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Markov chain Monte Carlo methods are presented for treatment of
localized, impulsive noise (outliers) in digitized waveforms, within a
Bayesian hierarchical framework. Outliers in audio signals occur as
'clicks' and 'crackles' in degraded sound recordings and impulsive noise
in communications channels. Sampling-based methods for detection
and correction of such artefacts are presented, in which individual noise
sources are modelled as Gaussian with unknown scale, allowing for
robustness to heavy-tailed noise distributions. Results are presented
for speech and audio signals obtained from digitized sound recordings.

1. Introduction. This paper is concerned with the reconstruction of
acoustically recorded signals, such as speech and music, which are degraded
by impulsive noise sources ('outliers'). In the case of gramophone recordings
there are several mechanisms for such defects in the physical storage medium,
including natural irregularities, scratches, cracks and dust particles. These
all give rise to localized noise artefacts in the recorded sound which are
perceived as the 'click' and 'crackle' noise associated with old recordings.
In analogue communications channels impulsive noise occurs as a result of
electromagnetic interference, switching noise and atmospheric noise, all of
which exhibit impulsive properties.

Godsill, Rayner and Cappe (1996) give a thorough review coverage of
methods currently available for correction of impulsive and other types of
degradation found in audio material. One approach which has been very
successful involves modelling the audio signal as an autoregressive (AR)
process (Vaseghi and Rayner, 1990). Identification (detection) of outliers
is achieved by thresholding the estimated AR innovation sequence, while
reconstruction is performed by least-squares interpolation of the corrupted
data values. Disadvantages of the method include the inability to detect
small impulses in the presence of much larger disturbances as well as the
introduction of distortion in the presence of certain signal characteristics.
Godsill and Rayner (1992, 1995) have developed recursive Bayesian methods
which improve performance by allowing very accurate detection of audio
outliers occurring in arbitrary configurations and bursts.

The rapid increases in available computational power which have oc-
curred over the last few years have led to a revival of interest in Markov

*Work Supported by British Library's Film and Audio Restoration Project

331



332 SJ. Godsill and PJ.W. Rayner

chain Monte Carlo (MCMC) simulation methods (Hastings, 1970; Geman
and Geman, 1984; Gelfand and Smith, 1990) amongst Bayesian statisticians.
The Gibbs Sampler is perhaps the most popular form of MCMC currently
in use for the exploration of posterior distributions. This method requires
full specification of the conditional posterior densities of any unknown pa-
rameters. The sampler is initialized with arbitrary starting values for all the
parameters. New values are generated iteratively by sampling in turn from
the individual parameter conditional densities with the remaining parame-
ters fixed at their most recent values. Convergence to the joint posterior
density is then guaranteed in the limit under mild conditions.

Our work can be related to the non-linear state-space work of Carlin,
Poison and Stoffer (1992), in which the Gibbs Sampler is employed for the
solution of non-linear state-space systems in non-Gaussian noise. The work
of Carter and Kohn (1994) is also relevant, in which observation noise and
errors are modelled as Gaussian mixtures, allowing simultaneous generation
of the whole state vector using the standard Kalman filter. This strategy
is shown to give much improved convergence speed for several examples
compared with the more general but univariate sampling schemes of Carlin
et al. . In the audio processing field the Gibbs Sampler has been applied to
the interpolation of missing samples for data that can be modelled as an AR
process (0 Ruanaidh and Fitzgerald, 1994).

The signal and noise models used here are an adaptation of those used
by McCulloch and Tsay (1994) for analysis of autoregressive (AR) time se-
ries. The main differences are in the switched noise model, which is based
on a continuous mixture of Gaussians in order to give greater robustness
to heavy-tailed noise sources, and in the discrete Markov chain prior which
models prior dependence between outlier indicator variables. The Gibbs
Sampler is applied to the problem with several modifications aimed at im-
proving its convergence. In particular, the binary outlier indicator variables
and reconstructed signal elements are sampled jointly in subgroups in order
to overcome a perceived limitation in the McCulloch and Tsay approach to
outlier rejection. It is noted that Kalman filter-type operations can be used
to generate the reconstructed data samples (in a similar fashion to Carter
and Kohn (1994)), but that computational savings will be small when the
number of outliers is a small proportion of the total data length.

2. Model and Prior Specifications.
2.1 Noise Specification. The types of degradation we are concerned with

here can be regarded as additive and localized in time, which may be repre-
sented within the classical additive outlier (AO) framework as

(l) yt = xt + itvt
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where yt is the observed (corrupted) waveform, xt is the underlying audio
signal and itvt is an outlier process. it is a binary (0/1) variable which
indicates outlier positions and υt is a continuous noise process.

We model υt as Gaussian with time-varying scale parameter, i.e. υt ~
N(0, a%t) where σ^t is dependent upon t. Such a model allows for the fact that
defects in a single extract of recorded audio material are typically present at
widely varying scales. In a gramophone recording, for example, these range
from microscopic surface defects in the pressing medium up to large particles
of dust adhering to the groove walls. Note that for an application such as
this it is not reasonable to assume that noise variances are scaled relative to
signal power, since the two physical generation mechanisms are essentially
independent.

An independent inverse-gamma prior σ%t ~ lG(αυ,βυ) = cx-(αv+ι)e-βv/oε

is chosen to express uncertainty about the scale of the noise defects. Some

vague prior information about the scale variation will be available from phys-

ical considerations of the problem (see section 4) and this can be incorpo-

rated into the IG prior by specifying mean and variance values. Such a

prior/model combination can be expected to lead to robustness in the pres-

ence of heavy-tailed noise distributions, and indeed it is well known that the

normal-IG scale mixture is equivalent to the Student-t distribution. West

(1984) has proposed the use of scale mixtures of normals for modelling heavy-

tailed noise sources from a wide range of distribution families (Andrews and

Mallows, 1974), including the Student-t. We restrict attention here to the

IG family owing to its convenience as the natural conjugate density for the

Gaussian and its simple specification in terms of mean and variance param-

eters (when α > 2). However, we note that the sampling methods described

here can easily be extended to other classes of distribution and a sensitivity

study would be a useful exercise.

The preceding robustness considerations will be of particular importance

in our situation, where a high-fidelity reconstruction of xt is required. Specif-

ically, the reconstruction procedure must be capable of extracting useful au-

dio information where the scale of defect is small, whilst effectively ignoring

data values which are subject to corruption at the largest scales. These ob-

jectives are not attainable if a common-variance Gaussian is assumed for the

noise distribution.

Finally, a prior must be specified for the indicator vector i. We will refer

to this as the noise generator prior, p(i). The choice of this prior is not

limited by computational considerations since any prior which can easily be

evaluated for all i will fit readily into the sampling framework of the next

section. The Bernoulli prior p(ϊ) = aι(l -a)N~ι (where / is the total number

of outliers indicated by i) has typically been used in outlier problems (Box

and Tiao, 1968; Abraham and Box, 1979). Such a distribution implies prior
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independence of the indicators it. This is not a reasonable assumption for
the defects typical of audio data, where outliers occur in short 'bursts' of
adjacent data elements, corresponding to a small area of physical damage in
the recorded medium. A correlated prior such as a discrete Markov chain
prior p(ϊ) = Πt^t-i-^ή m a y be more appropriate, in which the clustering
of outliers in time is modelled by the transition probabilities of the Markov
chain, Pi^j. The transition probabilities can in principle be treated as un-
known and sampled with the rest of the variables in the Gibbs Sampler.
However, in this case it is probably more effective to use values which are
known to be reasonable from past experience with similar data-sets. We
assume the discrete Markov chain prior with fixed transition probabilities
for the remainder of this paper.

2.2 Signal Specification. Speech and music signals are known to have a
strong local autocorrelation structure in the time domain. This structure
can be used for distinguishing between an uncorrupted audio waveform and
unwanted noise artefacts. We choose to model the autocorrelation structure
in the uncorrupted data sequence xt as an autoregressive (AR) process whose
coefficients α; are constant in the short term:

(2) xt = Σ Xi-iai + et

i=l

where et ~ N(0,σg) is the i.i.d. innovations sequence. In matrix-vector form
we have, for N data samples:

e = Ax = x — Xa

where the rows of A and X are constructed in such a way as to form (2) for
successive values of t.

Assuming that the AR parameter vector a is a priori independent of σ\,
we assign the simple improper prior p(a, σ^) oc IG(αe,/?e) Note that a and
σ\ will generally be well supported by the data since x will contain many
hundreds of data values. A very vague prior on σ\ will then suffice.

It is of course an approximation to assume that the AR parameters and
excitation variance remain fixed in any given block of data. A time-varying
system might be a more realistic representation of the signal and should cer-
tainly be considered in future adaptations to this work. However, we have
found this assumption to be much less critical in practice than choice of an
appropriate impulsive noise model, since the signal parameters for typical
speech and audio signals typically vary slowly and smoothly with time.

3. Gibbs Sampler. The Gibbs Sampler may be used to sample from the
joint posterior distribution for all the unknowns. The conditional densities
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for model parameters θ — {a, σ^σ^ V/} are obtained straightforwardly as

(3) (a|i, x, β_(a), y) ~ NP( aM A P, σ\ (XTX)~1)

(4) (σe

2|i,x, θ_(σί),y) ~ IG( αe + (N- P)/2, & + £ e t

2 / 2 )

(5) K 2 , M . « , . ' , y ) ~ J K H - . + 1/2.Λ + V / 2 ) V ί : i l = l
v* [IG( p ) otherwise

where (δ|c) denotes a conditional probability distribution, 0_(a) denotes all
members of θ except a and aM A P = (X τ X)~ 1 X τ x is the conditional MAP es-
timate for the AR parameters. Note that this estimate uses the approximate
likelihood in which the likelihood for the first P data samples is neglected
(Box and Jenkins, 1970, Appendix A7.5), but that the full likelihood can be
incorporated by a simple Hastings-Metropolis (Hastings, 1970) modification
to (3). The terms et and υt, required in (4) and (5) can be obtained for a par-
ticular x, y and a from (1) and (2). Note also that when it = 0, (5) requires
that we sample from the prior on σ^t, since there is then no information
available from the data or other parameters about this hyperparameter.

Now consider the remaining unknowns, x and i. The 'detection' of out-
liers involves estimation of discrete vector i, whilst reconstruction requires
estimation of x. McCulloch and Tsay (1994) propose a Gibbs sampling so-
lution to a closely related outlier problem, which is similar in principle to
George and McCulloch's (1993) variable selection method. Their approach
performs univariate sampling from the conditionals for all the elements it and
υt (from which the sampled reconstruction can be obtained as xt = yt — it^t)-
This scheme has two drawbacks which will affect convergence of the sam-
pler. Firstly, sampling is univariate even though there are likely to be strong
posterior correlations between successive elements of it and Vf. Secondly,
the scheme involves sampling from the prior for υt when it = 0, since υt is
conditionally independent of the input data in this situation, it will then
only stand a reasonable chance of detecting a true outlier when υt happens
to take a sampled value close to its 'true' value, with the result that the
evolution of it with iteration number is rather slow. Note that in equation
(5) of our scheme it is necessary to sample from the prior on σ\% when it = 0.
However, at this level of the hierarchy the convergence of it is less likely to
be affected adversely. The drawbacks of univariate sampling can be over-
come by sampling from the joint multivariate conditional for x and i. Note
that this is distinct from the approach of Carter and Kohn (1994), in which
indicator variables (i) are sampled jointly conditional upon state variables
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(x), and vice versa. The joint conditional expression is specified by

(σ e

2 ) ί / 2 exp(-S 2 | MAP)

( 6 ) ( i | 0 ' y ) ^ C p ( ί ) ( ' |

(7) (x ( i ) | i ,0,y

where

(8) <?2

t {t:it=l}

Φ = A^A( i ) + σ ' R ^

- p = - Φ - 1 (A ( T ) A _ ( i ) y_ ( i ) - σ2 R-

Here we have introduced a notation for vector/matrix partitioning such
that subscript \iγ denotes elements/columns corresponding to corrupted
data (i.e. it = 1), while '-(i)' denotes the remaining elements/columns. RV ( i )

is the covariance matrix for the / corrupting outliers indicated by i, and is di-
agonal with elements σ%t in this case. / is obtained directly from a particular
i as the number of non-zero elements in i. Note that S2 in (6) is evaluated
using (8) with the conditional MAP reconstruction x(^

AP substituted into x
for x(i). The marginal conditional for i, given in (6), is derived straightfor-
wardly from the joint conditional using multivariate normal identities. Full
details can be found in Godsill and Rayner (1995). As discussed earlier the
noise generator prior p(ϊ) can take any form which is easily evaluated for
any given i. In our results, however, we assume the 2-state discrete Markov
chain prior with fixed transition probabilities.

As in (3) the results of (6) and (7) are based on the approximate likeli-
hood expression, for the sake of simplicity. Incorporation of the full likeli-
hood is achieved by a minor modification which maintains the Gaussian form
of (7) (Box and Jenkins, 1970, Appendix A7.5) and hence makes no funda-
mental change to the sampling algorithm. This modification is required only
for accurate detection of outliers which occur in the first P samples of data.

Joint sampling of i and x now involves sampling in turn from (6) and (7).
(6) is a multivariate discrete distribution defined for all 2^ permutations of
i. Direct sampling from this distribution will thus require 2^ evaluations
of (6), so some other scheme must be adopted. A Metropolis-Hastings step
(Hastings (1970)) is certainly one possibility for this challenging task, al-
though we can expect low acceptance rates due to the high dimensionality
of i. Here we adopt a Gibbs sampling approach which performs the sam-
pling given by (6) and (7) in sub-blocks of size q. A compromise can thus be
achieved between computational load and convergence performance. Sam-
pling in sub-blocks is achieved simply by fixing elements of it and yt to 0
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and the current sample of xu respectively, for all elements which lie outside
the current sub-block.

Compared with the 0{2N) sampling operation for i in (6) there is much
less computational difficulty in the full multidimensional sampling operation
of x( i) (7) (an operation which is at most O(/3), depending on the spacing
between 'bursts' of outliers), especially when the percentage of outliers is
small. Thus this operation can be performed on an occasional basis for the
whole data block or for large sub-blocks, in addition to the joint sampling of
i and x( i) in small sub-blocks of size q. This should alleviate any convergence
problems which may arise as a result of posterior correlation between the
art's for a given i.

4. Implementational Issues and Results. The method was tested
using data digitally sampled at 44.1kHz and 16-bit integer resolution from
degraded gramophone recordings containing speech and music material. It is
typically realistic to assume that the autoregressive process parameters are
fixed for time intervals up to 25ms in speech and music signals. Hence data
block lengths N of around 1100 samples will be appropriate. Processing for
listening purposes can then proceed sequentially through the data, block by
block, re-initializing the sampler for each new block and storing the recon-
structed output data sequentially in a new data file. When processing for a
particular extract is completed, the output data file may be listened to for
appraisal purposes using a suitable digital-to-analogue conversion system.

The hyperparameters for the prior on the noise variances, αv and βv,
are chosen initially from the physical constraints of the measurement (digi-
tization) system and the assumption that the transfer engineer has adjusted
the overall digitized signal levels to be centered (on a dB scale) within the
16-bit integer range. After the first blocks of data have been processed, the
prior parameters may be informally updated, based on the noise variance
distributions from earlier blocks. This relies on the assumption that noise
characteristics remain roughly unchanged throughout a particular extract,
which is empirically observed to be the case for most recordings. A very
vague proper IG prior is chosen for the innovations variance σ\, since there
is likely to be considerable support for this parameter from the data.

In figure 1 we can see the results obtained from running one instance of
the Gibbs Sampler for a single block of classical music, digitized from a typi-
cal noisy 78rpm recording (figure l(a) shows this data block). An AR model
order P = 30 was chosen, which is adequate for representation of moderately
complex classical music extracts. Each iteration started with steps (3)-(5).
This was followed by steps (6) and (7), using a sub-block size q = 3. Finally
step (7) was performed for the entire block, as discussed. Hyperparameters
on the noise variance priors were fixed at αe = βe = 10~10 (see above) and
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Figure 1: Reconstruction and detection estimates

av = 0.8, βυ = 10000 (chosen approximately on the basis of earlier processed
data blocks). In fact the reconstructed output has been found to be rather
insensitive to the precise value chosen for these parameters. In this case,
for example, values of av ranging between 0.3 and 10 and βυ from 2000 to
500000 led to reconstructions which were largely indistinguishable to the eye.

The sampler was run for 1000 iterations, following a 'burn-in' period
of 100 iterations. Figure l(b) shows the histogram of sampled indicator
vectors i, which gives an estimate of the marginal detection probabilities
(**|y) While most samples appear to have a non-zero posterior probability
of being an outlier, time indices corresponding to high probabilities can be
identified clearly with 'spikes' in the input waveform, figure l(a). Figure
l(c) shows the estimated posterior expectation of the reconstructed data x
obtained by taking the mean of the reconstructions sampled after the burn-in
period, while Figure l(d) shows the histogram of sampled σ\ values following
burn-in. The distribution is quite well-determined around its mode.

Initialization of the sampler can be achieved in many ways but, if the
method is to be of practical value, we should choose starting points which
lead to very rapid and reliable convergence. The AR model parameters and
excitation variance are initialized to maximum likelihood estimates obtained
as if the data were uncorrupted. This should be a fairly robust starting point
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when only a small proportion of the data are corrupted. Noise variances are
initially sampled from their inverse Gamma prior. Probably the most criti-
cal initialization is for the detection vector i. Two schemes are considered:
assign all zeros to i or assign a robust estimate obtained from some other
simple detection procedure. The first scheme is used for the graphical re-
sults presented here. From visual examination of the reconstructed output
samples, the algorithm appears to converge within 10 iterations, and this
is supported empirically by examination of the evolution with time of the
individual unknowns. Even faster convergence is observed when the second
initialization scheme is used for i. A rough and ready initial value for i
is obtained by thresholding the estimated AR innovations sequence corre-
sponding to the corrupted data (Godsill et αL 1996), with a threshold set
low enough to detect all sizeable outliers. This gives the algorithm a good
starting point from which the detection vector i will converge very rapidly.

The first 20 iterations of σ% are displayed in figure 2(a) and (b) under
various sub-block sampling schemes and initializing i to be all zeros. Under
our proposed scheme elements of it and xt are sampled jointly in sub-blocks
of size q. This is contrasted with the independent sampling scheme used by
McCulloch and Tsay (1994), applied here in sub-blocks. Figure 2(a) shows
the comparison for the minimal sub-block size q = 1. The joint sampling
scheme is seen to converge significantly faster than the independent scheme
which did not in fact reach the 'true' value of σ\ for many hundreds of it-
erations. In figure 2(b) the sub-block size is 4. Once again convergence is
significantly faster for the joint sampling method, although the independent
method does this time converge successfully after approximately 10 itera-
tions. Note that the initial rate of change in σ2

e does not depend strongly on
the block length chosen. This is as a result of the additional reconstruction
operation (7) which is performed each iteration for the whole data block
and helps to reduce the dependency on q. Thus we recommend that a small
value of q is used in a practical situation. The convergence time of the in-
dependent sampling scheme was also found to be far less reliable than the
joint scheme since it can take many iterations before very large outliers are
first detected under the independent scheme. The differences in convergence
demonstrated here will be a significant factor in an application such as this
where processing speed is of the essence.
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Figure 2: (α) and (b): Convergence of innovations variance under different
sampling strategies, (c) Prediction error from y. (d) 'Cleaned7 data using
thresholded prediction error for detection

From a computational point of view it will not be possible to run the
sampler for very many iterations if the scheme is to be any practical use
in audio restoration. Longer recorded extracts processed using the sampler
were thus limited to 15 iterations per data block. Restorations were taken
as either the mean of the last 5 reconstructions or the last sampled recon-
struction from the chain. This latter approach is appropriate for listening
purposes since it can be regarded as a typical realization of the restored
data. Informal listening tests show that either scheme leads perceptually to
very high quality restorations. The processed material is rendered entirely
free from audible clicks and crackles in one single procedure, with minimal
distortion of the underlying audio signal quality. The same degree of noise
reduction is not achievable by any other single procedure currently available
for audio restoration, and certainly not without much greater distortion of
the sound quality.

For visual comparison purposes we compare results with those obtained
from the detection and interpolation procedures commonly used for restora-
tion of AR-modelled audio signals, as described in Vaseghi and Rayner (1990)
and Godsill et al. (1996). AR coefficients a and innovations variance σ\ are
estimated by maximum likelihood from the corrupted data sequence and
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the corresponding prediction error sequence is calculated by inverse filter-
ing. Outliers are detected at those samples whose prediction error magnitude
lies above a chosen factor times the prediction error's standard deviation.
Corrupted samples are then restored by maximum likelihood missing-data
interpolation, conditional upon the AR coefficients (Janssen, Veldhuis and
Vries, (1986)). The whole procedure can be iterated to improve robustness.
The results shown in figure 2(c) and (d) used AR coefficients estimated from
the Gibbs Sampler output in order to see a comparison with the 'best case'
of the standard method. A detection threshold of 3σe was applied to the pre-
diction error sequence, figure 2(c), leading to the 'cleaned' data sequence of
figure 2(d). Comparison with the Gibbs Sampler output (figure 1 (c)) shows
undetected outliers around sample numbers 250 and 950 which are likely
to be audible in listening tests. Lower detection thresholds can of course
lead to the removal of all outliers but at the expense of many 'false alarm'
detections and a corresponding reduction in sound quality as compared with
the Gibbs Sampler.
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