
Chapter 8

Diffusion approximation and
Φ'-valued diffusion processes

The study of SDE's in Chapter 6 is motivated by various practical problems.
One of the applications is to the voltage potential of spatially extended neu-
rons. The stimuli received by a neuron are the form of electrical impulses
and are modelled by Poisson random measures. When the pulses arrive
frequently enough and the magnitudes are small enough, it is reasonable to
expect that the compensated Poisson random measures are approximated by
Gaussian white noises in space-time and hence, the discontinuous processes
of voltage potentials of spatially extended neurons governed by Poisson ran-
dom measures are approximated by diffusion processes.

In this chapter, we study the existence and uniqueness for the solution
of a diffusion equation on the dual of a CHNS. We shall consider it as the
limiting case of the SDE's driven by Poisson random measures investigated
in Chapter 6.

Let ([/, 8) be a measurable space and μn a sequence of σ-finite measures
on U. Let Nn be a sequence of Poisson random measures on R+ X U with
characteristic measures μn. Let An : R+ X Φ' —> Φ' and Gn : R+ X Φ' X U -»
Φ' be two sequences of measurable mappings on the corresponding spaces.
We consider a sequence of SDE's

X? = X£+ ί An(s,X?)ds+ ί ί Gn(s,X^_)u)Nn(duds) (8.0.1)
Jo Jo Ju

where {XQ} is a sequence of Φ'-valued random variables and Nn is the
compensated random measure of Nn.

We prove that, under suitable conditions, the sequence of unique solu-

tions of the SDE (8.0.1) converges in distribution to the unique solution of
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240 CHAPTER 8. DIFFUSION PROCESSES

the following diffusion equation

Xt = X0+ [ A(s, Xs)ds + f B(s, Xs)dWs (8.0.2)
Jo Jo

where A : R + x Φ' ^ Φ' and B : R + x Φ' -> £(Φ', Φ') are two measurable
mappings and W is a Φ'-valued Wiener process.

Diffusion equations of the type (8.0.2) have been studied by various au-
thors, e.g. Kallianpur and Wolpert [27], Tuckwell [55] and Walsh [56]. Most
of the above mentioned authors deal with linear or quasilinear equations.
A result for the general equation was obtained by Kallianpur, Mitoma and
Wolpert [24]. As a consequence of a diffusion approximation result in [31],
under conditions weaker than those of [24], we established the existence and
uniqueness of solution of (8.0.2). In this chapter, we present the arguments
of [31].

8.1 Martingale problem of a diffusion equation

In this section we consider the tightness of the weak solutions of the SDE

sequence (8.0.1). We will show that under suitable conditions, the limit

points of the sequence which solves (8.0.1) can be identified as the solutions

of the martingale problem corresponding to the diffusion equation (8.0.2).

Making use of the results in Chapter 6, we see that the condition (Al)(2°)

is satisfied if we assume that there exists ro > 0 such that AQ can be regarded

as probability measures on Φ- r o

sup / \\v\\2_rΰλ%(dυ) < oo (8.1.1)
n «/Φ_ro

where AQ is the distribution on Φ' of the random variables XQ. We make

the following assumption for {An, G n, μn, AQ}:

(DAI). The conditions (Al)(l°) of Chapter 6 and (8.1.1) hold.
Under assumption (DAI), it follows from Theorem 6.2.2 and Corol-

lary 6.1.1 that the condition (Al) of Chapter 6 holds, i.e. there exists a
sequence {λn} of probability measures on D([0,T], Φ_P1) which is the weak
solution to the SDE's (8.0.1) and

/ sup \\Zt\\ipλ
n(dZ) < K (8.1.2)

JD([0,T]}Φ-Pl)0<t<T

where p = p(T) - max^oCO^o) and pλ - P\(T) > p(T) such that the
canonical injection from Φ_p to Φ_P l is Hilbert-Schmidt. By Lemma 6.1.2,
the sequence {λn} is tight in £>([0,T],Φ_Pl).

To characterize the limit points of the sequence {λn}, we introduce the
following
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Assumption (DA2): There exist a covariance function Q on Φ x Φ and two
measurable maps A : R+ x Φ' -* Φ' and B : R+ x Φ' -> £(Φ', Φ') such that
Vί G [0, Γ], φ G Φ, a > 0, p > po and compact subset Co of Φ_p, we have

(1°)
lim sup \\An(t, υ) - A(t, v)||_ς = 0.

n ~ K X ) C

(2°)

flim> sup / Gn(ί,υi,ti)[^]Gn(ί,U2,u)[(/«]/in((iΐi) (8.1.4)

-Q{B(t,υiYφ,B(t,V2YΦ) = 0,

and

lim sup / | G n ( ί , v, u)[^>]| ^\Gn(t,υiu)[φ]\>MlJ^iβu) — 0 (8.1.5)

The condition (DA2)(2°) ensures that any cluster point of the sequence
{λn} is supported on continuous paths.

Theorem 8.1.1 Let λ* be a cluster point of the sequence {λn} on D([0,T],
Φ_P 1). If the sequence (An,Gn,μn, λg) satisfies the conditions (DAI) and
(DA2)(2°), then

λ*(C([0,Γ],Φ_pl)) = l. (8.1.6)

Proof: Let g be a non-negative continuous function on R vanishing in a
neighborhood of 0 and oo (gm, m G N, of Lemma 6.1.8 are examples of
such functions). For any φ G Φ, let {Fn} be a sequence of maps from
£>([0,T],Φ_Pl) to R given by

Fn(Z) = Σ g(AZs[φ]) - ίT ί g{Gn{s,Zs,u)[φ])μn{du)ds.
0<s<T J0 JU

Without loss of generality, we assume that λn converges to λ* weakly. Mak-
ing use of Skorohod's Theorem, there exists a probability space (Ω, J7, P)
and D([0)T],Φ-Pl)-valued random variables fn and ξ with distributions λn

and λ* respectively such that £n tends to £, P-a.s.
We now divide the proof into four steps.

Step 1. First we show that

- Σ 9(Δξ.[Φ]) in probability. (8.1.7)
0<«<T
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By the tightness of {λn}, for any e > 0, there exists a compact subset C

of J D ( [ 0 , T ] , Φ _ P I ) such that λ n (C) > 1 - e. Let C o be a compact subset of

Φ_ P l and M a constant such that

C C {Z e D([0, T], Φ_P1) : Zt G C 0 ) Vί € [0, Γ]}

and

Co C {υ e Φ_P 1 : | | υ | | _ P l < Af}.

Let b > 0 such that g{x) = 0 for any \x\<b. Then, Vo > 0,

CiC) + E Γ-E Γ f g(Gn(s,ff,tt

< 6+-J

a Jo

sup

Since

supμn{u: \Gn{t,v,u)[φ}\>b)

< sup S * . Jσ ||G"(t, t,, «)||2_piμ"(<iu) < Ϊ*-ΛΓ(1 + M2),

it follows from (DA2)(2°) and the bounded convergence theorem that

limsupP (ω : / / 5(Gn(5,^,u)[ψ])μn(cί'u)ίi5 > a) < e.

J
limsupP (ω : / / 5(Gn(5,^,u)[ψ])μ

n->oo \ JO JU

i.e.

/ / ^(Gn(5,ξj, ii)[^])^n(^)d5 -> 0 in probability.
Jo Ju

On the other hand, we have

Σ P-a.β.,
0<s<T 0<s<T

and hence, (8.1.7) holds.

Step 2. { F n ( f n ) } n 6 : N is uniformly integrable.

For each n, let pn and Dn be the point process and jump set respectively

corresponding to the Poisson random measure Nn. Let Xn be a process on
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a stochastic basis (Ωn, Tn, P", {T?\) and solve the SDE (8.0.1). It follows
from the proof of Theorem 6.1.3 that

F"(X") = Γ f g(Gn(s,X?_,u)[φ])Nn(duds) (8.1.8)
Jo Ju

and

sup^lF^ΠI 2 = supEpn\Fn(Xn)\* < KgWΦl&Kίl + K)T,
n n

where Kg = s\ip{(g(x)/x)2 : x G R} < oo. This proves the assertion of step
2.
Step 3.

0<s<T

It follows from (8.1.8) that Epn(Fn(Xn)) = 0 for any n 6 N. Hence

Eλ* £ g(AZs[φ]) = E
0<s<T 0<s<T

Epn(Fn(Xn)
n—> oo

= lim Epn(Fn(Xn)) = 0.
n—> oo v v / y

Step 4. (8.1.6) holds.
Let {<7m} be given by Lemma 6.1.8. As {gm(x)} increases to x2 as m

tends to oo, we have

Ex* Σ |ΔZ.M|2 = 0f V^GΦ.
0<5<T

Taking <̂> = ^ , j — 1, 2, and adding, we have

0<s<T

This proves (8.1.6) and hence finishes the proof of the theorem. I

To characterize λ*, we need to consider the martingale problem posed
by (8.0.2). Let £>o°(Φ') be given by Chapter 6. For F G X>§°(Φ'), consider a
map VSF : Φ' -> R defined by

VsF(υ) = A(s, v)[φ]h'(υ[φ]) + \ti\v[φ])Q{B{s, v)fφ, B{s, v)ιφ) (8.1.9)

where B(s, v)f : Φ -> Φ is the dual operator of J3(s, v). For Z G C([0, T], Φ7),
let

MF{Z)t = F(Zt) - F(Z0) - f VsF(Zs)ds. (8.1.10)
Jo

Let Bτ = βτ(C([O,Γ],Φ0) be the Borel σ-field of C([0,Γ],ΦO. For each
t G [0, Γ], let Bt = ΊΓ^BT where πt : C([0, T], Φ') - . C([0, T], Φ^ is given by
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Definition 8.1.1 A probability measure λ on (C([0,T],Φ'),/?τ) is called a

solution of the V-martingale problem if, VF G X>§°(Φ'), \MF{Z)Λ is a X-

martingale with respect to the filtration {/?*}.

Theorem 8.1.2 Under assumptions (DAI) and (DA2), (A,B,Q,XQ) sat-

isfies the following conditions (D): For any T > 0 there exists an index

p0 = po(T) such that, Mp > po, 3q > p and a constant K = K(p} g, T) such

that

(Dl) (Continuity) Vί G [0,Γ], the maps v G Φ_ p -> A(t,υ) G Φ_ ς and

υ G Φ_p —» B(t,υ) G L(2)(iΪQ, Φ-p) are continuous.

(D2) (Coerciυity) Vt G [0, T] and ^ G $ ,

(Growth) Vί G [0,T] and v G Φ - p , we Λaυe

and

(Initial) There exists an index r0 such that

ί ,, ..a χ*fdυ\<00

Jφ' ~r°

where XQ is the initial distribution induced by λ*.

Proof: It follows from the conditions (DA2)(1°) and (DAI) that the map

v G Φ_p —> A(ί, υ) G Φ-g is continuous and

Note that

so that B(t,υ)' € L{2){ΦP,H'Q). Hence B(i,υ) G L(2)(HQf Φ_p) and
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Further

\\B(t,υi)-B(t,v2)\\l(2){HQ>φ_p)

= Σ Q ((B(*ι υύ ~ B(t> «2))'$» (B(t, υi) - B(t, v2))'φfj
3

< liminf Σ j \{Gn{t,vx,u) - Gn(t,υ2,u))[<%]\2μn(du)
3

= lim înf / | | G n ( ί , υ 1 } u ) - Gn(t1 v2,u)\\2_pμ
n(du).

Hence the map from υ G Φ_ p to B(t, υ) G L(2)(i?Q, Φ- p) is continuous. The
condition (D4) can be verified by Fatou's lemma. I

Remark 8.1.1 It follows from Lemma 3.2.2 that

|2

ForBeL(&,Φ'), let

Then \QB\-P,-P < oo if and only if B G L(2)(iJg, Φ_ p ). In this case, we

have that IQ^I-p^p = | | β | | ^ tH φ_ \. In the paper of Kallianpur, Mit-

oma and Wolpert [24], the notation |Q^( ί v J_ P j _p is used in the place of

U5M)ll£(2)(Hg>Φ_p)
 i n assumption (D3).

Theorem 8.1.3 Under assumptions (DAI) and (DA2), λ* is a solution of

the V-martingale problem.

Proof: For F G X>S°(Φ'), let Mζ(Z)t be defined by (6.1.4) with {A}G,μ}
replaced by {An, Gn, μn}. Let f\ ξ, C, Co and M be as in the proof of The-
orem 8.1.1. Note that

~ MF(ξ)t\ < iΓ(0 + T(0) + f

where

= \H€[Φ}) -

- A(8,ξ.)[φ]h'(ξ.[Φ])\
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Now we prove that, Vί € [0, T]

E\M%(ξn)t - MF(Qt\ as n -> oo. (8.1.11)

It follows from the uniform continuity of Λ." that, for any e > 0, there exists
δ > 0 such that \h"(x) - h"(y)\ < e whenever \x - y\ < δ. Letting

„ = -h"(g[φ]))dadβ\ > e

we have

μn(Dn)lc(ξn) < sup μn{u : \Gn{s, υ, u)[φ]\ > δ} -> 0. (8.1.12)

Next,

Gn(s,ξΐ,u)

- h"(UΦ})\ sup / Gn(s,υ,u)[φ]2μn(du)

+\\\hn\\oo sup I / Gn(s,v,u)[φ]2μn(du)-Q(B{s,v)fφ,B{s,v)'φ)
2 veCo \Ju
1 If n I 2 / 2

—|——11 /̂  lloo | | .B(s, ζ£) φ\\ TTI — | | .B(s, ^ 5 ) ^11^-/ (8.1.13)
2 Q Q

It follows from the continuity of hn that the second term at the right hand
side of (8.1.13) tends to 0 P-a.s. The condition (DA2)(2°) implies that the
third term converges to 0. By Theorem 8.1.2, the fourth term tends to 0
P-a.s. Note that the first term is dominated by

sup / eGn(s,υ,u)[φ]2μn(du)
veCo Ju

+||Λ"||ooβup / Gn(s,υ,u)[φ]2μn{du)

< eK(l + M2)\\φ\\
p i

sup / Gn(s,v,u)[φ]2μn(du).
C JD
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From (8.1.5) and (8.1.12) we have

s u p / Gn(s,υ,u)[φ]2μn(du) -+0.

Hence by (8.1.13),

As

!"fc""

f̂  CT (β,6, u)[φ])2μm(du)lc(ξ)}

it follows from Fatou's lemma that

limsuppf / I$(s)ds > a)
n—> oo \ Jo J

/* Iζ
JQ

p
n—^oo CL

Hence, | /J I^(s)ds\ converges to 0 in probability. Similarly we can prove
that J^Iζ^ds converges to 0 in probability. Furthermore, it is easy to see
that, Jf(ί) and if(O) tends to 0 a.s. Therefore M%(ξn)t tends to MF(ξ)t in
probability.

As Xn is a solution of (8.0.1), it follows from /έo's formula that

ζ{Xn)t= Γ [(h(Xΐ_
Jo Ju

M

and hence

(8.1.14)

E\MΪ (D* I2 = Epn\Mξ{Xn)t\
2

= E
pn Γ ί \h(X?[Φ] + Gn(s,X?, u)[φ]) - h(X:[φ])\2μn(du)ds

Jo Ju

i)τ\\h'\\l\\φfpi.
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Thus Vt e [0, T], {Mζ(ξn)t} is uniformly integrable and hence (8.1.11) holds.
By (8.1.14) again, Vn G N, {M,f (Xn)t} is a f^-martingale and hence

{Mn(ζn)t} is a P-martingale. Passing to the limit, we see that MF(ξ)t is a
P-martingale and hence, MF(Z)t is a λ*-martingale. i.e. λ* is a solution of
the X>-martingale problem. I

8.2 Weak solutions of diffusion equations

In this section we derive the weak solutions of (8.0.2) from the solutions of

the corresponding martingale problem. The idea is similar to that used at

the end of Section 6.1. We shall also be using the representation theorem in

Chapter 3 for Φ'-valued continuous martingales.

Definition 8.2.1 A probability measure λ on C([0,T],Φ/) is called a weak
solution on [0,T] of the SDE (8.0.2) with initial distribution λ0 on the
Borel sets ofφ' if there exists a stochastic basis (Ω, T, P, (Ft)), a Φf-Wiener
process W with coυariance function Q and a Φ'-valued process X such that λ
and λ0 are the distributions of X and Xo respectively and for any t G [0, T\,
we have

Xt = X0+ /* A(s, Xs)ds + f B{s} Xs)dWs, a.s. (8.2.1)
Jo Jo

If [0,T] can be changed to [0, oo) and (8.2.1) holds for any t > 0, then we

call X on C([0, oo), Φ') a weak solution of (8.0.2).

Lemma 8.2.1 V<j!> G Φ, let

Mφ(t, Z) = Zt[φ] - Z0[φ] - f A(8, Zs)[φ]ds.
Jo

Under the conditions (DAI) and (DA2), {Mψ(t, Z)}t<τ is a continuous λ*-
square-integrable martingale.

Proof: Let Fm G VQ?(&) be given by Fm(υ) — pm(v[φ]) where pm is given
by Lemma 6.1.8. Let

X = {Z e C([0,T],Φ_Pl) : \\Zt\\.Pl < (m-l)\\φ\\£ Vt € [0,Γ]}

Then, for Z G X, we have \Z3[φ]\ < m - 1 and hence, MFm(Z)t = Mφ(t, Z).
Therefore

λ* \ZeC([0,T],Φ.Pl): sup \MF™(Z)t-Mφ(t,Z)\>e < A*(
V o<t<τ )
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= λ* ^eC([O,Γ],Φ_Pl): sup \\Zt\\-Pl>(m-l)\\φ\\£
\ 0<t<T

< 7 T^TΓTΪΪ^* -up \\Zt\\lpi < j ^ ^ K - 0, as m -> oo.

i.e.

MF™(Z)t -+ Mφ{t, Z) in λ*. (8.2.2)

By Theorem 8.1.2, it is easy to show that there exists a constant C inde-
pendent of m such that

\MF™(Z)t\ <C'(l+ sup \\Zt\\2Λ . (8.2.3)
\ 0<t<T J

As the left hand side of (8.2.3) is integrable with respect to λ*, by (8.2.2),
we have

Eχ*\MF™(Z)t - Mφ(t,Z)\-+ 0.

Vm > 1, {MFrn(Z)t} is a λ*-martingale and therefore {Mφ(t, Z)} is a λ*-
martingale. Finally, it is easy to see that there exists a constant C" such
that

\Mφ{t,Z)γ<C"(l+ sup \\Zt\\2_v\.
\ o<t<τ J

Hence {Mφ(t, Z)} is a λ*-square-integrable-martingale. The continuity of
Mφ(t, Z) in t is clear. I

Lemma 8.2.2 Let < Mφ > (t,Z) be the quadratic variation process of the
square integrable martingale Mφ. Under the conditions (DAI) and (DA2),
we have

<MΦ> (ί, Z) = f Q(B(s, Z,)'φ, B(s, Zs)'φ)ds. (8.2.4)
Jo

Proof: V ^ Φ , let

Nφ(t, Z) - Zt[φ]2 - Z0[φ]2 - 2 f A{s, Zs)[φ]Zs[φ]ds
Jo

Arguing as in the proof of Lemma 8.2.1, we see that {Nφ(t, Z)}t<τ is a
λ*-martingale. It follows from Jίό's formula that

Zt[φ]2 = Z0[φ}2 + 2 f A(s, Zs)[φ]Zs[φ]d
Jo

+2 / Zs[φ]dMφ(s,Z)+ <MΦ
Jo
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Therefore

< Mφ > (t,Z) - fQ(B{s,Za)'φ,B{s,Zs)'φ)dt
Jo

= Nφ(t, Z) - 2 f Zs[φ]dMφ(s, Z)
Jo

is a martingale. This proves (8.2.4). I

Theorem 8.2.1 Under assumptions (DAI) and (DA2), the SDE (8.0.2)
has a weak solution.

Proof: It follows from Lemma 8.2.1 and Lemma 8.2.2 that M G M2'c such
that

< Mt[φ] >= [* Q{B(8tZ.)'φ,B{s,Z.)'φ)d8, Vφ e Φ.
JO

By Theorem 3.3.6 there exists a Φ'-valued Q-Wiener process W on an ex-
tension of the stochastic basis (C([0, Γ], Φ'), BT, λ*, {Bt}) such that

Mt = I B(s, Zs)dWs.
Jo

Therefore

Zt = Z0+ ί A(SiZs)ds+ [tB(s1Zs)dWS}Jo Jo

and hence λ* is a weak solution of the SDE (8.0.2) on [0,T]. I

Now we shall establish the existence of the weak solution of (8.0.1) under
the conditions (D) instead of (DAI) and (DA2).

Theorem 8.2.2 Under assumptions (D)} the SDE (8.0.2) has a weak solu-
tion which can be approximated by a sequence of processes driven by Poisson
random measures.

Proof: By Lemma 3.2.2, there exists an index r and an operator Λ/QT on Φr

such that

Q(Φ,Φ) = (V&Φ, \/Q~rψ)r, yφ,Φe Φ.

Let U = {1,2, •}, μn({k}) = n2, X£ = Xo, An(t, υ) = A{t, v) and

Gn(t, υ, k)[φ] = - (VQ~rB(t, v)'φ, φi) ,



8.2. WEAK SOLUTIONS OF DIFFUSION EQUATIONS 251

for any t > 0, k G U, v G Φ'. Now, we only need to verify the conditions
(DAI) and (DA2). Note that

/ \\Gn(t,v,u)\\lpμ
n(du) = Σ I

XJ JXJ

v)'<ή,B{t,v)'<ή) = \\B(t,v)\\l{2){HQ)φ_p)

3

< K{l+\\v\tp).

Similarly,

/ \\Gn(t,Vl,u) - Gn{t,υ2,u)f_pμ
n{du)/ \

U

and hence the map from v G Φ - p to Gn(t, v, •) G L2(U, μn\ Φ- p) is continuous
and uniform for n. The verification of the rest of the condition (DAI) for
(An, G n , μn, λg) directly follows from assumptions (D).

Next, let CQ be any compact subset of Φ_ p . Note that

r = l

Hence, for n > ^^K(l + snpveCo\\υ\\2_p), we have

sup μn{u : \Gn(t,υ,u)[φ]\ > a}
v€Co

< supμn{u:K(l+\\v\\2_p)\\φ\\l>(na)2}
veCo

= 0.

This proves (8.1.3). (8.1.5) can be shown in a similar manner. For (8.1.4),

we note that

/ Gn(t,Vl,u)[φ]Gn(t,v2,u)[φ]μn(du)

u

fe=i
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Hence (An, Gn, μn, λ£) satisfies assumption (DA2). I

Finally, we construct a weak solution on [0, oo) for (8.0.2) by arguments
similar to those at the end of Section 6.2. First of all, let us construct a
sequence of measures λn on C n = C([0, nT], Φ-Pl(nτ)) by induction. Taking
λx = λ* and assuming that λn on C n has been constructed, we now construct

For 0 < t < T, υ e Φ', let

A(t, v) = A(t + nT} υ)} B(t, v) = B(t + nΓ, υ) and λ0 = λn o Z~^\ (8.2.5)

Then (A, S,Q,A0) satisfies assumptions (D) with po and K(ρ,q,T) replaced
by po((n+l)T) and K(p, g, (n+ 1)Γ) respectively. The SDE

Xt = X0+ f A{s,Xs)ds+ [tB(s,Xs)dWsJo Jo

has a Φ_pi((n_|_1)^)-valued weak solution λ* on [0,T]. Since

is a Polish space, the regular conditional probability measure

exists. Let
π : C n x C 1 > n + 1 -> C n + 1

be given by

as 0 < ί < nΓ
asnΓ<ί<(n

Define a measure λ*+ 1 on C n x C 1 > n + 1 by

λ*n+1(CxD)= I \*znT{D)\n{dZx)
JC

for C C C n and £> C C 1 > n + 1 . Then λ*+1 induces the measure λ n + i =
A^oTΓ" 1 on C n + 1 .

The λn's can be regarded as probability measures on C([0, oo)^') and
satisfy

λn+i|βnτ — λn

where Bnτ is the natural σ-algebra on C([0, oo), Φ') upto time nT. Hence,
the set function

), \/BeBnT.
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on the field UnBnτ is well-defined and σ-additive. Therefore λ can be ex-
tended to a probability measure on the σ-field VnBnT = B. Denoting this
extension also by λ, we have

The proofs of the following two lemmas follow from the same arguments

as those in the proof of Lemma 6.2.3. We leave them to the reader.

Lemma 8.2.3 λ is a solution of the V-martingale problem.

Lemma 8.2.4 (1°) For any φ G Φ, {Mφ(t, Z)}t>o given by Lemma 8.2.1 is

a λ-square-integrable continuous martingale with

<MΦ> (t,Z) = ί Q(B(s,Zsyφ,B(s,Zsyφ)ds, Vt > 0.
Jo

Now we obtain a weak solution of (8.0.1) for t G R + .

Theorem 8.2.3 Suppose that assumptions (Dl)-(DS) hold andMφ G Φ,

E\X0[φ]\2 < oo.

Then (8.0.2) has a Φi'-valued weak solution satisfying the following condition:

VT > 0, 3pι = pi(Γ) such that

E sup \\Xt\\lpi<k{K,T,E\\X0\\lvy
0<t<T

Proof: It follows from the proof of Theorem 6.2.3 that there exists an index

r such that, £7||Xo||-ro ^ °°* ^ e r e s ^ °f ^he the proof follows as in the proof

of Theorem 8.2.1. I

8.3 Existence and uniqueness of the strong solu-
tion

In this section, we shall impose an additional condition to ensure that the

SDE (8.0.2) has a unique strong solution. This will be achieved by estab-

lishing pathwise uniqueness and extending the Yamada-Watanabe argument

to this setup. Replacing the Good process by Φ'-valued Wiener process, we

shall follow the same procedure as in Section 6.3.

We first state some basic definitions.



254 CHAPTER 8. DIFFUSION PROCESSES

Definition 8,3.1 Let (Ω, T', P, {ft}) be a stochastic basis and W a Φ'-valued
Wiener process with covariance function Q. Suppose that XQ is a Φ^p-valued
random variable such that J5||Xo||-p < oo. Then by an Φ_p-valued strong
solution on Ω to the SDE (8.0.2) for t G [0, T] we mean a process Xt defined
on Ω such that
(a) Xt is an Φ-p-valued Tt-measurable random variable;
f&JlGC([0,T],Φ_ p ) ,o. ;
(c) There exists a sequence (σn) of stopping times on Ω increasing to infinity,
such that, Vn

rTΛσn

EJQ | |β( 5 ,X 5 ) | | i ( 2 ) ( J ϊ g > φ _ p ) d 5 < oo, (8.3.1)

and

E

(d) The SDE (8.0.2) is satisfied for all t G [0,Γ] and almost all ω G Ω.
// T is replaced by oo, we call X a strong solution of (8.0.2).

Definition 8.3.2 (pathwise uniqueness) A Φ-p-valued solution for the
SDE (8.0.2) has the pathwise uniqueness property if the following is true:
Suppose that X and X' are two Φ-p-valued solutions defined on the same
probability space (Ω, T, P) with respect to the same Φf-valued Wiener process
and starting from the same initial point Xo G Φ- p . Then the paths of X and
X1 coincide for almost all ω G Ω.

Now, we impose the following monotonicity condition
(DM): Vί G [0,T], υuυ2 G Φ_p, we have that

- A(t, v2), vi -v2>-q
2

) < 1

where q is introduced in assumptions (D).

Lemma 8.3.1 Under assumptions (D) and (DM), SDE (8.0.2) satisfies the
pathwise uniqueness property.

Proof: Let X and X1 be two Φ_p-valued solutions. Without loss of generality,
suppose that (c) of the Definition 8.3.1 holds for X and X1 for the same
sequence (σn) of stopping times. For φ G Φ, we have

{Xt-X't)[φ\ = ί\A(s,Xs)-A(s,X's))[Φ]ds
Jo

+ £ f < B(s,XsYφ,Vj >HQ
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where {VJ} C TZ(L) is a CONS of HQ and i is defined in Lemma 3.2.1. It
follows from Itό's formula that

- X't)[φ}}2

= IE / e-Kβ(X. - X'β)[φ](A(8,Xg) - A(8,X'9))[φ]d8
Jo

rtΛσn

-E Ke-Ks((Xs-X's)[φ)γds
Jo

+E jQ e-KsQ((B(s, Xa) - B(s, X',))'φ,

(B(s,Xs)-B(s,X's)Yφ)dS.

Letting φ = φ\, k G N and adding, we have

= 2E I e~Ks <Xs-X's,A(s,Xs)-A(s,X's)>_qds
Jo

ptΛσn

-El Ke-Ks\\Xs-X's\\lqds
Jo H

ftΛσn __

+Ejo e-κ*\\B(s,Xs) - B(s,Xf

s)\\l{2){HQiΦ_q)ds

< 0. . (8.3.2)

Hence, by the right continuity of X and X' and (8.3.2), X = Xf a.s. I

Definition 8.3.3 (Uniqueness in law) We say that uniqueness in law
holds for (8.0.2) if, for any two stochastic bases ( Ω f c , ^ , P f c , (J7*)), two Φ'-
υalued Wiener processes Wk with the same coυariance function Q and two
Φ-p-υalued solutions Xk of (8.0.2) with the same initial distribution on Φ - p ,
(k = 1, 2), we have that X1 and X2 induce the same probability measure on
C([0,Γ],Φ_ p).

Suppose X1 and X" are two solutions of the SDE (8.0.2) on stochastic
bases (Ω;, T', P\ (Ft)) and (Ω",.F"JF",(.F i[

/)) with initial random variables
XQ and XQ (having the same distribution λo on Φ- P l ) and Φ7-valued Wiener
processes Wf and W" (having the same covariance function Q) respectively.
Let A' be a Banach space containing HQ such that W1 and Wn take val-
ues in C([0,T],;F). Let Pw be the probability measure on C([0,T], X) in-
duced by either Wι or W". Let λf and λ" be the Borel probability mea-
sures on C([0,T],Φ_P l) X C([0,T],;T) x Φ_P 1 induced by {xι,W',X'Q) and
(X", W11, XQ) respectively. Define a mapping

π : C([O,T],Φ_P1) x C([0,T),X) x Φ_ P l -> C([0,T],X) X Φ_ P l
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by π(wι,w2) x) = (w2, x) Then, λ' o π " 1 = λ" o π " 1 =
Let A^2'x(dti;i) and λ"™ 2 '*^!) be the regular conditional probability of

wι given w2 and x with respect to λ' and λ" respectively. This is possible
since C([0,T],Φ_P l) is a Polish space. On the space

Ω = C([0,Γ],Φ_P l) x C([0,T],Φ_P l) x C{[0,T\,X) x Φ _ P l ,

define a Borel probability measure λ* by

λ*(C) = J j j JlC(wlyw2jw3,x)
λίw^x(dw1)X//w^x(dw2)Pw(dw3)λ0(dx) (8.3.3)

for C G β(Ω). Then, it is easy to show that (wuw3,x) and (X',W',XQ)

have the same distribution and so do (w2i Ws, x) and (X", W;/, -X̂όO

The proof of the following Lemma is as in Lemma 6.3.3.

Lemma 8.3.2 For any C G #ί(C([0,T],Φ_ p l)), we define two functions f\

and f2

Λ K a O = λ'™'*(C) and f2(w,x) = \"W>X{C).

Then /i and f2 are measurable with respect to the completion of the σ-field

β t(C([0,T],X)) X /5(Φ_Pl) under the probability measure Pw ® λo

Lemma 8.3.3 Let B't be the completion of

βt(C([0,T],Φ_Pl)) x βt(C([0,T],Φ_Pl)) x Bt(C([0,T],X)) x

ΓΛen W3 is a Φ'-valued Wiener process on the stochastic basis (Ω,β r, λ,Bf

t).

Proof: We only need to prove the independence of Ws(t) — w^^s) and B's for
any t > s. This follows from the same argument as in Step 1 of the proof of
Lemma 6.3.4. I

Theorem 8.3.1 Under assumptions (D) and (DM), uniqueness in law holds

and the SDE (8.0.2) has a unique strong solution on [0,T].

Proof: Let Xf and X" be two solutions of the SDE (8.0.2). From the ar-
guments above, we see that (tϋi,tϋ3,cc) and (w2,W3,x) are two solutions of
(8.0.2) on the same stochastic basis (Ω,/^, λ,#£). By the pathwise unique-
ness proved in Lemma 8.3.1, we have that X(w2 = Wι) — 1. Coming back to
the original probability space, we have λ(w2 = Wι) = 1. But, by (8.3.3),

\(w2 = Wl)= ί ί λ'w>x ® \"w>x{w2 = w1)Pw(dw)X0{dx),
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so, for Pw ® λo-a.s. (w,x), we have

By Lemma 6.3.5 and (8.3.4), we have a mapping F from C([0, T], X) x Φ_P l

to C([0,Γ],Φ_Pl) such that

λ '^ = ίF(W|X). (8.3.5)

For any C € £t(C([0,T], Φ_Pl)), by (8.3.5), Lemma 8.3.2 and

it is easy to see that F^iC) is in the completion of #*(C([0, Γ],
under Pw ® λo, and hence, F(w, x) is adapted. Then, for any Φ'-valued
Wiener Process with covariance function Q and initial Φ_P1-valued random
variable Xo, F(W}X0) is a strong solution of the SDE (8.0.2).

The uniqueness of the strong solution follows directly from the pathwise
uniqueness of the SDE (8.0.2). The uniqueness in law follows from (8.3.5).
I

The following theorem establishes the existence of a unique strong solu-
tion for (8.0.2) and can be proved by the same arguments as those in the
proof of Theorem 6.3.2.

Theorem 8.3.2 Under assumptions (D) and (DM), if E\X0[φ]\2 < oo Vφ G
Φ, then the SDE (8.0.2) has a unique Φ-valued strong solution.

Next we make an additional assumption and derive the diffusion approxi-
mation of SDE's on the dual of a CHNS driven by Poisson random measures.

Assumption (DA3): For each n, (An,Gn,μn) satisfies the condition (M) of
Chapter 6 where the index q and the constant K are independent of n.

Theorem 8.3.3 Under assumptions (DA1)-(DA3), SDE (8.0.1) has a uni-
que solution for each n. Let λn be the distribution of this solution on
JD([0,Γ], Φ_P l). Then {λn} converges weakly to the distribution λ of the
unique solution of SDE (8.0.2).

Proof: The first part of theorem follows from Theorem 6.3.1. Under the
assumption (DA3), it is easy to verify the condition (DM) for (A,B,Q) and
hence, by Theorem 8.3.1, (8.0.2) has a unique solution. Denote the distri-
bution of the unique solution of (8.0.2) by λ. As the sequence {λn} is tight
with only a single cluster point λ, {λn} converges to λ weakly. I
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Finally, we apply our results to the linear case. Let (Φ, if, Tt) be a special

compatible family and Λ G #(Φ'). For each n > 1 let μn be a measure on

(R x Λ,/?(R) x B(A)) such that the positive definite bilinear form

= ί a2η[φ]η[<ψ}μn(dadη)
RxA

is continuous on Φ x Φ, and let Nn be a Poisson random measure with
characteristic measure μn(dadη). Define

Yt

n[φ] = ί ί aη[φ]Nn{dadηds)
JO JRxA

where Nn is the compensated random measure of Nn.

For n > 1 let mn G Φ' and consider the Φ'-valued process ξn given by

% = ηn (8.3.6)

where ηn is ^Ό-measurable.

Corollary 8.3.1 Assume the following six conditions hold:

1) There exists r<ι > 0 and c > 0 such that for n > 1

Qn(Φ,Φ)<c\\φ\\
r2

2) limn_,oo Qn(φ, φ) = Q(φ1φ) V0 G Φ for some positive definite bilinear
continuous form Q on Φ x Φ.
3) Hindoo mn[φ] = m[φ], V<̂> G Φ, for some m G Φ ;.

4) There exists ro > 0 such that

oo.

5) There exists r% > 0 such that ηn converges in law to η on Φ r 3

6)

lim / \aη[φ]\3μn(dadη) = O Vφ G Φ.
n^°° JRxΛ

Tften /or eαc/i Γ > 0 there exists pψ > 0 sucΛ t/iαί ξ n converges weakly to ξ

on D([0,T]} Φ p τ ) where ξ is the unique solution of

dξt = - Z/& dί + mdί + dWt

ξo = η (8.3.7)

F is a centered Φf-valued Wiener process with covariance functional Q.
Furthermore
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Proof: It follows from Theorem 8.3.3 that we have only to verify Assumptions
(DA1)-(DA3) for (An,Gn,μn) where

An(t, v) = -L'υ + mn and Gn(t, v, (a, η)) = aη[φ]

with A(t, υ) = -L'υ + m, B(t, υ) = I and Q given by 2).

Note that Vp > 0, υ G Φ_ p ,

> < —Li υ. (DA > [ 1 -\- Λή ,

I 2-P

Hence

- L'υ e *-(p+i) and || - L'υ\\_(p+1) <

It follows from 1) that Vn > 1,

mn G Φ_r2 and | | m n | | _ r 2 < y/c.

< | |υ | |_ p . (8.3.8)

(8.3.9)

Therefore, Vp > Γ2, -An(£, •) : Φ_ p —> Φ_(p + 1) is continuous and uniform for
n. Since

R χ Λ
^'?) = Σ L a2η[<ή]2μn(da

«/RχΛ

( 8 3 1 0 )

for p > ri + r 2, Gn(t}v, •) E L 2 ( R X A,μn(dadη);Φ_p) and is clearly con-
tinuous in v G Φ-p uniformly in n (as Gn(t,υ)(a}η)) does not depend on
v). Hence (An

JG
n

)μ
n) satisfies (II) uniformly in n with po = r χ + r 2 and

\fφ G Φ, v, vi, ̂ 2 G Φ-p, we have

= 2(-L'φ +

\\An(t,v)\\lq < 2\\v\\2_p
_p < (3

(8.3.11)

(8.3.12)
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and

2 < An(t,Vl) - An(t,υ2),v1 - υ2 >_g

+ / \\Gn(t,v1,(a,η))-Gn(t,v2,(a,η))\\2_qμ
n(dadη)

= 2 < -L'{yι - t/2), vi - v2 >-q< 0. (8.3.13)

Assumptions (12), (13) and (M) then follow from (8.3.10)-(8.3.13). Therefore

(DAI) and (DA3) hold.

Since

< ra — ran, φj > (1 + λj)~ q < 4c(l + λj)~ v9-**2)

is summable for g > p > p0) by the dominated convergence theorem, we
have

\\A»(t, υ) - A(t, υ)\\lq = £ | < m - mn, φά > |2(1 + λ,-)-2* - 0.

Further,

q

e) < ^ /D |αί7M|V(Λwί^) - 0,
^ «/RxΓ

( , V!, (α, 7?))MG"(ί, «2, (o, η))[φ]μn(dadη)
RxA

= Qn(φ,φ)-+Q(φ,φ)

and

sup / \aη[φ]\2l]aη[φ]>Mμn(dadη) < — s u p

—>• 0 a s M - ^ o o .

This proves (DA3).

8.4 Applications of diffusion approximation

In this section, we give some applications of diίfusion approximation.

Example 8.4.1 Reversal potential model
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In Chapter 4, we introduced the reversal potential model for a point neu-

ron (i.e. the neuron can be regarded as a single point). For the convenience

of the reader, we describe the reversal potential model for spatially extended

neurons briefly.

Let L = - Δ + al be an operator on H, where

_ dh_

Xi=o dxi
= 0} i = l, ••-,<* (8.4.1)

and X = [Q,π]d represents the neuron membrane, a is the leakage rate.
Then L is a nonnegative-definite and self-adjoint operator on the separable
Hubert space H with discrete spectrum. Let λ^...^, Φj1.. j d , j \ jd > 0 be
the eigenvalues and eigenvectors respectively of L, i.e.

λji id =Jι + + 3d + <* Φή~ jAx) = Φh (χi) "Φjd(
χd)

and

Φo(χk) = Y - Φjk(
χk) = y-cos(jkxk) jk > 1.

For ri > | , it is easy to show that

E ( l + iί + + i d

2 Γ 2 r i <oo. (8.4.2)
31-3d

For r G R and h e £Γ, let

< Λ l ^ . . . i , > 2 ( l + j ί + - + i3)2 r (8.4.3)
31 "'3d

and

Φ = {heH: \\h\\r < oo,Vr 6 R} (8.4.4)

where < , > is the inner product on H. For each r, let Hr be the completion
of Φ with respect to the norm || | | r . Let Φ' be the union of all Hri r G R.
Note that Ho = H and < , >o=< , >. Then Φ is a countably Hilbertian
nuclear space and Φ' its dual space.

Suppose that there are excitatory (resp. inhibitory) ions with equilib-
rium potential ηe G Φ' (resp. ηi G Φ7) arriving according to Poisson streams
Ne (resp. N{) with random magnitudes A^ > 0, k = 1, 2, with common
distribution Fe on [0, oo) (resp. A1? < 0, k = 1, 2, with common distribu-
tion F{ on (-oo,0]). Let Ne and Ni be independent Poisson processes with
parameters of fe and fi respectively. The random variables A^, A^, Ne and
Ni are all taken to be mutually independent. Let {τk} and {τ£} be the jump
instants of the processes Ne and N{ respectively.
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Then the voltage potential ξ of the neuron can be regarded as a Φ'-valued
process and characterized by the following reversal potential model:

Ne(t) Ni(t)

k=l k=l

Let U = Φ' X R and

t Ne(t) Nt(t)

6 = ζ0 - / L'ξBds + £ (ηe - ξTk-)Ak

e + £ (£τ,_ - ηi)Al (8.4.5)

ΛΓ(Λ x 5 x [0,ί]) = 2 lB(Ak

e)lA(ηe) + £ l B ( 4 ) l A f a ) (8-4.6)
fe=i fc=i

for any ί > 0, B e β(R) and Λ € #(Φ') Then N is a Poisson random

measure on Φ' x R x R + with characteristic measure

μ(Λ x B) = / e U ^ F e C B ) + filK{ni)Fi{B) (8.4.7)

for any Λ G β(Φ') and B G β(R) . (8.4.6) is then rewritten as

ίt = ίo - Γ^'e.ώ + t [ ί f(t-,V,a)N(dηdads) (8.4.8)

w h e r e
Λ/ x ί ( ? 7 - t ; ) α i f α > 0 , o Π λfiv.η. a)=< } ( r r, (8.4.9)JK ' /? ; I ( υ - r )α if α < 0, v y

for v G Φ', 7? G Φ', a G R.
Now we consider a sequence of SDE's on Φ' of the form (8.4.8):

ξ? = & - f L'n£ds + f I I f(C-,η,a)Nn(dηdads) (8.4.10)
Jo Jo JΦ1 JΈL

where Ln = - Δ + α n / , {an} is a sequence of real numbers and Nn(dηdads)
is a sequence of Poisson random measures on Φ ' x R x [ 0 , o o ) given by
(8.4.6) with / e, fa Fe and Fi replaced by /e

n, f?, F e

n and F/1 respectively.
The characteristic measures μn are given by (8.4.7) with / e, /^, Fe and F^
replaced by /e

n, /f, F e

n and F/1 respectively.

To derive a diffusion approximation for (8.4.10), we make the following

Assumptions R:
(Rl) an + ftc% - ffa? -> a and /e

n6^ + f?V> -> /32 in R where α? =
/0°° aF?(da), b^ = /0°° a2F?(da) and α? and V> are defined similarly.
(R2) For any e > 0, f?F?{a : a > e} + f?F?{a : a < -e} -> 0.
(R3) There exists a sequence {cn} such that cnf?a% -+ 7 e and cnffd? -+ 7^

(R4) supn (/- / ~ α 2F-(dα) + /f f:% a?F?{da)) - O a s M - , 0 0 .



8.4. APPLICATIONS OF DIFFUSION APPROXIMATION 263

For any φ and φ in Φ, let Q(φ,ψ) =< φ,ψ >. Let A : Φ' -> Φ' and
B : Φ' —»• Φ' be given by

A(υ) = -L'υ + 7,77, - 7 ^ and 5 ( υ ) > = /3υ[^]^o..Λ. (8.4.11)

Let V" — cnv%. We have the following diffusion approximation result for

Theorem 8.4.1 Suppose that we have r0 such that &upn E\\V£WLro < oo
and {VQ1} converges to a Φ'-valued random variable Vb in distribution. Then
Vn converges in distribution to the unique solution of the diffusion equation
on Φf:

Vt = V0+ ί A(Vs)ds+ ί B(Vs)dWs (8.4.12)
Jo Jo

where W is a Φ'-valued Wiener process with covariance Q.

Proof: Note that
ft ft p ΛOO

V? = V?+ An{V?)ds+ / / Gn{V?_,η,a)Nn(dηdads) (8.4.13)
Jo Jo JΦ* Jo

where

and

An(υ) = -L'nυ + an

eK{cn

Ve - v) + α?//> - cn

Vi) (8.4.14)

cnV - v)α if α > 0

for v 6 Φ', 7? € Φ' and α € R.
First we show that cn —»• 0. In fact,

= fe
pe pM

JO Je
a2F?(da)

pθ p-e p-M

+fΓ / a2FΓ(da)+ a2F?{da)+ a2F?(da)
J—e J—M J—oo

< e (/ e

n< - /f < ) + M 2 (/e

nFe

n{α : a > e} + fΓF?{a : a < -e})
/ poo p—M

+ sup
n V

p—M \

/Γ / α2Ff(dα) .
J-oo /

Taking n —>• oo and then M —>• oo, we have

/?2 < e liminf ( / > ? - / > ? ) • (8.4.15)
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Letting e —>• 0, then

β2

lim inf (f?a? - £*α?) > lim — = oo. (8.4.16)

It then follows from (R3) that cn -> 0.

Now we show that ( A n , G n , μ n ) satisfies Assumptions (DA1)-(DA3). It

follows from similar arguments as those leading to (8.3.8) that Vυ G Φ - p , we

have

- L > G Φ _ ( p + 1 ) and || - L > | | 2 _ ( p + 1 ) < 2(1 + \an\2)\\v\\ip. (8.4.17)

Let q = p + 1 and po be such that ηe, r\i G Φ- P o Then for p > po>

t; G Φ-p, we have An(y) G Φ_ g and

by choosing K such that

K > 2 + 2sup|αn + </e

n-o^/f| (8.4.18)
n

and

K > sup llcX/^r/e - cX/f 7?i||_g. (8.4.19)
n

Similarly

| |An(t^) - An(v2)\\.q < K\\v! - v2\\.p} Vt f̂ 2̂ € Φ-p.

Note that

/ / WCTiυuη^-Cr^η^Wl^idηda)
JΦ' JR

poo
= /eM \\a(cnηe-υ1)-a(cnηe-v2)\\2_pFT(da)

Jo

/" ί° l|α(«i - c"^) - α(ϋ2 - cn

Vi)\\lpF?(da)
J—oo

by choosing K such that

K > sup ( / ^ + ffδ?). (8.4.20)
n

Similarly, we have

/* \\Gn{v^a)tf_
Φ' JR.
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by choosing K such that

K > sup (2/X + 2/TO (8.4.21)
n

and
K > sup h\cn\f?%\\Vef_p + 2|c"|/r&?IM|2-P) (8-4.22)

For any φ E Φ, we have

= - Σ < Φ> Φ? > - P
 λ i < <£> ^"P >-p^ °

i

Taking K to be the largest one among the right hand sides of (8.4.18)-
(8.4.22), we see that (DAI) holds. (DA3) can be verified similarly.

Finally, we verify (DA2). It is clear that An(υ) -*• A(υ). Further,

μn{(η,a):\Gn(v,η,a)[φ]\>e}

< / e

n F e

n ίa:a>, * =-^1 + f?F? la : a < - {,Λ \ \
~ I \cnηe[φ] - v[φ]\ j I \υ[φ] - cn

ηi[φ]\)

L LGn(VuV>aMGn(v2,η,a)[φ]μn(dηda)

h-v1[φ])(cnηe[φ]-v2[φ])

- cnηi[φ])(v2[φ] - cn

ηi[φ})

-> β2vχ[φ}v2[φ]

and

QiBMφiBfaYφ) = <βv1[φ]φo,βv2[φ]φo>o

= β2vι[φ]v2[φ].

(8.1.5) follows from (R4) easily. This proves (RD2) and hence, by Theorem
8.3.3, we complete the proof. I

Next, we show that the limiting process is in fact in Ho and can thus be
regarded as the unique solution of a stochastic partial deferential equation.

Theorem 8.4.2 Suppose that ηe} ηi e J?o and Vb is an Ho-valued random
variable such that E\\V0\\l < oo, then V € C([0,T],ifo). Let V(tr) = Vt,
then

,x) = V(0,x)- [t{LlV{s,x) + Ίeηe{x)-Ίiηi)ds+ f βV(s,x)dBs
Jo Jo

(8.4.23)
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where B is a one-dimensional Brownian motion which is independent of the
initial random field {V(0, x) : x € X}

Proof: It follows from (8.4.11) and (8.4.12) that, for φ £ Φ such that Lφ =

Vt[φ] = V0[φ]+ [tA{Vs)[φ]ds+ [' <B(Vs)'φ,dWs>0 (8.4.24)
Jo Jo

= V0[φ]- [\λVa[φ}-Ίeηe[φ]-liηi[φ])ds+ f βVs[φ]dWs[φ0}.
Jo Jo

Making use of Itό's formula, we have

Vt[φ]2 = V0[φ]2 - f 2Vs[φ](λV,[φ) - leηe[φ] - Ίiηi[φ])ds
Jo

+ f 2βVs[φ]2dWs[φ0] + f β2(Vs[φ])2ds. (8.4.25)
Jo Jo

From the Burkholder-Davis-Gundy inequality (see Dellacherie and Meyer
[7], p285, (90.1)) we have

/(r) = E sup Vt[φ]2 (8.4.26)
0<t<r

< EVo[φ]2 + Γ(2|α| + 1 +β2)EVs[φ]2ds
Jo

< EVo[φ]2 + (2|«| + l + β2) Γ f(s)ds
Jo

+{ΊeVe[Φ] ~ lMΦ])2r + 8βE sup \V.[φ]\J / Vs[φ]2ds
\o<t<r yJo /

< EV0[φ]2 + (2|α| + 1 + β2) Γ f{s)ds + ^eηe[Φ] - ΊiVi
Jo

+\ f(r) + 32/32 f E{Vs[φ]fds.
2. Jo

i.e.

\2

2r

f(r) < 2EV0[φ]2 + 2(Ίeηe[φ]-liηi[φ])2r

+2(2|α| + 1 + 33/?2) Γ f(s)ds. (8.4.27)
Jo

Gronwall's inequality then yields

E sup Vt[φf (8.4.28)
o<t<τ

< {2EV0[φ}2 + 2(leηe[φ] - Ίiηi[φ])2T) exp(2(2|α| + 1 + 33/J2)Γ).
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Letting φ = φjλ ...jd and adding, we have

E22 S UP
i=o°<*<τ

< (*E\\Vo\\l +•4(Tell?7e||o +τ t

?ll7?»llo ϊ 7) e χp(2(2lQ ;l +

(8.4.29)

l + 33/32)T).

The continuity of Vt[φj] is obvious. It follows from (8.4.29) that V G

C([0, Γ], Ho). (8.4.23) easily follows upon setting Bt = Wi|#o]. •

Example 8.4.2 White noise current injection at a point

Wan and Tuckwell [58] considered this problem and first used the ex-

pression "white noise current injection at a point".

Let H = L2([0,π],dίc) and — L be as in the example for the stochastic

cable equation (cf. Section 4.2). We shall now introduce a SDE in which the

driving Gaussian white noise process is not generated by the Brownian sheet.

It will be shown that the resulting equation has a unique H-valued solution.

The SDE describes the evolution of the voltage potential of a neuron when it

receives random impulses only at a single point, say ceo £ [0? fl"] As explained

in Chapter 4, first consider impulses arriving at x0 with arrival rate measure

of the form

μn(A x B) = μ?(A)lfl(a!o), A G β(R+) f B G

where

and a^n > 0 are the magnitudes of the excitatory pulses and — a^n > 0

are the magnitudes of the inhibitory pulses. /^>n, f^71 are the characteristic

measures of the Poisson processes Nj?>n, Ni

iU. Let

1=1

k=l 1=1

and define

Ytn[Φ] = Σ αe'n f [ Φ{x)N^{dxds) - Σ <4 n jf' j Γ φ(x)NΪ>n(dxds)
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Here, AT" n and Ni' are independent, compensated Poisson random mea-

sures with characteristic measures given by fg nι/(dx) and f^'nι/(dx) with

v{B) = lβ(cco). We have

φ] = 0 and EYt

n^]Ys

n[i>] = (t A s)Qn(φ,φ)

where

For each n, the evolution of the voltage potential ξn is described by the
following SDE driven by the Poisson martingale Yn:

dff = {-L'tf + 7

n<£(*o)}ώ + dYP, t > 0. (8.4.30)

We take the initial value ξβ to be zero for all n. In order to derive the
limiting behavior of £ n , impose the following conditions on the parameters:

(i)

lim σ 2 = σ2, 0 < σ 2 < oo;

(iii)

lim 7 n = 7, I7I < 00.
n—>-oo

Then

and the convergence to normality applies (cf. Corollary 8.3.1). The processes

ξn converge weakly to ξ which is the unique solution of

dξt = {-2/& + ΊΦ{xo)}dt + dWu ξ0 = 0, (8.4.31)

where Wt is a Φ'-valued Wiener process with £Wt[ψ] = 0 and

EWt[φ]Wa[φ] = σ2{t Λ s)φ(xo)il>(xo).

To simplify the discussion take σ2 = 1 and 7 = 0. W* is Φr-valued in a

degenerate sense for we may take Wt = ZtδXQ where Zt is a real valued

standard Wiener process and δXo is the Dirac measure at XQ. The solution

of (8.4.31) can be seen to be given by 6 € Φ' with

j=0

We now consider the convergence of the series. From (8.4.31), we have
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and

or

ζΐ = φj(x0) ['e-λ^-°Uzs. (8.4.32)
Jo

For different j , the ξ% are Ornstein-Uhlenbeck processes but they are not

independent.

Theorem 8.4.3 Let ξ be the unique solution of equation (8.4-31). Then

Proof: We divide the proof into three steps.
Step 1: Let B be a real-valued Brownian motion. Then

K = E sup 7 r-—-ί-, r^ < oo. (8.4.33)
o<t<oo(ί+l)[loglog(ί + 26)]2 v ;

To show this, let

Θ = \ θ e C([0, oo) : 0o = 0 and lim — / = 0 I .
[ u y *-oo (t + l)poglog(ί + 2e)]2 J

Then Θ is a separable Banach space with norm || ||Θ given by

Θ =

It follows from Strassen's law of the iterated logarithm (see Hida [14]) that

B. G Θ a.s. and hence, {Bt} induces a centered Gaussian measure on

(Θ,/?(Θ)). It follows from Fernique's theorem (see Kuo [35] or Deuschel

and Stroock [8]) that there exists a > 0 such that Eexp (-α | |B. | | | ) < oo.

As a consequence, (8.4.33) holds.

Step 2. There exists a constant K\ > 0 such that

E sup ( # ) 2 < K^l°\λj) Vj > 0. (8.4.34)
0<t<T λj

There exists a real-valued Brownian motion B such that

/ e'^dZs B B
Jθ 2Xj VZλ3
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Therefore

sup (£)2 = Φ-^E sup
0<t<T 2λj 0<t<T

sup ~ ^ -
0 < t < e 2 λ J T - l ί + 1

- Trλj 1

E

Step 3: ξ G C([O,T],#) a.s.

It is clear that £?' G C([O,T],R) a.s. Vj > 0. As Σ j ( l o g

Λ

λ ; ) 2 < oo,
by the dominated convergence theorem and (8.4.34), it easily follows that
ξGC([0,T],if)a.s. I

Example 8.4.3 White noise current injection at a point (d > 1)

Let H = L2([0,π]d, dx) and L = - Δ + / be a differential operator on
H with Neumann boundary condition. We consider the following equation
which is similar to (8.4.31) on Φ;:

dξt = -L'ξtdt + dWt (8.4.35)

where xo G [0, τr]d, Wt is a Φ'-valued Wiener process with covariance Q(φ, φ)
= σ2φ(xo)ψ(xo) and Φ is the nuclear space constructed by (8.4.3) and (8.4.4).

For simplicity of notation we denote (jΊ, ,j<f) by j . Let ξ% = ξt[Φ]\
and Wt = δXoZt where Zt is a real-valued Wiener process. Then

Lemma 8.4.1 i) Vt € [0,T], ξt is not an H-υalued random variable,
ii) There exists p>0 such that ξ. G C([0, T], Φ_p).

Proof: i) For simplicity, assume xo = 0. If ξt is an H-valued random variable,
then i?||ft||ff < oo since it has a Gaussian distribution. But

= (i)V2(1 +I i l 2)
= OO.
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Therefore, ξt is not an H-valued random variable.
ii) We have only to verify Conditions (D) and (DM) for

A(υ) = -L'υ, B(υ) = I and Q(φ, φ) = φ(xo)Ψ{xo) (8.4.36)

Similar to (8.4.17), Vp > 0, 3q = p+1 such that A is a continuous map from

\\A(υ)\\-q < \\v\\.p, W e Φ-p. (8.4.37)
Φ_p to Φ_g and

As
Φ

we have

\φ(*o)\2<(=-) D < * , ^ > a

for Γ2 > \. Then for p > | , the canonical injection from iϊg to Φ_p is
Hilbert-Schmidt, i.e. B defined in (8.4.36) is a continuous map from Φ_p to
L(2)CBΓQ,Φ-P). This proves (Dl). The conditions (D2)-(D4) and (DM) can
be verified easily. I

If we replace the assumption that all the impulses arrive at the point a?o
by the more realistic assumption that they arrive in the vicinity of xo» then
the covariance functional Q(φ,ψ) of Wt has the form

where

Then we have Wt = Ztfe and

&=- fh&ds + F'ht

JO J

where Γ* = fe[φj\.

Lemma 8.4.2 Ve > 0, ξe € C([0,T],H).

Proof: We omit the index e for convenience of writing. From Itό's formula,
we have

(ώ2 = ~2λ; ί\ξi)2ds + 2f f £dZ, + ί\n2ds
J Jo Jo Jo

3 i'gdZ
Jo
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VO < t < T. Let Gj(r) = Esupo<t<r(#)2. Then

G-(r) < (P)2T + 2\f\E sup \ I ξίdZs
3 0<t<r I /O

sup
0<ί<r

JO

G-(s)<fs

< (/>)2T + 2(fh2 + 2 Γ G^(s)ds
Jo 3

< 2(T + 1)(/)2 + 2 Γ G;(s)ds.
Jo

By Gronwall's inequality,

Λ r j — 2\* > •*•)(/) e (0.4.00)

Hence
, (tΓ o<t<τ

3 3

= 2 e

2

= 2e
2(T+l)||/€||lr.

-t

The above inequality, together with the fact that ξl'3 is continuous in t for
each J, implies that ξ€ G C([0, T], H). I

Theorem 8.4.4

? sup
o<t<τ

Proof: As

t3 = et

3 - ξϊ = -λ ; fQ ηe/ds + (// - φ^xo))Zt.

It follows from the same arguments as in (8.4.38) that

Then

E sup (τ ? t

e J)2<
0<t<T

SUP M\\lp < B 1 + λjr2PE S U P ivt'3)2

- - — * r r J o<t<τ

by the dominated convergence theorem.
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8.5 Examples of nuclear-space-valued SDE's

To justify the theory of stochastic differential equations in nuclear spaces
developed in the previous sections of this chapter it is expedient to give
concrete examples to show that the occurrence of such stochastic equations
is not a pathology but probably as natural as the appearance of generalized
functions (or distributions) in functional analysis or the theory of partial
differential equations.

Each of the examples in this section relates to some area of application.

Example 8.5.1 Stochastic fluctuation of a two-dimensional neuron.

When the neuron is regarded as a thin cylindrical segment, it is usual

to model its stochastic behavior by a stochastic cable equation as in Section

4.2. While this is often considered to be a prototype of a spatially extended

neuron (see remarks at the end of [26]) it is interesting to consider neuron

membranes that are parts of a manifold. For simplicity, take A' to be a

square {(#,y) : 0 < z < π, 0 < y < π}. The SPDE describing the

fluctuation of the voltage potential across this membrane (with insulating

edges) is assumed to be of the form

du *
— = Au - u + Wtχy, t > 0,. 0 < x < π, 0 < y < π (8.5.1)

with Neumann boundary conditions

du du du du

dx ' ' dx ' dy dy

Since the initial value has no effect on the nature of the solution we shall

take it to be zero. The generator L has eigenvalues Xjk = l + j ' 2 + &2, (j, k =

0,l, ) with eigenfunctions φjk{x<>y) = Φj(x)Φk(y) where φj(x) = -4^ for

j = 0 and J^cosjx for j > 1. The Green function

G(ί; a, y, x\ y') = £ e'xiktφjk(x} y)φjk{x\ y'), t > 0.
jk

If a random field solution of (8.5.1) exists it is easy to see that it is given by

u(t,x,y) = ί Γ ΓG(t-s;x,y,x',y')W{dx'dy'ds)
Jo Jo Jo

x)Φk(y) (8.5.2)

where

Λjk k= fJo
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and

Wjk(ds)= Γ Γ φ^
Jo Jo

The Wjk are independent standard Brownian motions and hence Ajk are

independent, centered, Gaussian (Ornstein-Uhlenbeck) processes. Hence the

formal series (8.5.2) is almost surely convergent iff

converges, i.e. iff

\ φj(xj Φkvy) ^
ik 2λjk

In particular, for x = y = 0, we must have

But since λ ^ = 1 + j 2 + k2

} for t > 0,

Hence the formal series cannot represent the solution and the SPDE does
not have a random field solution. The above example has been discussed by
J. Walsh [57].

Let Φ be the nuclear space given by (8.4.4). The SPDE (8.5.1) can be
considered as a SDE for Ut = u(t, , •) in the conuclear space Φ ;. In fact, it
can shown that ut G C([0, oo), Φ_p) a.s. for p > \.

Example 8.5.2 Interacting diffusions

We briefly describe here the fluctuation limit of interacting particles. It

is assumed that the motion of the latter is given by the n-particle diffusion

system

f o l ) (8.5.3)

£ ( t } ) .,n (8.5.4)

where (7*., Wk) are independent copies of (7, W) where W = {Wt) (έ ^ 0) is
a real-valued Brownian motion and 7 is a random variable independent of
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W and satisfying the condition E ίe°07 j < oo for some CQ > 0. The coef-
ficient functions a{x,y), b(x,y) G C£°, that is, bounded and with bounded
derivatives of all orders. Consider the measure-valued (so called occupation)
process

~~ r<»)w, t > 0

where δx is the Dirac measure at #. It has been shown by McKean [39] that
for each t, ί/(n)(£) —> U{t) in probability, where U(dx,t) is the probability
distribution of Zt, the latter being the solution of the real-valued SDE

dZt = a(Zu t)dWt + β{Zu t)dt,

/ΌO

a{x,t) = / a(x,y)U(dy}t),
J—oo

/ΌO

β{x,t)= / b(x,y)U(dy,t).
J—oo

It has also been shown by McKean [39] that U(dx,t) has a density u(x,t)
and that a{x,t), β(x,t) and u{x,t) are C°°-functions in x and t.

The processes of interest are the measure-valued processes

Sn(t) = n2{ί/(n)(ί) - U(t)}. (8.5.5)

In order to study the limit of the sequence {Sn(i)} we need to introduce
the following nuclear space and its dual. Let

tl){x) = / p{x - z)dz
J—oo

where p is the mollifier

and c is a constant such that J^>

oop(x)dx = 1. Introduce the test function
space Φ which is a modification of the Schwartz space S of rapidly decreasing
real-valued functions: A function φ £ Φ if and only if ψφ G S. The topology
of Φ is defined by the sequence of Hilbertian norms | |0 | | n = ||n>s where

ll/lln,5 = Σ Γ (1 + x2)2n\Dkf(x)\2dx (n > 0).
koJ-°°k=o

Then Φ and its dual Φ' are nuclear spaces.
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Hitsuda and Mitoma [15] have shown that Sn(t) converges weakly to a
nuclear space valued stochastic process (i.e., a generalized process) {£*, t > 0}
which is the unique solution of the SDE

dξt = [

ξo = η (8.5.6)

where A(t) : Φ —> Φ is given by

(A(t)φ)(x) = ±α(s f t) 2φ"{x) + β{x, t)φ\x) (8.5.7)

and B(t) : Φ -» Φ is given by

(B(t)φ)(x) = Γ b(y,x)φ'(y)u(y,t)dy
J — OO

+ Γ a(y,t)a(x,y)φ"(y)u(y,t)dy (8.5.8)
«/ — OO

M = (Mt), Mo = 0 is a zero mean, Φ'-valued, continuous Gaussian martin-
gale with covariance functional (φι, φ<ι £ Φ)

ΛίΛS ΛOO

= / / (/>1(ίc)^2(ίr)α(aϊ,r)V^^)^ (8.5.9)
Jo J-oo

The uniqueness of solution of (8.5.6) was shown by Mitoma [42] and, later, in-
dependently by Kallianpur and Perez-Abreu [26]. These authors also showed
that A(t) generates a two-parameter evolution semigroup (or evolution sys-
tem) on Φ.

Example 8.5.3 Asymptotic behavior of a system of free Brownian particles

An early example of a SDE governing a nuclear space valued process is
due to K. Itδ [20].

JBjfe(t), k = l, ,n are independent Brownian motions with common
initial distribution given by a density μ. For any Borel set A, let

Nn(t,A) = #{k<n:Bk(t)eA}

and
Xn(t, A) = n"l{iVn(ί, A) - ENn(t, A)}.

Then Xn(ί, •) is a signed measure valued process. For φ belonging to a test
function space Φ to be suitably chosen, define

Xn(t,φ)= Γ φ(x)Xn(t,dx).
J—oo
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Itό showed that Xn(t, •) regarded as Φ'-valued processes converges weakly
to a Φ'-valued process ξ(t) which satisfies a SDE which we shall here derive
as a special case of Example 8.5.2. Using the notation of that example, take
b(x,y) = 0 and a{x,y) = 1 in (8.5.3). Then for n > 1,

n W W = Ίk + WΪ, t > 0 ,

= Yk(t) say.

Let 7fc have the common Gaussian distribution with density μ. Then (7, W)
is replaced by Y and the Y& are independent copies of a Brownian mo-
tion with initial density μ. The condition of the previous example, namely,
E (eCoΊ ) < 00 for some Co > 0 is obviously satisfied. We have

n
ί, A).

Also U(A, t) has the density u(x} t) = μ * gt{x) where * denotes convolution
2

and gt(x) = T/t^6" **' Let Φ be the nuclear space of Example 8.5.2. From

(8.5.5), we see that

/>oo

/ φ(x)Sn(dx,t)
J—oo

! ί 1 JL r°° 1
= Xn(t, Φ) + n*l-Σ Eφ{Yj(t)) - y φ(x)U(dx, t) \ .

n r 1

The quantity in curly brackets on the right hand side vanishes since

Eφ(Yj(t))= Γ φ(x)U(dx,t).
J—oo

From Example 8.5.2 it follows that Xn{t) converges to ξ(t) which is a solution
of (8.5.6). It remains to identify A'(i)} B'{t) and the martingale M t.

Noting that α(z, y) = l and 6(2, y) = 0, we have

(A(t)φ)(x)=±a(x,t)2φ"(x),

so that for F e Φ',

(A'(t)F)[φ] = F[A(t)φ] = if[^"] = ±D2F,

where D is differentiation in Φ'.
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The Gaussian martingale Mt is centered and has the covariance

EMt[φ]Ms[φ] = / / φ(x)φ(x)u(dx,r)dr
JO J-oo

ptΛs
= / EφχYn)<φ\Yn)dr. (8.5.10)

From (8.5.8),

(B(t)φ)(x) = / ^(y)tt(y,t)dy = α(t), say
«/ — oo

where a(t) is a scalar independent of x (though depending on φ). Hence
B(t)φ = α(t)l (the function 1 G Φ)

From the general formula

Eζt[φ]2 = E{φ(χt) - Eφ(Yt)}2

we have Eξt[l]2 = 0 and so ζt[l] = 0 a.s. Vt. It follows that, V<̂  € Φ,
^ ' ( ί ) ^ ^ ] = 0, and therefore, B'(t)ξt = 0 a.s. Vt.

In fact, since, from Equation (8.5.6), ξt is a.s. continuous Φ'-valued
process, we conclude that almost surely, 5'(ί)^ t = 0 for all t.

Combining all of the above calculations, we find that Itό's process ξt

satisfies the following version of (8.5.6):

dξt = ^D%dt + dλϊt. (8.5.11)

(8.5.11) is precisely the equation derived by Itδ. It should be noted that
the nuclear space Φ' is different from the space chosen by Itδ. Finally, we
also obtain the uniqueness of the solution of (8.5.11), a fact inherited from
Example 8.5.2.




