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We study local sensitivity in Bayesian Decision Theory, allowing for
imprecision in the Decision Maker's preferences and beliefs. Our tools
are based on Frechet derivatives of operators and their norms. They
allow us to detect cases in which robustness is lacking and, eventually,
the most critical judgments determining choice.

1. Introduction. Our initial framework is that of Bayesian Deci-
sion Theory and Inference, see Savage (1972). Several authors suggest that
Bayesian foundations place excessive demands on the Decision Maker's (DM)
judgments. This motivates the development of tools to check the sensitivity
of conclusions of a Bayesian analysis with respect to changes in the inputs.
Berger (1994) provides an excellent review. However, most work has con-
centrated on sensitivity to the prior. As we suggest in our discussion to
that paper, fundamental (Rίos Insua and Martin, 1995) and practical (Rίos
Insua and Martin, 1994) issues suggest developing a general framework for
sensitivity analysis allowing for perturbations both in preferences and beliefs.

This paper studies this question from a local perspective, that is, we
study whether small perturbations in the inputs to the analysis lead to im-
portant changes in the conclusions. For this, we use Frechet derivatives. We
generalize previous results by, among others, Diaconis and Freedman (1986),
Srinivasan and Trusczynska (1995), Basu et al. (1993), Sivaganesan (1993)
and, specially, Ruggeri and Wasserman (1993), to the more difficult case,
see Berger (1994), of imprecision in both the utility and the prior.

We think of our results in an iterative fashion. Our analyses allow us to
detect cases in which robustness is lacking. Moreover, we provide procedures
suggesting what additional information we must elicit from the DM to in-
crease robustness. It is specially relevant that this information is meaningful
to the DM, against somewhat skeptical opinions (Berger, 1994; Das Gupta,
1995). Hence, we could think of incorporating our results into a more general
framework for sensitivity analysis in Decision Theory, see Rίos Insua (1990).

We shall use the following notation: S will designate the set of states
θ, endowed with a σ-field B. P will be the prior distribution modeling the
DM's beliefs, updated to the posterior P( |x), when x is the result of an
experiment with likelihood l(x\s) over a sample space X. The DM makes
decisions a £ A, the space of alternatives. We associate a consequence c G C,
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to each pair (α,$). Preferences over consequences are modeled with a utility
function w, and we associate to each alternative α its posterior expected
utility

u(α,s)l(x\s)dP(s) N( p x
T(u P α) - *- - l ' ' }

/ l(x\s)dP(s) D{<F)

We maximize T(u, P, α) in α, as a way of obtaining the optimal alternative.
The assessment of P and u is far from simple, and the DM may demand

ways of checking the impact of u and P on the conclusions. We do this, in
Section 2, with the aid of some tools from functional analysis. The first one
is the Frechet derivative of T(u,P,α). We use it to approximate changes in
expected utility when u and P change. We also use the Frechet derivative
norm, to bound changes in expected utility when u and/or P change.

However, we run into some problems, which we deal with in Section
3. We introduce then another sensitivity measure, in presence of classes of
utility functions and prior distributions, and illustrate potential uses.

We assume that sup5€5 l(x\s) < oo, and sup5£5 |ii(α,θ)|/(x|θ) < oc. All
integrals are over 5, which will be a Polish space.

2. Derivative of Bayes operator. Let us study the local behavior of
T(tx, P, α), the operator associating to each pair (u, P) the posterior expected
utility of α. Typically, α will be an alternative suggested as optimal. Since
it remains fixed in our study, we shall designate the operator by T(u,P),
and call it Bαyes operator. Similarly, N(u,P,a) will be called N(u,P). We
compute the Frechet derivative of T(u,P):

DEFINITION 1 The derivative ofT(u,P), with respect to u, is the continuous
linear operator TU) over the set T of bounded functions on C, verifying

Vm e T, T(u + m,P) = T(«,P) + fu(m) + o(||m||).

DEFINITION 2 The derivative ofT(u, P), with respect to P, is the continuous
linear operator Tp, over the set Λ4 of signed measures on (S,B), verifying

W G M, T(u,P+δ) = T(u,P) + tP(δ) + o(\\δ\\).

Previous work on local Bayesian robustness has focused mainly on Definition
2, but see Gustafson et al (1995).

DEFINITION 3 The derivative of T(u,P), with respect to u and P, is the
continuous linear operator Tup, over T X λΛ, verifying

V(m,6)<ETxM, Γ((«,P) + (m,δ)) = T(u,P) + fuP(m,δ) + o(||(m,6)\\).
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We shall use the following norms over the incumbent vector spaces:

• In T, the supremum norm, i.e. | |Ή|| = sup|w(c)|,
cec

• In Λΐ, the total variation norm, i.e. | |P | | = sup|P(A)|.
AeB

• In T x M, IKm^Hoo = max{||m

We provide now the derivatives:

THEOREM 1

(1) tu(m) = T(m,P)

(2) fP(δ) =

(3) tuP{m,δ) = tu{

PROOF. (1) is immediate since T(u,P) is linear in u. (2) is in Ruggeri and
Wasserman (1993). For (3), consider the directional derivative:

1 \N(u, P) + εN(m, P) + εN(u, S) + ε2N(m, 6) _ N(u,P)]
% ε [ D(P) + εD(δ) D(P) \

1

D(P)
[N(m, P) + N(u, 6) - T{u, P)D(δ)}.

Let us call it Tup(m,δ). It satisfies Frechet derivative conditions:

T((«, P) + (m, δ)) - T(u, P) - fuP(m, δ)\ =

N(τn,δ) D(δ)N(m,P)

D(P)(D(P)

D(δ)N{u,δ) D2(δ)N(u,P)

D(P)(D(P) + D(δ))

\D(P) + D(δ)\

D(P)11 κ• '] " ' D(PY

The four terms are o(||(m, ί)||oo)
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1. |AΓ(m, δ)\ = I / ra(α, θ)/(α|s)cW(s)| < sup |m(α, s)| sup/(x|θ) / |dtf(s)|

< 2sup/(φ)||m|| | |tf| | < /ίi||(ra,<5)||^, with Iί\ = 2 sup Z(φ) and ob-
serving that ||ra|| and \\δ\\ are smaller than ||(m, #)||oo? a n ( i , in general,

J\dδ(s)\ < 2\\δ\\.

2. |I>(ί)| < 2sup/(φ)||£|| < KrWimJ)^.
\N(m,P)\ < J\m(α,s)\l(x\s)dP(s) < D(P)\\m\\ < D(P) \\(m,δ)\U

Hence, \Wi\N(m,P)\ < K^mMl

3. \N(u,δ)\< J\u(α,s)l(x\s)dδ(s)\< 2 sup \u(α, s)l(x\s)\\\δ\\

1100, with K2 = 2 sup \u(α,s)l(x\s)\. Therefore,

δ)\ < Λr3||(m,ί)||2o, with K3 = K^j

4 ^i\N(u,P)\ < KA\\{m,6)\\l» with K4 = ^ 2

Then,

T((u,P)+(m,δ))-T(u,P)-tuP(m,δ)\<

(4) jD{P)TD{δ)\{2Kl + Ks + *«)II(»M)||L = KP\\(m,δ)\\l.

Since \D(P) + D(δ)\^D(P) when P||-*0, then \T((u,P) + (m,δ))-T(u,P)
-tuP(m,δ)\ is o(\\(m,δ)^).

Moreover, Tup is bounded and linear, so we have the result. •

In principle, we could think of using the Frechet derivative norm as a local
sensitivity measure of T(u, P) with respect to changes in u, P or (u, P), since
the change in expected utility due to using (u, P) instead of (u + m, P + δ)
may be approximated from the definitions of derivative and norm of an
operator. For example, if we consider perturbations in both the utility and
the prior, since \\fuP\\ = s u p ^ ^ ^ l Γ u H m ^ l / I K m ^ H o o ) , we have

(5) \T(u + m,P + δ ) - Γ(«, P)\ < \\tuP

The computation of norms is relatively straightforward when no con-
straints are placed on the perturbations on P and u. First, note that
||ΓU|| = 1. Hence, in this case the norm is independent of IA, suggest-
ing the same local robustness for all utility functions. This would suggest
adding constraints to T, as we do in Section 3. To perturb probabilities,
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we consider the set Δ C M of signed measures δ with 0 mass (δ(S) = 0).
Therefore, (P + δ)(S) = 1. However, we cannot guarantee that P + δ is a
probability distribution. We deal with this issue in Section 3. Then, intro-
ducing h(s) = l(x\s)(u(a,s) - T(u,P)), h = sup5 G 5 h(s), h = m{seS h(s),
Ruggeri and Wasserman (1993) prove that when P is a non atomic distri-
bution, \\fp\\ = (h - h)/D(P). This result is actually valid for a general
P, when / and u are continuous, and S is convex. Finally, we easily have
\\tuP\\oo = l + (h-h)/D(P).

Note that, in this case, the norm allows us to study local sensitivity with
respect to (w, P), decomposing it in sensitivity with respect to u and with
respect to P: the norm depends both on u and P, so both effects add up.
Typically, we shall observe more sensitivity in general studies than in anal-
yses with respect to the prior only or the utility only.

3. Local sensitivity of Bayes operator. The above results are inter-
esting from a mathematical point of view and may be used in infinitesimal

sensitivity studies. However, their application in Decision Theory demands

some care for, at least, two reasons:

• P + δ is not necessarily a probability distribution, since δ is a signed
measure.

• The sensitivity study is meaningful only if we normalise utilities: it
is not the same a change of 1, when u varies between 0 and 1, than
when it varies between 0 and 1000. Then, we have the same problem
as above, since u + m might not be normalized.

Besides, in most applications we shall have some information about u
and P, which allow us to constrain them to certain classes li and Γ. Hence,
we should entertain sensitivity studies over classes of utilities and priors.
However, the general problem of computing Frechet derivative norms with
respect to classes is difficult, so we shall use another local sensitivity measure.

First, rather than working with neighborhoods of (^,P), we shall use

neighborhoods of the origin as follows: for each neighborhood E of ( M , P )

within the class, consider Ef such that (m, δ) G Ef <=> {u, P) + (m, δ) G E.

The sensitivity measure we use is the supremum of the absolute value of the

derivative in the neighborhoods of interest. Note that: V(ra,#) G E'

(6) \T(u + m,P + δ)- T(u, P)\ < sup \fuP(m', δ')\ + o(||(m, ί)||oo)-
{Ίδ')E'

Compare this inequality with (5).

In fact, we shall limit our attention to the following classes:
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TQ = {r : p. < τ{Aj) < pj, j = 1,.. . ,n}, where A\,..., An is a measur-

able partition of S and Σj=i P < * < Σj=i Pj

= {̂  C—>IR : ^_i < v(c) < Vi, Vc G Ct , i = l,...,fc}, where
Ci, . . . , Cfc is a measurable partition of C, for an appropriate σ-field in
C, vo = 0, and v* = 1.

They are associated with the most popular methods in prior (quantile me-
thod) and utility (probability equivalent method) elicitation. Moreover, they
lead to relatively simple computations. Note though that the study would
be similar for other classes.

For computational reasons, we must constrain the neighborhoods of in-
terest as follows. For u G Uκ > let m = ε(v — u) with υ G UK and ε G [0,1].
In such a way:

• u + m = (1 - ε)u + ευ G Uκ

• We bound the norm of elements in the neighborhood, since ||m|| <

For similar reasons, for P G ΓQ, we take δ = ε(Q - P) with Q G TQ and
ε G [0,1]. This type of neighborhoods is very popular in sensitivity to the
prior studies, and leads to ε-contaminated classes, see Berger (1994).

We then have:

THEOREM 2 Let p = T(u,P), εu > 0, Tεu = {m : m = ε(v - u), v G
, ε < εw}. ΓΛen:

sup |Γtf(

where Bi = {s G S : (α,s) = c

PROOF. For ε < εu, we have:

sup I
v£Uκ

= εu max ^ ̂ ( t ; t - p)P(Bi\x), -

1 t = l

= sup I f ε(υ - u)(α,s)dP(s\x)\ =
v£Uκ J

εu sup I l{v{a,s) - p)dP(s\x)\ = εu sup Σ / ( v ( α ' s ) " ρ)dP(s\x)

εu max <

fΣ / (v(α>s)-~ jB

- i n f
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Since

(t>t _! - p)P(Bi\x) < jB(v(α,s) - p)dP(s\x) < (Vi - p)P(Bi\x),

we get the result, noting that there are functions v £ UK for which the infi-
mum and the supremum are attained. D

In the case of imprecision only in the utility function, Tu measures the change
in expected utility exactly. Hence, it is not only a local sensitivity measure.
In particular, when εu — 1 we get a global sensitivity measure over Uχ

An important consequence of Theorem 4 is that for those cases deemed
too sensitive, i.e. when we believe that we must reduce the supremum of the
derivative, the result suggests which subsets of C demand more elicitation
efforts: the supremum is decomposed in terms relative to the sets C{. We
can even suggest a direction in which information should be elicited. We
illustrate this fundamental idea in Examples 1 and 2 below.

Theorem 3 deals with the case of imprecision in the prior distribution
only. Ruggeri and Wasserman (1993, Thm. 6) provide a related result. Their
prior P needs to be non atomic, and their class requires quantiles assessed
precisely. Also, we do not use the norm, but the supremum of the derivative.

THEOREM 3 Given P £ YQ, let Aεp = {δ : δ signed measure such that

δ = ε(Q-P),Q eYQ,ε<εP}. Then,

sup|fp(«)| = ^ r m a x { f l l r ] ί 2 } ,
Δ ε p D{P)

where H\, Ή.<ι are, respectively', the optimal values of linear programming

problems
n n

max Ύ^Pj hj min /]pjh.j

s.t. s.t.
n n

Pj < PJ < Pj Pj < PJ < Pj

with hj = sup his) and hj = inf h(s).

PROOF: For 6 = ε(Q - P), with Q € ΓQ, ε < εP, and p = T(u, P), we have

\ΪPV>)\ = TϊTm \N(UΛQ ~ P)) ~ pD(ε(Q - P))\ =
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D(P)

\N(u,Q)-pD(Q)\ =

\Jh(s)dQ(s)\ =
3=1

/ (u(ay s) - p)l(x\s)dQ(s)\ =

h(s)dQ(s) .

Then,

SUPΛ \fp(δ)\ =

εp

D{P) max sup £ / h(s)dQ(s),- inΐ £ ί h(s)dQ(
QeΓQ j = 1 JAj Q€ί c = 1 JA3

The result follows now by the well-known fact that the extreme Q's are dis-

crete. The search of the sup (inf) leads to the problem giving Hi (iΓ2). •

Again, the result suggests for which Aj we should assess additional informa-
tion so as to reduce sensitivity. Let us see a forecasting example, taken from
Rios Insua et al. (1995).

EXAMPLE 1. Consider the following model to forecast accidents of a certain

company. Let X^, n^, Dk be, respectively, the number of accidents, the num-

ber of workers and the accident history of the company in period k. Assume

that Xk follows a Poisson distribution with parameter n^λ, with Πk known,

and λ modeling the accident proneness of a worker.

In a specific case, experts provided prior information about λ leading to

the class:

Γ = {Q : <9(0, αi] = pi, Q(αu α2] = P2,Q{α>2, Q>?\ = P3, Q(«3, oo) = p4}

with pi = .25, Vi, α\ = .38, α2 = .58, α^ = .98. For computational conve-
nience, we associate to that information a gamma prior with parameters
p = 1.59 and α = 2.22.

Table 1 provides the range of the predictive mean E(Xk\Dk), when the
prior ranges over Γ, computed with the aid of a result in Ruggeri (1990).

TABLE 1

Year

1988

1989

1990

E[Xk\Dk]
17.8

17.3

17.1

E[Xk\Dk]
206.4

201.2

198.9

These results suggest lack of robustness, since expected forecasts vary widely

when the prior ranges in Γ.
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To increase robustness, we may appeal to our local sensitivity measure,
which will suggest where to center additional elicitation efforts. The results
are in Table 2, which includes the decomposition of the sensitivity measure,
with (ji = hi or — h^.

TABLE 2

Year

1988

1989

1990

sup \E*(δ)\
δ £ Δ ε o

25.15 ε0

11 Ah ε 0

23.22 ε0

5i>52,53,54

25.15, -2.18 x 10" 2 3 , -3.24 x lO" 6 9 ,0

27.45,8.59 x 10- 1 9,2.07x 10- 5 7,6.24x 10~1 5 3

23.22, -5.18 x 10~83, -3.23 x 10" 2 2 3 ,0

For example, if EQ = 2, the imprecision in the expected forecast for
1989 is 5.49 accidents, which might be considered too big. In all years,
the suprema is due to the first quartile (Ji). Hence, we extract additional
information about such quartile from the expert. We divide it in three
subintervals, Iu = [0,0.15), I12 = [0.15,0.2) and I13 = [0.2,0.38) with
probabilities 0.1, 0.05 and 0.1, respectively. Hence, we may keep the same
gamma prior. Then, for example, for 1989, the new value of sup 5 G Δ ε |J5π(ί) |
is 7.76 εo, which is a considerable reduction.

This obviously has an impact on the upper and lower bounds of the
predictive expectation:

TABLE 3

Year

1988

1989

1990

E[Xk\Dk]
53.4

52.0

51.4

E[Xk\Dk]
85.4

79.8

77.9

Note the reduction in ranges from Table 1 to Table 3, suggesting much

more robustness. Π

For the case in which there are changes in both the utility and the prior,

we have the following two results, depending on the corresponding classes of

priors ( Δ e p or Δ^ p ) :

THEOREM 4 With p = T(u,P),

sup \Tup(m, 6)\ — max <

2 = 1
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with H\, H2 as in Theorem 3.

PROOF. The result follows from the expression of the derivative and Theo-
rems 2 and 3. •

THEOREM 5 Let A'ε = {δ : δ e Δ, \\δ\\ < εP} and p = T(u, P). We have:

sup \Tup(m, δ)\ = max <

h-h

h-h
ιW) J

PROOF. Immediate, using the reasoning in Theorem 4 and taking into ac-
count Theorem 2 and Ruggeri and Wasserman (1993, Thm. 3). •

Note the interest of Theorems 4 and 5: if we consider excessive the value
of sup |Tnp(m,ί)|, we may see where do we need to refine the information
to reduce the supremum. Moreover, it separates utility and prior effects,
suggesting additional elicit at ion efforts.

EXAMPLE 2. Suppose S — {si,θ2,S3}. Let a be such that (a,sι) = —1000
pts., (α,θ2) = 0 pts. and (a,ss) = 3000 pts. Suppose we have assessed:

0 < u(-1000) < 0.1 < tί(0) < 0.9 < ^(3000) < 1,

0.3 <pi< 0.4, 0.4 <p2< 0.6, 0.1 < p3 < 0.2, with p{ = P ( ^ ), i = 1,2,3.

Initially, we adopt a utility function UQ and a prior Po such that

= 0, t*o(0) = 0.25, wo(3000) = 1,

= ^, Po(s2) = i , Po(s3) = i .

Suppose also that l(x\si) = 1/3, i = 1,2,3, for the observed x. Then,
p = T(u(hP0) = 0.296.

Due to Theorem 4,

sup \Tup(m,δ)\ = max
Δ

3

t=l

3

i/ Λ

D(py

εp
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with υ0 = 0, vι = 0.1, v2 = 0.9, v3 = 1 and

3 3

Hi = mΆx^^pjhj H2 = min

S.f. 5.*.

j=ι i=i
0.4 < pi < 0.6 0.4 < pi < 0.6
0.3 < P2 < 0.4 0.3 < P2 < 0.4
0.1 < # 3 < 0 . 2 0.1 < p i <0.2

with hj = hj = /(«|θj)(wo(αj5j) - p)J = 1,2,3, since the A/s are single-

tones. We get

hx = hλ = -0.0971, h2 = h2 = -0.0138, Λ3 = Zh = 0.2361.

Then,

3

(7) £ ( υ . _ p)po(Si|a;) = -0.0638 + 0.3042 + 0.1180 = 0.3584,

3

^ ( ^ _ x - p)P0(si\x) = -0.0915,
t = l

and
J5Γi = 0.0028, H2 = -0.0387.

Hence,

(8) sup |T u P (m, ί ) | = max{0.3584εw + 0.0028εP, 0.0915εw + 0.0387εP}.
feuχAεp

Note, first, the interaction between the utility and the prior as in (8). The

most influential term is 0.3584 εn, assuming εu = εp. Then, we should prob-

ably concentrate further elicitation efforts in the utility function. The most

influential term in (7) is 0.3042, due to u(Q). Hence, efforts should concen-

trate on the assessment of u(0). Moreover, we should pay more attention to

the upper bound 0.9, reducing it, if possible. D

The introduction of classes of utilities and/or priors is possible when we
have partial information about u and P. If this is not the case, we may
still do the study as a particular case, choosing neighborhoods of (u, P)
as before, this time with Tc and UK including all priors and all utility
functions bounded between 0 and 1, respectively. Denoting those classes
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by Γo and ZYo? this is equivalent to assuming n — k = 1 in the previous

study, and corresponds to sensitivity for ε-contaminated classes, when the

contaminating classes are the class of all priors over S and the class of all

utility functions bounded between 0 and 1.

COROLLARY 1 (of Theorem 2) Let p = T(u,P) and εu > 0. J^u = {m :
m = ε(υ - w), ε < εu, υ 6 %}. We have

sup \fu(m)\ = max{εw(l - ρ),εuρ).

COROLLARY 2 (of Theorem 3) Let Δ° p = {6 : δ = ε(Q - P), ε < εP, Q e

Γo}. We have

COROLLARY 3 (of Theorem 4) Let p = T(u,P). We have

sup

4. Conclusions. We have provided a framework for general local sen-
sitivity analysis in Bayesian Decision Theory. The framework is general in
that it allows perturbations both in the beliefs and preferences of the DM.
It allows the detection of cases lacking robustness, and, eventually suggests
which additional information may be assessed to increase robustness of deci-
sions. Additional examples in the medical context may be seen in Martin and
Muller (1995). Note though that we do not see these tools as stand-alone,
but rather as complementary to other tools, that could be eventually incor-
porated into a more general, sensitivity analysis based, scheme for Decision
Analysis, see Rίos Insua (1990). Our main point here is to show that the
use of these measures lead to meaningful quantities in terms of differences
of expected utilities, facilitating the assessment of additional information.

Pragmatically, this, in part, would mitigate the asymptotic shortcomings
mentioned in Gustafson et al (1995). On a different stand, another way of
alleviating asymptotic problems is by reducing the neighborhoods of inter-
est, as an attempt to eliminate unreasonable priors, see e.g. Sivaganesan
(1995). In that sense, note that the absolute value of Kp in the expres-
sion of the infinitesimum (4) increases at the rate of the derivative norm.
For example, for Tup, Kp is a function of sup5Gs l(x\s), snpseS l(x\s)2 and



Local Sensitivity Analysis In Bayesian Decision Theory 131

sups€5 \u(α,s)\l(x\s)2. This could help us to reduce the neighborhoods of
interest, in computing the values of εu and εp in Section 3. This points out
to the very important issue of estimating the infinitesima, which we have
considered here dismissable, as a way to identify neighborhoods where the
approximation is acceptable.

Many other issues still remain. For example, we lack formal methods to
find out whether an error is big or small. The extension of computations in
Section 3 to other classes should be of interest, including shape constraints,
such as monotonicity of the utility functions and unimodality of the prior
distributions.

It should be also important to study similar issues for the operator dif-
ference of posterior expected utilities of two alternatives. This operator is
specially relevant in robustness studies, since it is basic when looking for
nondominated actions.
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Local Sensitivity Analysis In Bayesian Decision Theory

discussion by
KATJA ICKSTADT

Uniυersitάt Basel

The main goal of sensitivity analysis is to discover how changes in the
model inputs affect the inference. In a Bayesian setting the inputs to con-
sider are the likelihood, the prior, the utility or loss function and the data.
Most of the literature in this area deals with investigating sensitivity to the
prior; only a few contributions consider sensitivity to the likelihood [e.g.
Cuevas and Sanz (1988), Dey et al. (1995)]. Sensitivity to the utility or
loss function has hardly been analysed at all, although those are important
components in decision theory. The paper by Martin and Rίos Insua over-
comes this gap. Furthermore, the authors offer an elaborate mathematical
structure for studying imprecisions in both the utility function and the prior
simultaneously.

Frechet derivatives have widely been used in local sensitivity studies and
Martin and Rίos Insua generalize them to their situations in a very natural
way. In a Bayesian sensitivity analysis the Frechet derivative is especially
appropriate: the Bayes operator T(IA, P) evaluated at some initial values
(^, P) is compared to all the other values T((w, P) + (m, 6)) (cf. Definition 3)
in a neighborhood of (u7P). Thus, in contrast to directional derivatives the
Frechet derivative approximates the differences T((u, P) + (m, 6)) - T(u, P)
in all directions simultaneously.

The norms Martin and Rίos Insua have chosen are appropriate for ro-
bustness studies, since they preserve volumes. For example, the image of an
element (m, δ) of the unit ball in T X ΛΊ, ||(τn, <$)||oo? is an element of the
unit interval [0,1]. In the talk another norm in T X M was introduced, a
convex combination of norms in T and in M, i.e. of changes in u and in
P. It is remarkable that the authors are able to give explicit computations
(analogous to Theorems 1 and 3) for this other volume preserving norm as
well.

Martin and Rίos Insua introduce two different measures for local sensi-
tivity, the operator norm (cf. (4)) as well as the supremum of the Frechet
derivative (cf. (5)). They indicate that the second measure has the advan-
tage of allowing sensitivity analysis with respect to certain classes of utilities
and priors. However, the supremum of the Frechet derivative is calculated
for changes in the utility (cf. Theorem 2), for changes in the prior (cf. The-
orem 3) and for changes in both utility and prior (cf. Theorems 4 and 5),
whereas the operator norm is just determined for imprecisions in the prior
and for imprecisions in both utility and prior. What can be stated about
the operator norm if disturbances appear in the utility function only?

133



134 K. Ickstadt

My only suggestion for improvement concerns the examples. Although
the supremum of the Frechet derivative (cf. (5)) is the more fruitful local sen-
sitivity measure, it would be interesting to compare the results of Examples
1 and 2 to the results one would obtain applying the operator norm (cf. (4))
as a local sensitivity measure. Example 1 studies changes only in the prior.
In order to emphasize the new ideas of this paper an example investigating
changes only in the utility function would have been more helpful. Example 2
is a nice application in which imprecisions in both utility and prior are taken
into consideration. Still, there remain many more features to explore, e.g.,
what difficulties arise with an uncountable set 5, and how do data influence
the analysis (recall, that the Bayes operator T(u, P, a) depends implicitly on
the data x as does the supremum of the Frechet derivative).

I agree with the authors that future work would be welcome extending
the results to other classes of priors, utilities and alternatives.
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REJOINDER

J. MARTIN AND D. RIOS INSUA

We are grateful to Dr. Ickstadt for her neat discussion. We have al-
ways found fascinating how Bayesians have basically concentrated on issues
regarding sensitivity to the prior. We have argued several times that robust-
ness should be approached from a more global perspective considering joint
sensitivity to various inputs to an analysis. Our initial studies with respect
to the prior and the utility/loss are encouraging we believe.

Having said that we view partial sensitivity studies as first steps towards
more global analysis. In that sense, and given space constraints, we had to
limit the material in the paper.

As an example, Dr. Ickstadt mentions no operator norm for the case of
imprecision in the utility only. With no constraints in the utility, the norm is
1, hence the result is not very useful. With constraints, we run into numerical
problems as with the other cases and we have to undertake the approach in
Section 3. That is why we provided no examples with sensitivity with respect
to the utility only, since they are encompassed in the more interesting, and
technically more difficult, example 2. Also, example 2 is relatively easy in
that the set of states is finite. Numerical results are not much harder in
the continuous case, since we have to appeal only to nonlinear and linear
programming problems. For our settings there are many tools available for
the solution of these problems. See e.g. Nemhauser et al (1989). Finally,
the usual Bayesian argument support our consideration of only the observed
data, and not those potentially observed. This last point might be of interest
if a procedure is going to be used by several users, but leads us to the shaky
ground of frequentist inference.

We view this paper as a first step for general local sensitivity analysis.
Let us note that several of the discussants to Berger's (1994) review suggest
that this type of joint studies deserve much more attention. We hope that
more authors join us in the fun in the near future.
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