite index \(ψ, φ)onΨx Φ. Then the index λ<n)(0, φ) of the model forYu...,Yn

tends to zero as n tends to infinity if both of the following conditions hold:
(1) The smallest eigenvalue of the Fisher information l(n\θ,φ), relative to a

fixed inner product on V\ X V2, tends to infinity as n tends to infinity
(2) Uniformly in (ι?i, V2) G V\ X V2 we have

2f - 0 (12.6)
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as n -* oo, where φn = an(θ), cf. (12.3).

Proof. The only change compared to the proof of Theorem 5.1 is that the index
for the model for Y{ is not λ ( ^ , φ), but is bounded instead by λ(φ^ φ) + Ri(θ), as
was shown in Theorem 2.6.1; I

A difficulty in the application of the theorem is that the quantity Ri(θ) from
(12.5) may well be infinite. This is particularly likely to occur when the dimension
of the ^-parameter is greater than the dimension of the ^-parameter, as is often
the case. In that case the model for a single observation is over-parametrized
and its index may therefore be infinite. The reason that this problem did not
occur with the generalized linear models is that although the model for a single
observation in that case also might be over-parametrized, this would be due to the
linear reparametrization αt , and a linear reparametrization does not increase the
index. Stated in another way, the Fisher information for the model for a single
observation may be zero in certain directions in both cases, but in the linear case
this would imply that the model was constant in those directions, and according
to Corollary 2.5.9 this does not make the index infinite.

A remedy for this difficulty for the present, non-linear, models is to group the
observations such that we let the reference model be a model for several indepen-
dent observations. Usually we would need to group m observations, say, where m
is such that m dim Φ > dim Θ in which case the Fisher information is likely to be
positive definite and the index therefore finite. The drawback is that in this way
the dimensionality, and hence the complexity, of the computations are increased.
The last example in Section 14 illustrates this problem.

13 One-parameter exponential regression function

Consider a generalized non-linear model in the framework of Section 12, where
θ is one-dimensional and

φi = ai(θ) = eθxi, 0 E R , (13.1)

are the expressions for the ψi's in terms of θ and the (known) covariates (xt ). For
the moment we leave the reference model unspecified, but we assume throughout
the present section that the model contains no ^-parameter. This is done purely for
the convenience of not having to repeat the arguments needed to handle this extra
parameter for reference models such as the normal distribution with unknown
variance (Section 7), location models with unknown scale (Section 8), and the
Gamma distribution with unknown shape (Section 9). The results given below all
generalize to these models.

The Fisher information for the reference model is I(ψ) and that for the model
for Yi is

e2θ*<. (13.2)
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Since the fcth derivative of α̂  is x* exp(^xz ), the inequality (12.5), after cancellation
of the factor v* from the two sides of the equation, becomes

i) < klRiiθΫ-

from which it is seen that

R^θ) = ij(V,t ) - 1 / 2 e - ^ (13.3)

is the smallest possible value of Ri(θ). Hence it follows from (2.6.9) in Theo-
rem 2.6.1 that the index λ, (0) of the model for Y{ satisfies the inequality

Kiβ) < X(φi) + i / ( ^ ) - 1 / 2 e - β x i (13.4)

We now consider the case where the reference model consists of normal distri-
butions with fixed known variance σ2 and mean Ψ, as in Section 6. For that case
we know that X(φ) = 0, and hence the condition (2) in Theorem 12.1 reduces to
the condition that

n

/ 5 > ) - + O (13.5)

as n —» oo. The condition (1), that the Fisher information tends to infinity,
demands the denominator of this expression to tend to infinity as n tends to infinity.
Only two types of violation of condition (13.5) can occur if the Fisher information
tends to infinity; either a convergence of the x^s to zero at an appropriate rate, or
the existence of a sub-sequence of the xt 's of opposite sign of θ (or of either sign if
θ = 0), for which \xi\ tends to infinity sufficiently rapidly.

As in Sections 10 and 11 it is not hard to write down an expression for the index
λ(n)(0) directly for this model. To do that we only have to consider cumulants
of the form xj^ (θ), because cumulants of order three or higher are zero for the
normal distribution. From this directly derived expression for the index it is seen
that λ(n\θ) -* 0 as n -* oo if and only if

(13.6)
k>3

as n —> oo. For sequences of a?f 's for which the information tends to infinity this
condition is strictly weaker than (13.5).

Notice from the condition in (13.6) that the index obviously tends to zero under
the limiting operation σ —• 0 with n fixed, unless all the covariates are zero. This
is the kind of asymptotics that suggests the adequacy of the first order asymptotic
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theory for non-linear normal regression models when the standard deviation is
small.

Let us turn now to the case where the reference model is an arbitrary (analytic)
generalized non-linear model without any ^-parameter. From (13.2) and (13.3) we
then see that the condition (2) in Theorem 12.1 becomes

*l (\ + HΨn)I(Φn)1/2eβx*y I Σl{ψn)Xy
6*< -> 0 (13.7)

as n —• oo, while condition (1) still requires the denominator to tend to infinity. A
direct computation of the index becomes more complicated for this general case.
Notice that although the condition in (13.7) is, of course, more restrictive than the
corresponding condition in (13.5) for the normal case, its derivation was equally
easy and the final result is usually of similar complexity.

For the special case of a Gamma reference model with fixed known shape pa-
rameter α, cf. Section 9, we get

W) = axl (13.8)

and

Ri(θ) = l/(2y/a), (13.9)

from which it is seen that the condition (2) in Theorem 12.1 becomes

« - 0 (13.10)
t = l

as n —> oo, the simplicity of which is striking. Condition (1) is here the condition
that Σ x\ —» oo as n —• oo.

Also for the case where the reference model is an analytic location model, as
considered in Section 3.4, the condition (13.7) reduces somewhat because I(φ) and
λ(φ) are both constant.
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14 Two-parameter exponential regression function

We now extend the model from the previous section by adding another param-
eter. This will be done in two different ways; first we consider the regression
function

Φi = Oί(α,7) = aeΊX\ a > 0,7 G R, (14.1)

where (α,7) plays the role of θ from (13.1). Otherwise we still consider the same
setting as in Section 13, i.e., the model is a generalized non-linear model of the
form described in Section 12, without any ^-parameter.

Although the model for a single observation, Y; say, is over-parametrized by
(α,7) instead of just φi, we may derive conditions for the index to tend to zero by
the same method as in the previous section, based on Theorem 12.1. The reason is
that the function in (14.1) allows a reparametrization from (α,7) to (77,7), where
η = logα, such that

Φi = ai(η, 7) = e^Xi, η G R, 7 € R. (14.2)

The point is that in this new parametrization the parameters enter only through
a one-dimensional linear function. Therefore the model for Y{ is constant in any
direction in the parameter space in which the Fisher information is zero, and the
index is therefore finite, provided that this is so in the reference model, cf. Corol-
lary 2.5.9.

We proceed now with the derivation in the parametrization (14.2) and use a
tilde, as in ^(77,7), to indicate that the parametrization has been changed.

Let X(φ) denote the index of the reference model, and ^(77,7) that of the model
for Y{. This latter index is known from Theorem 2.6.1 to be bounded by the index
of the model parametrized by the single parameter η + 72^, which in turn was
shown in the previous section to be bounded by the inequality (13.4), because the
choice of parametrization by θ or by θx{ of the one parameter model (13.1) for Yi
does not affect the index. Hence we have

. (14.3)

The Fisher information ϊi(η^) in the model for Yi is given by

(14.4)

where (s,/) G R2, with the matrix representation

( x , l\) I{Ψi)e{v+ΊXi)• (14.5)

It is now a matter of insertion to see that the condition (2) in Theorem 12.1
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states that

(s2 + 2stxn + t2x2

n) (1 + X(φn)I(φnγ/2 exp{τ? + ηxn})

uniformly in (syt) φ (0,0) as n —> oo. The condition (1) requires the denominator
to tend to infinity. For the special case of normal distributions with fixed known
variances the second factor in the numerator reduces to a constant. For the Gamma
distribution with a fixed known shape parameter, (14.6) reduces to the condition
that

n
2x2) I Y^(s2 + 2stXi + t2x])(s2 + 2stxn + t2x2

n) I Y^(s2 + 2stXi + t2x]) -> 0 (14.7)

uniformly in (s,t) φ (0,0) as n -^ oo, cf. (13.10).
These two conditions for the index )Sn\η, 7) to tend to zero imply the same

conclusion to hold for the index λ(n)(α,7) in the original parametrization, as noted
in the comments following Conditions 2.1. Thus, the change of parametrization has
reduced the complexity of the problem, in effect by reducing the dimensionality.

Consider now, instead of (14.1), another two parameter regression function,
namely

^ = α, (μ, 7) = μ + e™, μ € R,7 € R, (14.8)

otherwise in the same setting as above. Here the method of reparametrization
provides no simplification because φi cannot be written as a function of any linear
combination of two parameters that do not depend on i. Hence we are facing
the problem that the index λi(μ,7) of the model Yί, is infinite. As noted below
Theorem 12.1, a remedy is to group the observations, in the present case in pairs.
This means that we modify the reference model to consist of two independent
observations, such as (Yi, Y2), and consequently extend the ^-parameter to be two-
dimensional corresponding to the pair (^1,^2)- Provided that the corresponding
two covariates xι and x<ι are different, the Fisher information for {μ,η) is positive
definite and we can therefore proceed as before, using Theorem 12.1 to obtain
conditions for the index to tend to zero. The price paid is an increased complexity
of the problem, because of the higher dimensions of the parameter spaces involved,
and perhaps more importantly a less 'streamlined' derivation of the conditions. For
example, there are many ways in which the observations can be grouped in pairs
and some may be less effective than others. The model in (14.8) approaches a
complexity where additional assumptions on the covariates should be introduced
to simplify the problem. Thus, it might be quite natural to assume that the
covariates are independent identically distributed random variables. Then the
approach sketched above, with the pairwise grouping, might be used to derive
conditions on the distribution of covariates, since all groupings in pairs lead to
the same result. We shall, however, not pursue the computations for the present
example since it is included only to illustrate the theory. Note, however, that
the more natural extension of the model to a three parameter regression function
with both of the a and μ parameters from (14.1) and (14.8), is not much more
complicated than the two parameter function in (14.8), because we can still use
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the reparametrization from (14.2) to collapse two of the parameters into a single
one at the intermediate stage of the computations.




