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ABSTRACT

Response-biased observation refers to situations where the probability a
unit is observed depends on the value of a response associated with that
unit. We discuss the construction of estimating equations for parametric
regression models through likelihood and pseudo likelihoods, for situations
in which responses are stratified and sampling is stratum-specific. Properties
of the resulting estimators are reviewed and an illustration involving field
reliability data is presented.

1 Introduction

In many observational studies the probability that a specific individ-
ual or unit is observed or selected in a sample depends upon responses or
covariates associated with that unit. That is, if units in some population
have associated response variables y and covariates #, then the probabil-
ity unit i is selected depends upon the values (yi,Xi) for that unit. When
the probability of selection depends upon yι, we call the observation scheme
response-selective, or response-biased.

For simplicity of exposition I will focus mainly on situations where the
probability of selection depends solely on yι. However, as described at the
end of Section 2 and in Section 4, situations where the probability of selection
depends on both yι and X{ may also be handled using the methods considered
here.

Examples of response-selective observation are abundant. In socio-economic
studies based on samples drawn from administrative records, selection is of-
ten response-related (e.g. Hausman and Wise 1981). Similarly, in a study
of factors affecting low birth weight of humans, one might select newborns
over a period of time and measure covariates so as to over-sample babies with
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low birth weights. Extreme forms of response-selection are embodied in case-
control or choice-based sampling used in epidemiology and economics (e.g.
Breslow and Cain 1988; Hsieh, Manski and McFadden 1985); in this case
the response variable is categorical and covariates are observed for samples
of individuals selected from each response category. Examples of selection
bias in more complicated settings are given by Hoem (1985) and Kalbfleisch
and Lawless (1988a), who discuss the observation of life history events for
human populations.

When the probability of selection p(y) for a unit is a known function
of y, methods that weight log likelihood or estimating function components
according to p{y)~ι are often used. Several other approaches can also be
used in various contexts. This article discusses four methods of estimation
for a rather broad class of situations. The approaches described are not new,
but questions remain about their properties. Our purpose is to review the
four methods and recent investigations into their properties, and to indicate
connections with other areas.

It is assumed that (y, x) values for individuals or units in some "popu-
lation" from which units will be sampled are generated from a probability
distribution with density or mass function

f(y\x;θ)g(x) yey,xeX (1)

and that our objective is to estimate the p-dimensional parameter θ. We wish
to avoid strong parametric assumptions about g(x) and the corresponding
distribution function G(x), as is common in regression modelling. Sampling
is response-selective in the following sense: the range of y is partitioned
into strata 5i,...,5fc and if yι G Sj then unit i is sampled (selected) with
probability pj. In other words, p(yi) = γjj=ιpjl(yi G Sj), where I (A) is the
indicator function which equals 1 if event A is true and 0 otherwise.

More specifically, we assume that a finite population of N units has
values (yi,Xi), i = l,...,iV generated as independent realizations from (1).
In survey sampling terminology, we have a stratified population and wish
to estimate parameters in the superpopulation model (1). Samples may be
selected in various ways. We consider two, termed basic stratified sampling
(BSS) and basic variable probability sampling (BVPS). In BSS a simple
random sample of specified size Πj is selected from units in the j ' th stratum
(i.e. with yι G Sj). In BVPS each unit in the population is considered for
selection independent of every other unit. The j ' th stratum size (number of
units with yι G Sj) is denoted by Nj (j = 1,..., k). In the case of BSS the
fixed sample size from stratum j is nj — NjPj, whereas in the case of BVPS
the size of the sample from the j ' th stratum is random. It is an important
feature of our framework that the stratum sizes iVi,...,iV^ are known, or
observable. This latter feature is not present in some applications, e.g. for
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many instances of case-control or choice-based sampling.
The remainder of the paper is as follows. Section 2 makes the obser-

vational framework precise and then describes methods of estimation based
both on likelihood and on pseudo likelihood functions. Section 3 discusses
asymptotic properties and variance estimation, and Section 4 illustrates the
methodology. Section 5 concludes with remarks on extensions and relation-
ships with missing data methods.

2 Likelihood and Pseudo Likelihood Estimating
Functions

Suppose that individual pairs (y^Zi), ί — l,...,iV are generated inde-
pendently from (1), and that Nj units have yι E Sj (j = 1, ...,&). Units
are selected by either BSS or BVPS as described in Section 1 and (yi,Xi)
observed. Let Ri = /(unit i is selected), and Dj = {i : Ri = l,yj € Sj}
denote the units selected from stratum j , where \Dj\ = nj. As is customary,
Y and X are used to represent the random variables of which yι and X{ are
realizations.

For simplicity I consider only situations where the population size N and
stratum sizes Nj are fixed at the time units are selected. It is also assumed
that the iV '̂s are known and further, that for units not selected all that is
known is which stratum they are in. In some contexts such as the birth
weight study, the values of N and the JVj's may be unknown until the end
of the sampling period and the j/i's (but not the x^s) may be known for
units not selected. Such features may also be dealt with via the methods
discussed here; Lawless, Wild and Kalbfleisch (1997) consider a variety of
response-selective sampling schemes.

Under BSS or BVPS in the framework described, the data include the
stratum sizes iVΊ,..., JV̂ , the pairs (j/i,x<), i € Dj (j = l,...,fc) for the
selected units, and for BVPS, the sample sizes ni,...,rifc. In either case
the probability density function for the observed data defines a likelihood
function for the unknown parameters θ and G (the distribution function of
X) which is proportional to

LF(Θ,G) = l[{Qj(θ,G)Ni-ni Π f{Vi\*ϊJ)M!(*i)h (2)
j=\

where

Qj(θ,G) = Pr(Y e Sr,θ,G)

= ίPr(Y e Sj\x\θ)dG(x) (3)
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It is recognized in the notation that (2) depends on both θ and G. Prom
our point of view G is a nuisance parameter but because of (3) it is necessary
to estimate it in order to estimate θ by maximizing (2). One approach is to
maximize the semiparametric likelihood (2) jointly with respect to θ and G.
This is feasible when Y is categorical (Wild 1991, Scott and Wild 1997) or
when G is discrete with relatively few points of support (Hsieh et al. 1985),
and recent work suggests it is feasible quite generally.

A second line of attack is to maximize LF(Θ,G), where G is a simple
nonparametric estimate of G\ this is an extension of the parametric pseudo
likelihood idea of Gong and Samaniego (1981) to a semiparametric setting.
Noting that

G(x) = ΣPr{Xi < x\Yi e Sj)Pr(Yi e 5, ),
3=1

we propose to use the estimate

(4)

where Gj (x) is the empirical cumulative distribution function (cdf) based on
the Xi's for units i G Dj sampled from the j ' th stratum. Inserting (4) into
(3) and taking d\ogL(θ,G)/dθ, we obtain the pseudo score function

sp(θ) =
^ y , diogfiyilxi θ)
Σ dθ

'
ι=i

ί=l

(5)

where pi = and

= Pr(YeSj\x;θ). (6)

We estimate θ by solving the equation SP(Θ) = 0. This idea has been used
in other contexts by Pepe and Fleming (1991), and Hu and Lawless (1997).

A third possibility is to weight score contributions for sampled units to
give the weighted pseudo score

(7)
3=1
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It is apparent that S\γ(θ) is unbiased (has mean 0) under BSS or BVPS,
where expectation is with respect to (1) and the selection scheme. Weighting
is common in survey sampling (eg. Holt, Smith and Winter 1980, Binder
1983, Binder and Patak 1994) and has been considered for maximum likeli-
hood methods by Hsieh et al. (1985), Scott and Wild (1986), Kalbfleisch and
Lawless (1988ab) and others. Robins et al. (1994, 1995) consider weighted
pseudo score functions when the selection probabilities p(yi) may depend on
unknown parameters.

The final method considered is based on the observation that in the
case of BVPS the distribution of the observed responses, conditional on the
values of Rι and X{ (i = 1, ...,iV), yields the conditional, or selection-biased
likelihood

N

Lc(θ) =

= ΠΠ
j=l ieDj

U = i

(8)

The corresponding score function is

aiog/(yz | ^ ;(
Sc(θ) =

dθ

ί=l

(9)

Straightforward calculation shows that Sc{θ) is unbiased under BSS as well
as under BVPS.

lΐ pi = = pk then Sw(θ) = 0 and Sc(θ) = 0 yield the same esti-
mate, but otherwise the estimators obtained from the estimating equations
Sp(θ) = 0, Sw(θ) = 0 and Sc{θ) = 0 appear to be distinct. General results
concerning the relative efficiencies of the estimators θp,θw and θc obtained
from these equations, and θp obtained by maximization of Lp(θ,G) with
respect to θ and G, are not available, though results of Robins et al. (1994,
1995) show that the pseudo-likelihood methods are asymptotically ineffi-
cient. Another important point is that in the case of BVPS it is preferable
to use pj = nj/Nj rather than prior selection probabilities. In Section 3 we
discuss asymptotic properties of the estimates and in Sections 4 and 5 some
limited simulation results.

We conclude this section by noting that analogous estimating functions
may be given for cases in which the probability of selection for a unit depends
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on both y and x. In particular, suppose that k strata are defined according
to whether {yi.Xi) E Sj, where SΊ, ...,£& partitions y x X. The likelihood
function based on the observed data is now given by (2), with Qj(θ,G)
redefined as

Qj(θ,G) = Pr{(Y,X)eSjiθ,G}

= ίPr{{Y,x) e Sj\x',θ}dG{x). (10)

A pseudo score Sp(θ) corresponding to (5) is obtained by estimating (10)
via (4), where G(x) is as before the empirical cdf based on the x^s for units
i E Dj. A weighted pseudo score function is given by (7) once again, and a
conditional score is given by (9) with Q}(XΪ,Θ) replaced by

QUx;θ) = Pr{{Y,x)eSι\x ,θ}. (11)

3 Asymptotic Properties, Variance Estimates and
Confidence Limits

By taking limits as N -> oo and with pj = rij/Nj (j = 1, ...,&) fixed
positive values, we may show that under mild conditions the estimators θ
obtained by solving Sw{θ) = 0 or Sc(θ) = 0 are consistent and asymptoti-
cally normal. Special cases have been considered by Kalbfleisch and Lawless
(1988b), Wild (1991) and Scott and Wild (1997). Asymptotics under BVPS
may also be obtained.

A rigorous development of asymptotics for the case of full maximum
likelihood based on (2) or for the estimating equation Sp(θ) = 0 is more
difficult. For the former Wild (1991) and Scott and Wild (1997) deal with
the case of categorical responses, and for the latter Hu and Lawless (1997)
deal with the special problem described in Section 4.

We outline the asymptotic normal results for Sw(θ) and Sc(θ) given by
(7) and (9), respectively; Lawless et al. (1997) give a fuller treatment. Both
(7) and (9) may be written in the form

N

;Xi;θ). (12)

For Sw{θ), for example,

k

U(Yϊ;Xi',θ) = Σpfm 6 Sj)dV>zfWXi\θ)ISΘ. (13)
3=1
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Assume p\im(Nj/N) = 7Γ, > 0 as N ->• 00 and define

A(θ) =plimAN(θ) B{θ) = UmBN{θ).

Under mild regularity conditions on the model (1), we have

yjNφ -Θ0)ΛN (θ,A{θo)-ιB{θo)A{θo)-1) ,

where ΘQ represents the true value of θ.

The asymptotic variance of θ may be estimated as Ά~ιBA~ι, where A
and B are consistent estimates of A(ΘQ) and JB(0o) The matrix A = AN(Θ)
may be used to estimate A{ΘQ). For Sc(θ) in the case of BVPS the estimating
function is a likelihood score function, so A(ΘQ) = B(ΘQ). For the other cases
we require a consistent estimator B, which is not hard to obtain. For Sw{θ),
for example, extending the approach of Kalbfleisch and Lawless (1988b) and

defining Vi{θ) = dlogf(yi\Xi;θ)/dθ and w (θ) = Σi-.y.eSj Vi(θ)/Nj, we get

YΆτ{Sw(θ)} = VΆτγ]xEmx{Sw(θ)} + Eγ]xVΆτmx{Sw(θ)}

= E(^) + C(θ), (14)

where for BSS we have

C(θ) = EYlx J2 n ^ P i \ Σ foM- ̂ 0 ) (θ)}[vi(θ)- vU) (*)]'. (15)
j^iPjW-Vines,

Since N-χE{-dSw/dθ) = A(θ), equations (14) - (15) indicate that B(θ)

may be estimated by B = A + C, where

= h Σ ̂ r^i-^) Σ te(β) - ̂ ωW]NW - tJ ί̂β)]', (16)

where i

Confidence intervals for parameters may be obtained by treating y/N(θ —

θ) as approximately normal with a suitably estimated covariance matrix.

An alternative would be to use some form of bootstrap. Investigation of

specific problems by simulation is needed to gain insight into the adequacy

of confidence interval procedures for different sample and population sizes.

As noted in Section 5, relatively little is known about the efficiency of

Sw (0), Sc(θ) and Sp(θ) in general situations; this too deserves investigation.
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4 An Example

Kalbfleisch and Lawless (1988b), Hu and Lawless (1996) and others have
considered problems in epidemiology and reliability in which a response time
yι > 0 and covariates z% for an individual or unit in some population are
always observed if yι does not exceed an associated censoring time rι > 0.
The number of units for which the response time is censored (i.e. yι> Ti) is
known but the values of T{ and Z{ are not, so a fraction p2 of the censored
units are sampled, and their T{ and Z{ values are obtained. The objective is
to estimate the distribution f{yi\zi\θ), where it is assumed that Y{ and T{
are independent, given Z{.

This problem involves response-selective sampling of the type described
at the end of Section 2. In particular, let xι = {r^Zi) be an extended
covariate vector representing the censoring time τι and covariates zι for unit
i. The data for N units i — 1,..., JV are assumed to come from (1), where
f{yi\xi',θ) = f{yi\zi',θ)- Consider two strata for (y,τ,z) defined by S\ =
{(y,τ,z) - y < r} and S2 = {{y,τ,z) : y > r}. Units with (y^Xi) G Si
are selected with probability pi = 1 and those with (yi, X{) G S2 a r e selected
with probability p2 < 1.

We extend the four estimation procedures of Section 2 slightly to deal
with the stratification on both y and x, as described at the end of Section 2,
and to reflect the fact that for units i G D<ι we know only that y%> τι, and
not yi's exact value. We obtain the likelihood function corresponding to (2)
as

LF(Θ,G)= Π Π
ieDi i£D2

(17)
where F(τ\x; θ) = /r°° f{y\x; θ)dy and

Q2(θ,G) = JF(τ\x;θ)dG(x).

The pseudo score Sp(θ) corresponding to (5) is then

^ d\ogf{yi\xi ,θ)

= L QΘ

dF(τi\xi ,θ) , 1

dθ VI ̂  dθ
— n\ — Π2)
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The weighted pseudo score corresponding to (7) is

^ d]ogf(yi\xi ,θ) 1
Sw(θ) = ^ ^ + -

Finally, the conditional (pseudo) score corresponding to (9) is

5 * & dθ

^ ; g)/gfl 1

}F(φi θ)+p2F(φi θ)

where F ( φ ; 0) = 1 - F ( φ ; 0).
Hu and Lawless (1996, 1997) illustrate the use of the four estimation

methods on problems involving automobile warranty data, and compare the
methods in a simulation study. In their context N is large (N = 4000 in the
simulation) and the proportion of the population falling into stratum 1 is .25
or smaller. They found that with selection probabilities p2 in the range .05
- .20, the four estimation methods were all close to unbiased and gave esti-
mators with roughly the same variance. In addition, normal approximations
for 0 were adequate for the range of population and sample sizes considered.
The estimators based on Sw{θ) and Sc{θ) are easier to deal with in terms
of variance estimation, and SW(0) has the added convenience of being com-
putable with standard censored lifetime data software that allows variable
case weights.

5 Additional Remarks

This article reviews several approaches to estimation of parameters when
sampling is response-selective with known selection probabilities. Discussion
was restricted to two common selection procedures (BSS and BVPS), but
extensions to other schemes are possible. For example, in some applications,
such as the birth weight study mentioned in Section 1, quota sampling may
be used so that the total size N of the population assumed to be generated
by (1) is random.

Information about the relative efficiencies of the different estimation pro-
cedures is at present quite limited. For the scenario described in Section 4
Hu and Lawless (1997) found all four methods to be comparable. How-
ever, in the case of binary responses Wild (1991) and others have found
that estimators based on the weighted pseudo score Sw{θ) can be consid-
erably less efficient than those based on Sc{θ) or on LF(Θ,G). Wild also
found that Sc{θ) gave estimates very nearly as efficient as those obtained
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from the full likelihood Lp(θ,G). A limited simulation study by Robins et
al. (1994) in a binary response problem, however, revealed situations where
all of Sw(θ)iSc(θ) and Sp(θ) were rather inefficient relative to LF(Θ^G).

Further investigation is desirable.

It should be mentioned that another feature of weighted pseudo scores
is their applicability in more complex probability sampling situations (e.g.
Binder 1983, Binder and Patak 1994) and in situations where only moments
of Y given X are modelled, rather than f(y\x\ θ) (OΉara Hines 1997). How-
ever, other more efficient pseudo likelihood methods can also be developed
(Robins et al. 1994).

There is a close connection between the methods discussed here and
methods for dealing with missing data. Indeed, the present framework can
be viewed as one in which covariate values are missing for units that are not
selected. The approaches to estimation used here may also be applied with
more general missing data problems. Robins et al. (1994, 1995) and Carroll
et al. (1995, Chapter 9) provide wide-ranging discussions. Hu and Lawless
(1997) also provide general discussion, and some simulation results. Robins
et al. deal with very general problems in which the probability an observa-
tion is incomplete (has data missing) may depend upon unknown parameter
values. They obtain asymptotically optimal estimators of θ within semi-
parametric models but their methods are generally difficult to implement.
As remarked earlier, it is of considerable interest to compare the various
approaches in more detail. Lawless et al. (1997) give some results.

Finally, we note another method of estimation that is suggested by the
use of the EM algorithm to maximize Lp{θ,G). By considering the "com-
plete" data log likelihood based on knowledge of all x^s (i = 1,..., iV),

N

2 = 1

+ (1 - Λi){logQ£(z i;0) +

we obtain the following E-M algorithm, which leads to a stationary point of

£F{Θ,G): let x\,...,x*m denote the distinct x^s observed, and denote gr =

dG(x*). Then we have

E-step: Given current estimates 0, G = (pi, ...,fifm)5 compute

wrj =

M-step: Obtain the updated estimate of θ by solving

r = l
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Obtain the updated estimate of G from

_
9r~

N

where dr = ΣΪLi I{Ri = l,Xi = x*).
If instead of (18) we use the empirical estimates

ώr, = Σ

in (19), we obtain an estimating equation SM{Θ) = 0, where

j=ι nJ

A similar idea has been used in a different context by Reilly and Pepe (1995),

and it would be of interest to see how it performs in the current framework.

It is easily seen that for the example in Section 4, SM(Θ) is identical with

Sw (θ) and it is also identical when y is categorical with strata corresponding

to categories. More generally, however, it is different.
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