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We present a method for model selection based on a proper reference
prior. The choice of prior is somewhat arbitrary so Bayesian sensitivity
analysis plays an important role in the analysis. We illustrate the
methods in the context of a case study. We consider survival times
(e.g., time to recurrence of depression) from a clinical trial. Because of
the nature of the application we consider a mixture model that allows
for a "surviving fraction." A Bayesian treatment of this model has been
considered previously by Chen, Hill, Greenhouse and Fayos (1985),
Greenhouse and Paul (1995) and Stangl (1991). In this paper, we are
concerned with the question: does treatment effect both the probability
of being a survivor and the survival times of "non-survivors"? The
question is cast as a model selection problem. Reference priors give
rise to improper posteriors and, moreover, do not lead to well defined
Bayes factors. We adapt the idea of Kass and Wasserman (1995) who
proposed "unit information priors." These priors are somewhat ad-hoc.
To address this concern, we perform a sensitivity analysis with respect
to the priors. We also consider case influence. Our conclusion is that
treatment is important for determining long term survival but, among
short term survivors, treatment may be less predictive of survival time.

1. Introduction: The Scientific Problem and Previous Analy-
ses. This paper is about model selection for clinical trials data. We present
a modest case study to illustrate a general strategy for Bayesian model selec-
tion. We suggest a simple method for constructing proper reference priors.
The argument for this prior might be considered tenuous but we address the
arbitrariness of the prior by performing sensitivity analysis. The calcula-
tions are performed using a combination of asymptotic approximations and
Markov chain Monte Carlo. We will analyze survival data from a random-
ized controlled clinical trial but the methods we present are applicable to
many model selection problems. There is some debate about whether model
selection is appropriate in Bayesian inference. Some authors have argued
that many model selection problems should be treated as estimation prob-
lems. There is much virtue in these arguments but we do not wish to enter
into this debate here. We shall begin by assuming that the model selection
is appropriate for our problem. The current problem provides an interesting
case study and is a chance to explore the methodology we are proposing.
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1.1 Background on the Clinical Trial It is now widely recognized that
the majority of patients who have had an episode of major depression will
more than likely suffer a recurrence of their illness (Kupfer et al., 1985).
Therefore, a major concern in the treatment of depression has focused on
therapeutic interventions for the prevention or delay of the occurrence of
subsequent episodes. These interventions have focused primarily on treating
non-symptomatic patients with maintenance doses of pharmacotherapies,
such as imipramine, that have been shown to be effective in the treatment of
acute episodes of depression. Clinical trials for the assessment of the efficacy
of such interventions are called maintenance therapy clinical trials. In the
late 1970's the National Institute of Mental Health (NIMH) sponsored one
of the most important trials of this type (Prien et al. 1984). An objective
of this paper is to re-analyze the results of this trial using modern Bayesian
methods.

The design of the NIMH study is as follows. Patients in an acute episode
of depression who had experienced at least one previous episode of depression
in the previous 2 1/2 years were eligible to participate in the maintenance
trial if (i) they responded to imipramine for treatment of the acute illness,
and ii) once stabilized remained symptom free for a period of eight consec-
utive weeks. Eligible patients were then randomly assigned either to receive
maintenance doses of imipramine or placebo. During the maintenance phase,
patients were followed for two years, or until they had a recurrence of de-
pression. There were 78 patients randomized to the imipramine group, and
69 patients in the placebo group. The objective of the NIMH study was to
determine whether imipramine at maintenance levels prevents or delays a
recurrence of depression. For more details see Greenhouse, Stangl, Kupfer
and Prien (1991).

Figure 1 presents the Kaplan-Meier survival curves for the time to recur-
rence of depression for patients in each treatment group. A comparison of the
survival curves suggests that patients assigned to the imipramine group had
fewer recurrences than patients who received placebo ("off-imipramine").
Prien et al. (1984) using the Mantel-Cox test for the equality of the two
survival distributions found a highly statistically significant difference (p <
0.001). An interesting feature of these curves is that after a period of time
a fraction of patients have a much lower if not negligible risk of a recurrence
of depression. This feature of the survival distribution characterized by the
survival curve "flattening-out" at a non-zero value often occurs in practice.
We note that approximately 58% of the patients in the imipramine group
survive the full two years of the maintenance phase without experiencing
a recurrence of depression compared to about 30% of the patients in the
placebo group.

A class of biologically plausible models for such survival distributions
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consists of a mixture of two populations. This model assumes that a fraction
of the patients will experience the event of interest, e.g., a recurrence of
depression, and the remaining patients will survive for a very long time
without experiencing the event. In some applications this latter group, the
surviving fraction, are considered to be "cured" (Boag 1949; Berkson and
Gage 1952). Our goal in this paper is to use the mixture survival model
to investigate the efficacy of maintenance doses of imipramine to prevent or
delay the recurrence of depression. Our methodological goal is to illustrate
a general strategy for Bayesian model selection that can be implemented in
practice.

1.2 Overview. In section 2 we present the model, the prior, and we dis-
cuss how the computations are done. The computations are non-trivial and
we discuss three methods for doing them. The results are presented at the
end of section 2. In section 3 we carry out a sensitivity analysis. We find
that the results in section 2 are quite robust. More importantly, we discover
to which prior the posterior is most sensitive. We also consider case influ-
ence. Based on the results in section 3 we select one model. In section 4
we briefly discuss some inferences from the selected model. We make some
closing remarks in section 5.

2. Model Specification, Computations, and Analysis.

2.1 The Model. We will speak of "survival times" throughout this pa-

per. It should be understood that "survival" in this context means "non-

recurrence of depression." Let T{ be the survival time of subject i and let

Ci be the censoring time for subject i. Let 6{ = 1 if T{ < C{ and δ{ = 0

otherwise. We observe (Yi, £χ) , . . . , (Yn, δn) where Y{ — min{Tt , C{}. We use

a model for T{ with the following survival function:

(1) STt(t)=pi + (l-pi)G(t\θi)

where pi G [0,1] is the probability of being a survivor (i.e. of being "cured")
and G(t\θ) is the survival distribution for the patients who are "not cured."
For the application to the NIMH study we take G(t\θ) = exp(-θt), an ex-
ponential distribution with hazard rate θ. In the literature (1) is called a
"surviving fraction model" or a "cure model" since a fraction of the popula-
tion p do not have a recurrence. A number of authors motivate and discuss
derivations for (1) (see for example, Farewell 1982; Greenhouse and Wolfe
1984; Chen, Hill, Greenhouse, Fayos 1985). Stangl (1991) was the first to use
the mixture survival model in a Bayesian analysis of the results of the NIMH
study to investigate heterogeneity of treatment effects across participating
centers (see also Stangl and Greenhouse, 1995).

Let Xi = 1 if patient i was treated with imipramine and let X{ = 0
otherwise. We relate the covariate X to the parameters p and θ in (1) by
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TABLE 1. The Four Models.

Model

M1

M2

M3

M4

7o

•

•

•

•

7i

•

•

βo

•

•

•

•

βl

φ

•

assuming that

(2) 1

(3)

Ag(ft/(l-ft))
log(ί )

= 7o

= βo βxXi-

The "surviving fraction" model is unrealistic since survivors are assumed
to have an infinite survival time. We view the notion of an infinite survival
time merely as an approximation for some longer survival time well beyond
the two year limit of this study. In other words, we refer to a patient as
being a "survivor" if the patient's probability of recurrence during the two
year study period is negligible.

Our model selection problem is concerned with the specification and
assessment of the treatment effect in model (1). There are four models of
interest:

Mi: (7o,7i,A),/3i)eiR4,
M2: (7o,/?o,/?i)eϋK3and7l = 0,

M3: (70,7i, A)) € M3 and βτ = 0 and

M4: (7o, βo) G B? and 7 l = βx = 0.
Schematically, the models may be represented as in Table 1.

In Mi, treatment determines both whether someone is a survivor and also
affects the hazard rate among non-survivors. In M2, treatment only affects
the hazard rate among non-survivors. In M3, treatment only affects the
probability of being a survivor. In M4, treatment has no effect. To better
understand the models, Figure 2 shows survival functions for treated and
untreated patients for three hypothetical situations corresponding to Models
1, 2 and 3 respectively. We see that, for Model 1, the curves separate quickly
and have different asymptotes. In Model 2, the curves separate quickly but
have the same asymptotes. In Model 3, the curves separate slowly but
have different asymptotes. In Model 4, not shown, the two curves would be
identical.
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Figure 2: Hypothetical survival curves for Models 1) 2 and 3. The solid line
is the treated group; the dashed line is the untreated group.

We will determine

Pr(Mi\data) =

where πij = f L(ωj)πj(ωj)dωj and ωj represents the vector of parameters for
model Mj (see Jeffreys, 1961; Cornfield, 1966; Kass and Raftery, 1995) For
another example of model selection in survival models, the reader is referred
to Raftery, Madigan and Volinsky (1995).

2.2 The Prior. We are interested in using a reference prior for this
problem such as τr(/?o,/?i,7o,7i) °< l However, it is well known that mixture
models can lead to improper posteriors if improper priors are used. To
see this, let 7 = (70,71), let β = (/?o,/?i) and consider the latent variable
Z = ( Z i , . . . , Zn) where Z{ = 1 if subject i is a survivor and Z{ = 0 else.
The posterior can be written as

(4) p(η,β\data) = Σp(η,β\data,Z)p(Z\data)
z

the sum being over all 2 n configurations of Z. There is one term in the sum
(4) corresponding to Z — (0, . . .,0). For this term there is no information
about 7 in the data. Hence, the posterior for 7 is equal to the prior and if
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the prior is improper, so is the posterior. Of course, since we are interested
in hypothesis testing, we will need proper priors anyway. It is worth noting
that intrinsic Bayes factors (Berger and Pericchi 1994) and fractional Bayes
factors (OΉagan 1995) are not useful here since the posterior, under the
reference prior, is improper for any sample size. Instead we seek a proper
reference prior.

For simplicity, we shall use independent, normal priors on all the param-
eters:

(5) TO ~ W(7o*, αg), 7 l ~ N(0,aj), β0 ~ N(β*0, b
2

0), β1 ~ JV(0,6?).

A priori we assume no treatment effect. We need to choose 7Q, /?Q? αo, αi, &o
and b\. We shall take 7Q and β$ equal to their maximum likelihood estimates
under the full model. This makes the prior data dependent but since βo and
7o are common to all models under consideration, these are not the essential
priors and we expect this choice to be of little consequence. (This is discussed
more fully in Section 3.1). The more serious matter is choosing α 0, αi, 60 and
61. Kass and Wasserman (1995) have suggested that in testing problems,
it is reasonable to use "unit information priors." These are priors whose
concentration is about the same as the concentration of the likelihood after
one observation. Kass and Wasserman (1995) argue that using a prior whose
information content is about that of one observation seems often to lead to
reasonable inferences. A similar idea is used in Spiegelhalter and Smith
(1982). A crude method for determining the variance of a unit information
prior for a parameter ω is to compute the asymptotic standard error s.e.(ώ)
of the maximum likelihood estimate and define the standard deviation of the
prior to be s = y/n[s.e.(ώ)]. Again, this introduces some data dependence
into the prior (except in the special case where the standard error does not
involve an estimate of the parameter). But in well behaved problems, s will
converge to a fixed constant almost surely so the data dependence vanishes
asymptotically. To implement this idea here, we set α0 = V^[ 5 € (7o)]? α i =
\/w[θ.6.(7i)], b0 — y/n[s.e.(βo)] and b\ = y/n[s.e.(βι)] where the standard
errors are based on the usual asymptotic approximations from the full model.

Clearly this choice of prior is open to many criticisms. The unit infor-
mation idea seems intuitively reasonable but could certainly be questioned.
Moreover, the notion of sample size is a foggy issue. We shall take n to be
the number of cases but one could reasonably argue that censored observa-
tions contribute less than one unit of observation (see for example Raftery,
Madigan, Volinsky 1995). All this suggests that some sensitivity analysis is
in order. Given the complexity of the computations involved, we will need to
stick to simple robustness calculations. In section 3 we use simple Bayesian
robustness methods to at least partially address these concerns about the
arbitrariness of the prior.



48 J. Greenhouse and L. Wasserman

2.3 The Computations. We need to find Pr(Mi\data) for i = 1,2,3,4. To
begin, for each of the four models, a sample from the posterior was obtained
using a Markov chain Monte Carlo. We used a "Metropolis within Gibbs"
scheme driven by a Gaussian random walk (Tierney 1995). We drew 10,000
samples from each of the four posteriors. Using a proper prior turns out
to be very important in this problem. If we had used a flat prior then the
posterior would have a flat spot far in the tail, corresponding to the improper
component. Figures 3a and 3b show the joint likelihood function and log-
likelihood function, respectively, for 71 and β\ with 70 and βo held fixed
at their maximum likelihood estimates. In Figure 3a, it appears that the
likelihood function is very well-behaved. Yet in Figure 3b, the plot of the
log-likelihood function shows the flat spot in the tail quite clearly. If the
Markov chain is run for a short time there will be no problem. But if the
chain is run a long time, then eventually it will visit the tail. When it does
so, the chain behaves essentially like a random walk, moving erratically in
the flat region with no hope of moving back to a region of high probability.
Thus, the proper reference prior serves the dual purpose of providing a basis
for testing and improving the performance of the Markov chain Monte Carlo.
Presumably a very flat proper prior will also produce erratic chains since it
will mimic the behavior of the posterior when the prior is flat. For this reason
we recommend against proper but very diffuse priors in these models. We
emphasize that this is not a problem with multimodality or slow convergence
of the Markov chain. Paradoxically, long chains create more problems than
short chains in this case.

For each model M2 , we need to calculate mi = f L(ω{)π(ωi)dωi, i =
1,2,3,4 where L(-) is the likelihood, τrz is the prior and ω{ is the set of
parameters for model M{. Unfortunately, the output from a posterior simu-
lation does not provide a direct estimate of m t . There is a quickly growing
literature on computing the normalizing constant rrii from simulation; some
recent papers include Carlin and Chib (1995), Chib (1994), DiCiccio, Kass,
Raftery and Wasserman (1995), Gelfand and Dey (1994), Green (1995), Kass
and Wasserman (1992), Lewis and Raftery (1994), Meng and Wong (1993),
Raftery (1994) and Verdinelli and Wasserman (1995). Many of these meth-
ods require evaluating L(ω{) for each sampled value ω2 , for each of the four
models. But there are two methods which are quite quick and simple: the
"simulation Laplace method" (Lewis and Raftery 1994, Kass and Wasserman
1992, DiCiccio, Kass, Raftery and Wasserman 1995) and the "generalized
Savage-Dickey" method (Verdinelli and Wasserman 1995). We now briefly
describe these two.

Recall that the Laplace estimate (Kass, Tierney and Kadane 1989) of an
integral of the form m — f L(ω)π(ω)dωis given by m = L(ω)π(ώ)(2π)dl2\V\Ύl2

where ώ is the posterior mode, d is the dimension of ω and V is minus the
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Figure 3: Likelihood and Log-Likelihood for

βo = βo.

and β\ with 70 = 70

inverse of the Hessian. The estimate is accurate to order 0(n 1). The sim-
ulated version merely estimates ώ and V through the simulated values. For
this we can resort to standard maximization routines. A cruder but simpler
estimate is to substitute the posterior mean for ώ and the posterior covari-
ance for V. This is appealing for its simplicity but our experience has been
that this leads to inaccurate estimates. A compromise is to use a robust esti-
mate of location and scale. Lewis and Raftery (1994) suggest the minimum
volume ellipsoid estimator as implemented in Rousseuw and van Zomeren
(1990). We have found this to work well and we shall adopt it here. We
emphasize that a great virtue of the simulation Laplace method is that it
requires only a single evaluation of £(•)• This is a non-trivial consideration
in even moderately complicated models.

Before describing the numerical results, we also mention the generalized

Savage-Dickey method as developed in Verdinelli and Wasserman (1995). To

describe the method, consider the full model M\ and consider computing the

Bayes factor

D _ Pr(Mi\data) #
B = # Pr{Mx)

for any submodel M t , i = 2,3,4. We can recover the ra' s given these Bayes

factors. Let us write the parameter for the full model as ω = (φ, φ) where the

submodel corresponds to φ — φo. Let p\{φ\data) be the marginal posterior

for φ under M\. Similarly, let πι(φ,φ) be the prior under Mi and let πi(φ)
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be the prior under Mt . Verdinelli and Wasserman show that

The first quantity can be estimated directly from the simulated values from
the full model using standard density estimation techniques. We generally
use kernel density estimation based on a normal kernel using the band-
width suggested in Silverman (1986, page 86). The second term can be
estimated by simulating with φ fixed at ΦQ. However, in the special case
where πi(φ\φo) = τrt (0), which holds in our case, (7) reduces to Dickey's
original formula given by

( 8 ) * =

requiring only a simple density estimation. Remarkably, we can then recover
all the m[s in this case using only a simulation from the full model so there
is no need to simulate from M2, M3 and M4. This advantage is balanced by
the fact that the answers can be sensitive to the choice of bandwidth in the
density estimator. Another advantage of this method is that it is "simulation
exact", i.e., it converges almost surely to the true answer as the simulation
size increases while the simulation Laplace estimator has an error of O^n'1).

Finally, we mention the Schwarz approximation (Schwarz 1978) in which
πii is approximated by ndi/2L(ώi). Generally, this leads to only a 0(1) ap-
proximation to Bayes factors and posterior probabilities of models. Kass
and Wasserman (1995) show that under certain conditions, the Schwarz ap-
proximation is accurate to order O(n~1/2). To get this accuracy one needs
certain regularity conditions to hold. Moreover, one must use a unit infor-
mation prior of a slightly different form than that used here. Nonetheless,
we shall include the Schwarz calculations as well. Similar calculations are
considered in Greenhouse and Paul (1995).

2.4 Results. Taking Pr(Mι) = Pr(M2) = Pr(M3) = Pr(M4) = 1/4 we
obtained estimates of Pr(M{\dαtα) using the three methods. The results are
in Table 2.

There is some discrepancy between the methods but the main conclusions
from these calculations are consistent. Model 3 seems to be greatly preferred
followed by Model 1 and then Model 2. The interpretation of Model 3 is that
treatment effects the probability of being cured. It does not effect (or has
little effect) on the hazard rate of those who are not cured. One model not
mentioned here is the model in which 70 = 71 = 0. In such a model, there
would be no surviving fraction. This model turned out to have essentially
zero posterior probability and was not considered in further calculations.
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TABLE 2. Posterior Probabilities of the Models.

Method

Simulation Laplace

Savage-Dickey

Schwarz

Pr(Λ
.17

.19

.17

ί^data) Pr(M2

.10

.13

.06

\data) Pr(Mz

.73

.68

.76

i\data) Pr{M4

.01

.00

.01

\data)

The question we now turn to is: how sensitive is the conclusion that Model

3 is superior to the choice of prior?

3. Sensitivity Analysis.

3.1. Sensitivity to the prior variances. As we mentioned in Section

2, we believe the priors we have chosen are a good starting point but we

are concerned about the arbitrariness in our choices. Our main concern

is the choice of αo,αi,&o?&i To address this concern we will perturb each

variance by a factor c where 1/10 < c < 10 and we re-compute the posterior

probabilities. Let π be the new prior under consideration and let rh =

/ L(ω)π(ω)dω be the new value of m. One way to compute m is to re-

weight the output of the Markov chain. A simpler approach is to use the

O(n~τ) approximation fh = mπ(ώ)/π(ώ). The results for perturbations of

size 1/10 and 10 are in Table 3. Figure 4 shows Pr(Mi\data) as a function

of log c for each M t .

The results confirm that the priors on 70 and βo have very little effect.
The prior on β\ has a substantial effect but not in any way that affects our
conclusions. The prior on η\ on the other hand, has a more complicated
effect. When c gets very small or very large, Pr{M^\data) gets smaller and
Pr{M2\data) gets larger. Eventually, these quantities cross and M2 becomes
the favored model. We do not yet have an intuitive explanation for why this
happens when perturbing π(7i) but not when perturbing τr(/?i). For a large
range of values of c, Model 3 continues to dominate Model 2.

What we have learned from this sensitivity analysis is (i) M3 appears to

be the favored model and (ii) the crucial prior is the prior on 71. If further

work is to be invested in the construction of priors, it should focus first on

p(7i). Incidentally, we believe that this illustrates a general point. Even

die-hard subjectivists who dislike the idea of using reference priors (even

proper reference priors are offensive to some) can still find it useful to begin

an analysis with the reference priors. The reference prior analysis together

with simple sensitivity tools leads to an understanding of which priors are
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TABLE 3. Sensitivity to Perturbations in Prior Variances.

Perturbation

none

0.1 α 0

10 α 0

0.1 δo
10 b0

0.1 αi

10 αx

0.1 6i

10 6χ

Pr(Mι\data)

.17

.14

.13

.21

.13

.26

.07

.42

.02

Pr(M2\data)

.10

.09

.10

.16

.10

.41

.50

.00

.01

Pr(M3\data)

[.73

.76

.77

.63

.76

.31

.40

.57

.96

Pr(M4\data)

.01

.00

.01

.01

.01

.03

.04

.01

.01

ol
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Figure 4: Sensitivity plots: Each plot shows that posterior probabilities of
the various models as a function of logc.
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Figure 5: Influence Diagnostics

important in the problem.

3.2. Case Influence. Consider the effect of dropping the j t h observa-
tion from the analysis. It is possible to re-weight the samples from the
posterior to re-compute the posterior probabilities. Weiss (1993) discusses
this idea in detail. Again, we find it much easier to use the approximation
rri(j) = πι/Lj(ώ) where the subscript (j) refers to removing the j t h observa-
tion and Lj is the likelihood based on the j t h observation. Figure 5 shows
Prίfi(Mi\data) where the observations have been ordered from smallest to
largest. Circles indicate censored observations. We see that no single obser-
vation significantly affects the posterior probabilities. One can also examine
deletions of 2 or more observations. We do not pursue this here.

4. Inference for the Selected Model, M3.

Our analysis so far suggests that Model 3 is the "best" model. Here we
consider some analysis based on this model. First we report the posterior
means and 95 per cent credible intervals for the three parameters:
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E(fo\data) = -1.15; 95 per cent interval: (-1.87 , -.53)
E(βo\data) = -3.22; 95 per cent interval: (-3.57,-2.95)
E(ii\data) = 1.52; 95 per cent interval: (.72 , 2.39)

Now let 7° = Pr(T > ^untreated) = S(t\X = 0), η} = Pr(T >
^treated) = S(t\X = 1). Note that 5(oo) = p, the probability of being
cured. Figure 6 shows the posteriors η\ for 3 months, 6 months, 9 months
and 12 months for both untreated and treated individuals. The treatment
appears to have a substantial (in the clinical sense) effect. At early times, the
effect is not so great but becomes more noticeable for longer times. Treat-
ment significantly increases the probability of being "cured." Patients who
receive imipramine are approximately 4.5 times as likely to not have a re-
currence than patients who receive placebo. Figure 7 shows the estimated
survival curves for the two groups with 95 per cent intervals. The curves are
similar to the curves in Figure 1 suggesting, at least informally, that there
is not a lack of fit. Again, we see that the effect of treatment seems to be
mainly in long term rather than short time survival.

5. Conclusions.

We have outlined a strategy for model selection that consists of two steps.
First, construct "unit information priors" and compute Pr(M{\data) for each
model Mt . Second, perform a sensitivity analysis to see how the conclusions
depend on the prior. If the conclusions are robust to the choice of prior then
the unit information prior suffices; otherwise the more effort needs to be put
into prior construction or, perhaps, it should simply be reported that the
data do not support strong conclusions.

In our case study, one model seemed to stand out. According to this
model, treatment effects whether a patient is a long term survivor but not
the survival time of short term survivors. We also found that the Schwarz
approximation was reasonably accurate despite the fact that the conditions
for ^(n" 1 / 2 ) accuracy outlined in Kass and Wasserman (1995) are not met.
This is consistent with our experience with the Schwarz approximation in
other cases; however, Berger and Pericchi (1995) report less success with this
approximation.

Our analysis leaves many open questions some of which we outline here.

1. It may make better sense to use correlated priors on the parameters.

2. There are other relevant covariates that should be included in the anal-
ysis. For example, see Greenhouse and Paul (1995) who incorporate
additional covariates in the exponential mixture survival model using
the regression models in (2) and (3) and use a model selection criteria
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Figure 6: Posterior probability of S(t) for various t under Model 3. The left
column is for untreated patients; the right column is for treated patients.



56 J. Greenhouse and L. Wasserman
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Figure 7: Fitted survival curves under Model 3.

based on the Schwarz approximation.

3. The sensitivity analysis should be expanded to include joint perturba-
tions of the priors and to include nonparametric perturbations.

4. The mixture model should be expanded to include two exponential
components rather than one exponential component plus a surviving
fraction. (However, the parameters of the second component might be
close to non-identifiable.)

5. The appropriateness of the exponential assumption deserves investiga-
tion.

Acknowledgements This work is supported in part by grants from
the National Cancer Institute, CA54852 (JG,LW), the National Institute of
Mental Health, MHCRC30915 (JG), and the National Science Foundation
DMS-9303557 (LW) and DMS-9357646 (LW).

REFERENCES

BERGER, J. AND PERICCHI, L. (1994). The intrinsic Bayes factor for model selec-
tion and prediction. Technical report, Department of Statistics, Purdue Uni-
versity.

BERGER, J. AND PERICCHI, L. (1995). The intrinsic Bayes factor for linear models.
To appear: Bayesian Statistics 5.

BERKSON, J. AND GAGE, R. P. (1952). Survival curves for cancer patients follow-
ing treatment, Journal of the American Statistical Society, 47, 501-515.

BOAG, J. W. (1949). Maximum likelihood estimates of the proportion of patients
cured by cancer therapy, Journal of the Royal Statistical Society, Series B, 11,
15-44.



Model Selection 57

CARLIN, B. AND CHIB, S. (1995). Bayesian model choice via Markov chain Monte
Carlo. To appear: J. Roy. Statist. Soc. B.

CHEN, W. C , HILL, B. M., GREENHOUSE, J. B., AND FAYOS, J. V. (1985).
Bayesian Analysis of Survival Curves for Cancer Patients Following Treatment,
Bayesian Statistics 2: Proceedings of the 2nd Valencia International Meeting,
eds. J. M. Bernardo et al., North-Holland.

CHIB, S. (1994). Marginal likelihood from the Gibbs output. Unpublished manuscript,
Olin School of Business, Washington University.

CORNFIELD, J. (1966). A Bayesian analysis of some classical hypotheses- with
applications to sequential clinical trials. /. Amer. Statist. Assoc.

DiCiccio, T., KASS, R.E., RAFTERY, A. AND WASSERMAN, L. (1995). Comput-
ing Bayes factors by combining simulation and asymptotic approximations.

FAREWELL, V.T. (1982). The use of mixture models for the analysis of survival
data with long-term survivors, Biometrics, 38, 1041-1046.

GELFAND, A.E. AND DEY, D.K. (1994). Bayesian model choice: asymptotics and
exact calculations. J. Roy. Statist. Soc. B., 56, 501-514.

GREEN, P. (1995). Reversible jump MCMC computation and Bayesian model
determination. Technical report, Department of Mathematics, University of
Bristol.

GREENHOUSE, J. B. AND PAUL, N. (1995). Applications of a mixture survival
model with covariates to the analysis of a depression prevention trial. Submitted
Statistics in Medicine.

GREENHOUSE, J.B., STANGL, D., KUPFER, D. J., AND PRIEN, R. F. (1991).
Methodologic issues in maintenance therapy clinical trials, Archives of General
Psychiatry, 48, 313-318.

GREENHOUSE, J. B. AND WOLFE, R. (1984). A Competing Risk Derivation of a
Mixture Model for the Analysis of Survival Data, Communications in Statistics:
Theory and Methods, 13, 3133-3154.

JEFFREYS, H. (1961). Theory of Probability, 3rd ed., Oxford: Oxford University
Press.

KASS, R.E. AND RAFTERY, A.E. (1995). Bayes factors and model uncertainty.
Journal of the American Statistical Association, in press.

KASS, R.E. AND WASSERMAN, L. (1992). Improving the Laplace approximation
using posterior simulation. Technical report #566, Department of Statistics,
Carnegie Mellon University.

KASS, R.E. AND WASSERMAN, L. (1995). A reference Bayesian test and its rela-
tionship to the Schwarz criterion. To appear: /. Amer. Statist. Assoc.

KASS, R.E., TIERNEY, L. AND KADANE, J.B. (1989). Approximate methods
for assessing influence and sensitivity in Bayesian analysis. Biometrika, 76,
663-674.

KUPFER, D.J, BERGER, P.A., CONGER J.J. ET AL. (1985). NIMH/NIH consen-
sus development conference statement. Mood disorders: Pharmacologic pre-
vention of recurrences. American Journal of Psychiatry, 142:469-476.

LEWIS, S. AND RAFTERY, A. (1994). Estimating Bayes factors via posterior simula-
tion with the Laplace-Metropolis estimator. Technical report 279, Department
of Statistics, University of Washington.

MENG, X.L. AND WONG, W.H. (1993). Simulating ratios of normalizing con-
stants via a simple identity: a theoretical exploration. Technical report 365,



58 J. Greenhouse and L. Wasserman

Department of Statistics, University of Chicago.
NEWTON, M.A. AND RAFTERY, A.E. (1991). Approximate Bayesian Inference

by the Weighted Likelihood Bootstrap. Technical Report 199, Department of
Statistics, University of Washington.

OΉAGAN, A. (1995). Fractional Bayes factors for model comparison (with discus-
sion). J. R. Statist Soc. B. 57, 99-138.

POCOCK, S. J., GORE, S. M. AND KERR, G. R. (1982). "Long term survival
analysis: the curability of breast cancer", Statistics in Medicine, 1, 93-106.

PRIEN, R. F., KUPFER, D. J., MANSKY, P. A., SMALL, J. G., TUASON, V.

B., Voss, C. B. AND JOHNSON, W. E. (1984). Drug therapy in the preven-
tion of recurrences in unipolar and bipolar affective disorders: Report of the
NIMH collaborative study group comparing lithium carbonate, imipramine, and
a lithium carbonate-imipramine combination, Archives of General Psychiatry,
41, 1096-1104.

RAFTERY, A. (1994). Hypothesis testing and model selection via posterior simula-
tion. In Practical Markov Chain Monte Carlo. (W. Gilks, S. Richardson, D.J.
Spiegelhalter), London: Chapman and Hall.

RAFTERY, A.D., MADIGAN, D. AND VOLINSKY, C.T. (1995). Accounting for
model uncertainty in survival analysis improves predictive performance. In
Bayesian Statistics 5 (J.M. Bernardo et al. eds), to appear.

ROUSSEEUW, P.J. AND VAN ZOMEREN, B.C. (1990). Unmasking multivariate
outliers and leverage points (with discussion). J. Amer. Statist. Assoc. 85,
633-651.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6,
461-464.

SPIEGELHALTER, D.J. AND SMITH, A.F.M. (1982). Bayes factors for linear and
log-linear models with vague prior information. J. R. Statist. Soc. B. 44,
377-387.

STANGL, D. (1991). Modeling heterogeneity in multi-center clinical trials using
Bayesian hierarchical survival models. Unpublished doctoral dissertation. De-
partment of Statistics, Carnegie Mellon University.

STANGL, D. AND GREENHOUSE, J. (1995). Assessing placebo response using
Bayesian hierarchical survival models. Submitted /. Amer. Statist. Assoc.

TlERNEY, L. (1995). Markov chains for exploring posterior distributions. To ap-
pear: Ann. Statist.

TlERNEY, L., KASS, R. AND KADANE, J. (1989). Fully exponential Laplace ap-
proximations to expectations and variances of nonpositive functions. J. Amer.
Statist. Assoc. 84, 710-716.

VERDINELLI, I. AND WASSERMAN, L. (1995). Computing Bayes factors using a
generalization of the Savage-Dickey density ratio. To appear: /. Amer. Statist.
Assoc.

WEISS, R. (1993). Bayesian sensitivity analysis using divergence measures. Tech-
nical report, Department of Biostatistics, UCLA School of Public Health.

DEPARTMENT OF STATISTICS

CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PA 15213



A Practical, Robust Method for Bayesian Model Selection:
A Case Study in the Analysis of Clinical Trials

discussion by
M.J. BAYARRI

Universitat de Valencia

This is a very nice paper indeed. It does carry a true sensitivity analysis
in a true real problem. The scenario is that of a meaningful (as opposite
to artificial) model selection, and the authors have addressed the touchy
issue of assessing a"default" proper prior as well as imaginatively solved
the formidable computation task in a problem where naϊve Gibbs sampling
would fail. All this makes the discussion a very pleasant but, alas, very
difficult task. My discussion focused on a couple of robustness issues that
the authors did not address, namely robustness with respect to the form of
analysis (or the old issue of estimation versus testing) and with respect to
the form of the survival function for survivors (of which the constant survival
term in the mixture (1) is only an approximation); it also pointed to some
few facts in the numerical example that could potentially look somehow
odd. Due to severe space limitations, this written version will entirely skip
the robustness with respect to the model issue an d will only sketch the rest
of the discussion, with basically no derivations nor numerical details.

Posing the problem of model selection as one of testing implies a prior
that is highly spiked around the point null. (We understand testing of point
nulls as approximations to testing small intervals around the point null, as
in Berger and Delampady, 1987.) The problem is that spiked priors are very
stubborn (and stubborn priors are not robust): it usually takes a large n
for the likelihood to "swallow" the prior. But if n is very large, then the
approximation of a "sharp" null by a point null might not be appropriate
(Berger and Delampady, 1987).

We demonstrate our claims in a very simple example. Assume Xi,
X2,0D...,Xn are i.i.d. N(θ, 1) and we wish to test Ho : \Θ\OD < 0.1
versus Hi : |0| > 0.1. Routine Bayesian testing assumes that the prior is
highly spiked on Ho so that, under some conditions, the problem can be ap-
proximated by that of testing H£ : Θ3D0 versus Hf : θ φ 0, with a prior that
has a point mass at #£. UsuaUy Pr(H0)3DPr(H£)3Dl/2. Figure Bl shows
the lingering effect of the prior on the posterior as well as the error incurred
when approximating Bayes factors corresponding to the spiked, continuous
prior by that resulting from the usual point mass at 0. We use a prior which
is proportional to a truncated iV(0,1/25) on Ho and a truncated iV(0,1) on
Hi (so that Pr(Ho)3Dl/2 and the resulting density is a continuous func-
tion). The computations are done for x3D0.5; the results are even more
dramatic for x3D0.2, where the effect of the prior is larger than that of the
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likelihood even for n3D150, but the error committed is already of 61%; in
fact, the likelihood does not begin to "wash out" the prior till n does not
get as large as 300, and by then the approximation by a point null clearly
fails, with an error on the Bayes factor of 376%.
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The above example aims at showing that even fully recognized testing
problems can be very sensitive to both, the "default" Pr{Hζ)3Dl/2 and
the "default" approximation of an interval null by a point null. On the
other hand, Table Bl aims to showing how sensitive the results can be to
whether we pose the problem as one of estimation or as one of testing, that
is, to whether we use a smooth (non-informative) prior or a spiked one for
solving the testing of an interval null. In that table we assume that in all
of the entries x is such that the classical point-null testing would produce
the (inappropriate) a3D0D0.5. We compute the "real" classical p-value αe,
as well as 20 Pr(H0\data) for both, a flat prior (estimation prior) and the
previous spiked prior. As it can be seen, for n3D100, one can reach any
conclusion one wishes by merely approaching the problem as estimation or
testing.
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n

15

25
50
100

real p-value

α e

.067

.079

.109

.170

diffuse prior

Pr(H0\data)

.048

.065

.101

.167

testing prior

Pr(H0\data)

.399

.456

.551

.665

Table Bl

In the actual numerical results, we find somehow surprising the behavior
of Pr(Model i\data) as the prior variances (or c) changes, as reported in
Figure 4 and Table 3. For instance, Model 3 corresponds to βι3D0. Hence,
since a priori β\ ~ 7V(0, (c&i)2), the larger c the less sure we are a priori
that βι is close to 0, and therefore, the less probability should be given (a
posteriori) to Model 3; but it can be seen that Pr(Model 3\data) is, quite
surprisingly, the only one that increasees with c. Similar behaviour occurs
when perturbing the variance of 71.

Last, I was curious to find out about the estimate of the mean life time
for non-survivors. For the selected model, T ~ Ex(t\θ), and from the results
for confidence intervals, it looks as if an estimate of 1/0 is close to 24 months,
which is the observation period. This might suggest that the inferences may
be sensitive to the model and to even the precise observation period.
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REJOINDER

JOEL GREENHOUSE AND LARRY WASSERMAN

Although, we tried to avoid discussing the testing versus estimation con-
troversy, Professor Bayarri has not allowed us to do so. As she notes, a test
of a precise hypothesis may fail to approximate a test of an imprecise hy-
pothesis when n is large. This is relevant in our paper since model selection
is akin to testing whether regression coefficients are zero.

One can take the precise test at face value and not think of it as approxi-
mating an imprecise hypothesis. This was Jeffreys's approach which we find
quite compelling. If we do regard the precise null as an approximation, we
usually think of the imprecise null as being small relative to sampling varia-
tion. We can express this by a null of length en where en = o(l/y/n). In this
case, the problems discussed by Professor Bayarri are obviated. On the other
hand, we agree with her that if a fixed imprecise null is truly of interest, then
great care is needed if one uses a precise null as an approximation.

Professor Bayarri expresses surprise with the behavior of the Bayes fac-
tors to changes in the prior variance in our sensitivity analysis. Intuition
might fail here since the Bayes factor is not monotonic in prior variance.
Moreover, changing the prior on β\ affects the posterior probability of mod-
els 1 and 2. How this will ultimately affect the posterior probability of model
3, which depends on how well models 1 and 2 explain the data, is unclear.

Finally, Professor Bayarri asks about the magnitude of the estimate of
E(T\Θ). Censoring leads to increased estimates of mean survival time. Since
we have a mixture model, the group membership of the censored observations
(i.e. "true" survivors or censored non-survivors) is not known. Effectively,
we average over all group memberships and some of these groupings lead to
large values of mean survival.

We would like to express our appreciation to Professor Bayarri for her
careful reading of our paper and to thank her for her thoughtful comments.
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