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MOMENT DECOMPOSITIONS OF MEASURE SPACES

BY JOSEF STEPAN AND VIKTOR BENES*

Charles University and Czech Technical University

Consider a Souslin space X and a countable set B of bounded Borel mea-
surable real functions defined on X. The decomposition M(X> B) of the set of
all Borel probability measures on X induced by the equivalence relation that
makes measures P and Q equivalent if P(f) = Q(f) for all / in B is represented
uniquely up to an isomorphism in the category of measure convex Souslin sets
(Theorem 3). Theorem 2 is used to obtain a characterization of sets of uniqueness
for the moment problem connected with the decomposition M(X, B) (Theorem
4). The results presented here extend results proved in Stepan (1994) for a
compact metrizable space X and a countable family B of continuous bounded
functions on X.

1. Bounded Countable Moment Decompositions of Measure
Spaces. For a Hausdorff topological space X we shall denote by V(X), B(X)
and C(X) the space of Radon probability measures, the space of bounded Borel
measurable and bounded continuous real functions defined on X, respectively.
Given a nonempty (countable) set B G B(X) we shall denote by M(X, B) the
quotient space obtained from V(X) by the equivalence relation

P = Q mod B if and only if P(f) = Q(/), / € B, P,Q G V(X)y

where P(f) = / fdP and call it a bounded (countable) moment decomposition
ofV(X). Recall, moreover that if

T : X —> E is a bounded Borel measurable map from X
(!)into a complete Hausdorff locally convex space E,

then the expectation of T with respect to a measure P in V(X) is a point
EP(T) in E for which

x'{Ep{T)) = / x\T)dP holds for each x1 in the topological dual E'.
Jx
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The existence and uniqueness of the expectation Ep(T) (assuming the bound-
edness of T and completeness of E) follows easily by Proposition 1.1.3 (a),
p. 16 in Winkler (1985) by observing that the expectation Ep(T) is equiva-
lently defined as the barycenter of the image probability measure TP e V{E),
i.e. Ep(T) = b(TP). Further on, for such a pair (T,£) we shall denote by
E(T) : V(X) —• E the map which sends a measure P in V(X) to the expec-
tation EP(T) in E and let

S(X, Γ, E) = {EP(T), P e V(X)} C E

and

M(T, X, E) = {(^(Γ))- 1^), s e S(X, Γ, E)}.

If M(X,B) = M(X,T,E) for a bounded moment decomposition of V{X)
(B £ B(X)) and a pair (Γ, E) satisfying (1), then we call (T, E) a generator of
the decomposition M(X,B) and the set S(X,T,E) its convex representation
in E.

There is of course a very direct way to construct such a generator:

REMARK 1.

(a) Put E = RB and endow the space with the product topology (which
makes it a locally convex complete space for which the one-dimensional
projections Pf : RB —• R linearly generate its topological dual E1).

(b) Define T = TB from X into E = RB by T{x) = (f(x)J G B). Then
(obviously) TB satisfies requirements (1) if

B is either a countable subset in B(X)

or an arbitrary subset in C(X), (2)

TB : X —> RB being a continuous map in the latter case

and

P = Q mod B if and only if EP{TB) = £ g ( Γ β ) for P, Q e

whence M(X, B) = M(X, TB, RB).

Observe also that topological stability is achieved by the construction
(a), (b), (2) when we assume that X is a Souslin space (a continuous image
of a Polish space), since according to Lemma 16 in Schwartz (1973), p. 107
and Theorem 2 below we have that TB(X) and S(X, TB,RB) are also Souslin
spaces in this case. In fact we are able to prove the following statement (see
also Theorem 4 in Stepan (1994):

THEOREM 1. Let X be a Souslin space. Then a decomposition D ofV(X)
is a bounded countable moment decomposition if and only if D — M(X,T,E)
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for a map

T : X —> E satisfying (1) such that T(X) is a Souslin set. (3)

PROOF. In view of Remark 1 it suffices to consider a map T that satisfies
(3) and to construct a countable set B G B(X) such that M(X,T,E) —
M(B,X). By Theorem 2 below, 5 = S(X,T,E) is a Souslin set and we can
apply Propositions 3 and 4, p. 104, 105, in Schwartz (1973) to get a countable
set B1 C Ef that separates points in S. Putting B — {x1 o T, x' G B'} we get
a countable set in B(X) such that (for P,Q e V(X))

P = Q mod B if and only if x'(EP(T)) = x'(EQ(T)), x1 G B'

and hence if and only if EP(T) = EQ(T)

holds. I

Thus, the study of bounded countable moment decompositions M(X, B)
when X is a Souslin space is exactly the same problem as the study of
M(X, T, E) decompositions with generators (T, E) obeying the requirements
(3). There is always a variety of ways to choose a suitable generator for a
given moment decomposition.

EXAMPLE. The marginal and transshipment problem. Let X = Y2 where
Y is a Souslin space. Denote by TΓI and π2 the coordinate projections from X
onto Yi = Y and Y2 = Y, respectively, and by Pi and P2 the corresponding
marginals πλP G V(Y) and τr2P G V(Y) of a measure P G P(X).

Consider decompositions πιαrg(X) and ΐrαnθ(X) of'P(X) into the equiv-
alence classes of probability measures P with a fixed pair of marginals (Pi, P2)
and with a fixed difference of marginals Pi — P2, respectively. It is easy to
see that both the marginal and transshipment decompositions are bounded
countable moment decompositions since

mαrg(X) = M(X,bm(L)) where bπι(L) = {/ o πi + g o τr2, /,g G £},

trαns(X) = M(X, bt(L)), where 6*(i) = {/ o TΓI - / o π 2, / G £}

for any L in #(Y) that separates measures in V(Y) (i.e. P — Q mod i if and
only if P = Q, P,Q £ V(Y)). Obviously, such a set L may be chosen as a
countable subset of C(Y).

To construct nontrivial generators (T,E) satisfying (3) for mαrg(X) and
trαns(X) put E — (C(Y))f and consider the space with its weak* topology
(i.e. E1 = C(Y)) which is of course complete and locally convex as a closed
set in Rc(γ\ Observe that the set V(Y) may be naturally embedded into E
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(as a convex bounded Souslin subset). Denoting

y2) = εyi, T2(yuy2) = εy2, T(yuy2) = (e y i ,ε w ) for {yuy2) e X,

where εy is the point measure supported by y, we get continuous bounded
maps T : X -> E x E and 2\ - T2 : X -> £7 such that T(X) and (Ti - T2)(X)
are obviously Souslin sets.

Straightforward calculations show that Ep(T) = (Pi,P2) and Ep(T\ -
T2) = Pi - P 2 for each P e P(X). Hence, mαr9(X) = M{X,T,E x £) and
trans{X) = M(X,Ti - T 2 ,£), where (T,£7 x £7) and (Γx - T2,E) are the
generators satisfying (3). Using these generators we get the corresponding
convex representations in the form S(X,T,E x E) = {(Pi,P2), P 6 V(X)}
and 5(X,Ti -Γ 2 I JE?) = {Pi -P2,Pe V(X)}.

2. Convex Representations of Moment Decompositions. We will
denote the set of extremal points of a convex set S by exS and the closed
convex hull of a set H C E by cδ(H). Recall that a subset S of a locally
convex space is called measure convex if for every P G V(X) the barycenter
6(P) exists and belongs to 5. Prom now on, we assume that the spaces V( )
have the standard weak topology.

The following theorems provide topological properties of convex represen-
tations S(X, T, E) attached to a countable bounded moment decomposition
M(X,B) via Theorem 1 (see also Theorems 1, 2 in Stepan (1994)).

THEOREM 2. Assume that X is a Souslin space and that the pair (T, E)
is such that (3) holds. Then S = S(X, T, E) is a bounded, measure convex
(hence convex) Souslin set in E such that ex(S) C T(X) and S C cδ(T(X))
hold. If moreover X is a metrizable compact space and T is a continuous map
then S is a compact metrizable space such that S = cδ(T(X)) holds.

PROOF OF THE THEOREM. Observe first that each Borel probability mea-
sure on X (resp. T{X)) belongs to V{X) (resp. V{T(X))) by Theorem 10, p.
122 in Schwartz (1973), since both X and T(X) are Souslin sets. Hence by
Theorem 12, p. 39 in Schwartz (1973)

T o (V(X)) = V(T(X)) and 5 = 6 o V{T{X)) (4)

(we let the symbol T also denote the map P-ϊTP from V(X) onto V(T{X))).
Here TP denotes the measure in V{T(X)) defined by {TP){B) = P{T~ι{B)),
B G B(X). Since V(T(X)) is obviously a Souslin set and the barycenter map
b : V(T(X)) -» S is an affine continuous surjection by Proposition 1.1.3, p.
16 in Winkler (1985), it follows by (4) that S is also a Souslin set. According
to 1.2.3 in Winkler (1985) it follows that S is contained in cδ(T(X)), hence a
bounded set in E.
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Denote by c : S -» V{T{X)) a universally measurable section 6 : V(T(X))
-* 5 (6oc is the identity map on 5), the existence of which follows by Theorem
13, p. 127 in Schwartz (1973). If Pis a measure in V(S), then Q = jsc(s)P(ds)
is a well defined measure in V(T(X)) such that b(P) = b(Q) 6 S (the existence
of 6() follows again by Proposition 1.1.3, p. 16 in Winkler (1985) since we have
already proved that S is a bounded set). Thus, S is a measure convex set. It
follows by Corollary 1.5.5, p. 49 in Winkler (1985) that for each x G ex(S) the
point measure ex is the only measure in V(S) with the barycenter x. Hence
ex{S) C T(X).

Finally, assume that X is a metrizable compact space and that T : X -> E
is a continuous map. Now it follows easily that E(T) : V(X) —> S is a
continuous surjection. Hence S is a metrizable compact set (by Proposition
7.6.3, p. 126 in Semadeni (1971)) so that cδ(T(X)) C S. I

The next definition and Theorem may be helpful when trying to establish
the identity of two bounded countable moment decompositions. They show
the role played by their convex representations.

Let S and Si be measure convex Souslin sets. A map a : S —• SΊ will be
called measure affine if it is Borel measurable and if α(6(P)) = b(αP) for each
P £ V(S), where αP € V(S\) denotes the image of P under the map α. Note
that a continuous map α : S —* S\ is measure affine.

REMARK 2. A measure affine map α : S —> S\ is affine, and if it is a
bijection then α" 1 : S\ —> 5 is measure affine too, according to Theorem 10,
p. 122 in Schwartz (1973) and due to the fact that the equality α^^αP)) =
^(o-^aP)) which holds for each P in V(S) implies that α-1(6(Pi)) = b(α~ιP1)
holds for each Pi in V(Sι).

THEOREM 3. Let X be a Souslin space and (Γ, E), (Tι,Eι) pairs satisfying
(3). Then

(i) M(X,T,E) is a ήner decomposition than M(X,Tι,Eι) if and only if
there exists a measure affine surjection α : S(X,T,E) —> S(X,T\,E\)
such that αoT = Tχ;

(ii) M(X,T,E) = M(XjTι,E\) if and only if there exists a measure affine
bijection α : S(X, Γ,E) -> S(X, Tu Et) such that α o T = Tλ.

REMARK 3. Note that(ii) says that if we have a fixed generator (Γo, Eo) of
a bounded countable moment decomposition moment decomposition M(X, 5),
then we may get all other generators (Γ, E) by putting T = α o Γo, where
α : 5(X, To, Eo) —• S is a measure affine bijection and S is a bounded measure
convex Souslin set in a complete locally convex space E.
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Also note (see Theorem 2 in Stepan (1994)) that if X is a compact metriz-
able set and if both T and TΊ are continuous maps, then (ii) reads as follows

M(X, T, E) = M(X, TuEλ) if and only if

there exists a continuous affine bijection

a: S(X,T,E)-± S(X,Tι,Eι) such that α o Γ = Γi .

PROOF OF THE THEOREM. Assume first that there is a map a with the
properties stipulated by (i) and consider P,Q € P(X) such that Ep(T) =
EQ(T). Then using the measure affinity of the map a we get

EP(ΊΊ) = b(a(TP)) = a(EP(T)) = a(EQ(T)) = EQ{Tλ),

hence M(X,T,E) is a finer decomposition than M(X,T\,E\). Assume that
M(X,T,E) is finer than M(X,7\, Ex). Denote the maps E(T) and E(Tλ) by
F and F\, respectively. It is easy to see that putting

a(s) = F1(F-1({s})) for s e S (S = 5(X,Γ, J5),5Ί = ( X , ^ , ^ ) ) (5)

we obtain a well-defined surjective map a : S —> SΊ such that aoT — T\. This
is because F(6X) = T(x) and Fχ(ex) = Tλ{x) hold for each x G X.

It follows by Lemma 11 and 12, p. 106 in Schwartz (1973) and Theorem
1 that graph(a) = {(F(x),Fι(x)),x 6 X} is a Borel set in S x SΊ Hence it
follows from Corollary, p. 107 in Schwartz (1973) that a is a Borel measurable
map. To verify that a : S —» 5Ί is a measure affine map we use Theorem 13,
p. 127 in Schwartz (1973) and again Theorem 1 to find universally measurable
sections

P(.) : S -+ V(X),Q(.) : SΊ -> P(X) such that

£P ( 5 )(Γ) = 3 and £g ( β l )(Γ!) = ^

hold for s £ 5 and θi G *SΊ, respectively.

Thus, if P is a measure in V(S), then

= / Pίa\P(ds), and n = / QuAα.
Js JSx

are measures in V{X) such that Em(T) = 6(P), £n(Tχ) = 6(αP) and n =
JsQίαWjPίώ) hold. Hence £ P ( S ) ( Ϊ I ) = α(ί) = £ Q ( O ( S ) ) ( 7 I ) for β € 5 and
therefore Em(Ti) = En(Tχ) = b(aP). On the other hand, it follows from the
assumption that M(X,T,E) is a finer decomposition than M(X,Tχ,Eι) that
Em(T\) = Ep(b(p))(Tι) holds. Finally, combining the above observations we
get

b(aP) = Em{Tx) = EP(KP))(TX) = a(bP)
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which shows that the map a is measure affine.

To verify (ii) note that the relation (5) defines a bijective map a : S —» S\
when M(X,T,E) and M(X, T\,E\) are identical decompositions; the equiva-
lence (ii) is therefore a consequence of (i) and Remark 3. I

3. Sets of Uniqueness. Assume again that X is a Souslin space.
A Borel set D C X will be called a set of uniqueness for a bounded moment
decomposition M(X, B) if each member of the decomposition contains at most
one measure P G V(X) supported by D, i.e. P G V{D). In other words D is
a set of uniqueness if and only if M(D, B) := M{D, B \ D) = V(D).

Observe that the concept of a set of uniqueness is crucial when one is
trying to characterize extremal (simplicial) measures in moment problems con-
nected with bounded moment decompositions M(X,B). See Stepan (1979),
Linhartova (1991), Benes (1992), Stepan (1993) in the context of marginal and
transshipment problems.

Choquet theory and Theorem 1 may be used to get a characterization of
sets of uniqueness (see also Theorem 3 in Stepan (1994)).

THEOREM 4. Let a pair (Γ, E) satisfying (3) generate a bounded count-
able moment decomposition M(X, B). Then a Borel set D C X is a set of
uniqueness for M(X,B) if and only if

(a) the restriction of the map T to the set D is an injective map and

(b) S(D,T,E) := S(D,T\ D,E) is a simplex with exS(D,T,E) = T(D).

REMARK 4. According to Theorem 2, S = S(D,T,E) is a bounded mea-
sure convex Souslin set in a locally convex space E. For such a set S the set of
extremal points ex(S) is universally measurable and S is a simplex if and only
if every element s G S is the barycenter of one and only one measure P G V(S)
such that P(ex S) = 1 according to Proposition 1.4.2(b), (c), p. 39 in Winkler
(1985). By Theorem 2 again, S = S{D,T,E) is a metrizable compact convex
set if D C X is a compact metrizable set and T is a continuous map of X
into E (i.e. bounded on D). Such a set S is a simplex if and only if the cone
C — R+(S X {1}) C E x R is lattice in its own order, according to Theorem
23.6.5, p. 420 in Semadeni (1971). Theorem 4 thus provides a purely algebraic
characterization of compact metrizable sets of uniqueness D C X for bounded
countable moment decompositions M(X, B) where B is a set of continuous
functions.

PROOF OF THEOREM 4. Observe first that

D is a set of uniqueness for M(X, B) if and only if

E{T) : V{D) -> S{D) := S(D,T,E) is a bijective map
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since M(D, B) = M(D,T, E) := M(D, T\D,E). Hence

D is a set of uniqueness if and only if both

T : V(D) -> V{TD) and b : V(T(D)) -> 5(2?) are bijective maps

and therefore, according to Remark 4, D is a set of uniqueness if and only if
(a) and (b) hold. I

COROLLARY. Let M(X,T,E) be a decomposition generated by (T,E)
satisfying (3) such that E has a Unite dimension n. Then a Borel set D C X
is a set of uniqueness for M(X, T, E) if and only if

(a) the restriction of the map T to the set D is an injective map and

(b) T(D) is a set of afRnely independent points in E.

Hence, if D is a set of uniqueness then card(D) < n + 1.

To derive this Corollary from Theorem 4 just observe that extremal points
in a bounded measure affine Souslin simplex S are affinely independent accord-
ing to Remark 4 and that card(Z)) = card(T(jD)) < n + 1 when (a) and (b)
hold.

Recalling the marginal and transshipment decompositions of V(X) intro-
duced in the Example of Section 1, we may consider the generators (T,Ex E)
and (Γi — T2,2£), respectively, and try to apply Theorem 4 when searching
for sets of uniqueness in mαrg(X) and trαns(X). The map T is injective and
Γ(5) = ex(S(X,T,E X E)), so that a Borel set D C X is a set of unique-
ness for mαrg(X) if and only if the set of all available pairs of marginals
{(Pi,P2),P € 7^(2?)}, is a simplex. The map Γi - T2 is injective when avoid-
ing the diagonal dg(X) in X. Also, it is not difficult to show that

(Γx - T2)(X - dg(X)) = ex(S(X - dg{X),Tλ - T2iE)).

Hence, the sets of uniqueness for trαns(X) are Borel sets D disjoint from the
diagonal (cf. Benes (1992)) such that 5(2?, Γi - T2,E) is a simplex.
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