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Abstract

The Bernoulli two-armed bandit with finite horizon and in-
dependent beta priors is considered from a multicriteria perspec-

tive. Several sequential designs are suggested and their charac-
teristics are derived.

1. Introduction. Consider the Bernoulli two armed bandit with
probabilities p;, p, of obtaining a reward and (1—p;), (1 —p;) of obtain-
ing nothing when pulling arms 1 and 2, respectively. It is assumed that
the maximum number of pulls is N. The original two armed bandit
problem concentrated on designs which maximize the expected return
E(R) [see, for example, Jones (1975)], this paper deals with two ad-
ditional criteria, P(CS), which is the probability of correctly selecting
the superior arm at the termination of the process, and E(N(1)), which
is the expected number of pulls on the poorer arm. In the context of
clinical trials where the arms are treatments and the number of patients
i1s N , these additional criteria have ethical and statistical importance
and need to be taken into account in evaluating designs. There are
two ways of looking at this problem in this context, either as an opti-
mization problem for this particular set of N patients, or as a decision
problem where a recommendation on the superior treatment will be
made for future patients. The two criteria, E(R) and E(N()) are of
the first type and ethical considerations suggest that these should be

Received October 1992; revised April 1993.

AMS 1991 subject classification. Primary 62L05; secondary 62L15.

Key words and phrases. Backward induction, Bayesian methods, group se-
quential methods, sequential designs, stopping problems.

88



optimized; and P(CS) of the second. A stopping rule and terminal de-
cision rule are also introduced and the expected sample size, E(M), is
obtained, ethical considerations suggest that this should be minimized.

Numerical comparisons are made between fully sequential, group
sequential, fixed sample size designs and a class called group fully se-
quential designs.

2. Backward Induction. It is assumed that p;, p, are a priori in-
dependent and are assigned beta priors with integer parameters (a;, b;),
or beta (a;, b;), and density proportional to

pli~lghimaml 1<a; <b;j—1 i=1,2.

After s; successes in m; trials on arm %, the posterior density of p; is
beta (r;,n;) with r; = (a; + 8;), n; = (b; + m;), ¢ = 1,2. The posterior
expectation of p; is p; = r;/n;, which is also the posterior predictive
probability of the next trial on arm 7 resulting in a reward.

The stopping rule and terminal decision rule used in this paper both
depend on the relative values of p;. Sampling stops when |p; — po| > A,
where A is preassigned, and after stopping, the arm with the larger p;
is chosen.

The following backward induction equations for determining the
characteristics of any sequential design with single observations are
given in Jones (1992) for both stopping and non-stopping problems.
These recursive equations do not depend on the assumption of beta
priors; p; and later the posterior probability that p; < py, may be
obtained using other prior distributions.

1. E(R) is the expected return over all N pulls, where at termination
the better arm is pulled for the remaining trials. An alternative
interpretation is that a two-stage design is used. This takes a
sequential sample in the first stage, which consists of a random
number of observations, M, and takes N — M observations on the
better arm in the second. Let A(ry,ni,r9,n9) be the expected
return when the sampling process is in state (r1,n1,72,n2); also
let A;(r1,m1,72,n2) be the expected return if arm 1 is pulled at
the next trial and Ay(rq,n,79,ng) be the expected return if arm
2 is pulled. Then

A('rl’nl)r2)’n’2) = [Al(rlyn17r27n2))A2(r1)n17r2)n2)] )
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where
Ai(r1,m1,72,m9) = Py [1 + A(ry + 1,11 + 1,75, 15)]

+(1 = 1) [A(r1,m1 + 1,72, m2)] ;

Ay(r1,m1,79,M3) is defined in a similar way; which arm is pulled
is determined by the design. At termination,

A(Tl,nl,T2,n2) = (N— my — m2)max [51,152]-

. E(Nqy) is the expected number of pulls on the poorer arm. Us-
ing similar notation to that above, B is the expected number of
pulls on the poorer arm at (ri,n1,72,n2) and B; refers to the
expectation when arm 7 = 1,2 is pulled at the next trial. For
typographical ease the arguments are dropped; the recurrence

equations are,
B = By, By,

By, = P* + Big,
BZ = (1_P*)+B2E7
where P* is the posterior probability that p; < ps, given by

pr ="i1 (ni+mny—1)B(re+j+1,n +ng—1re—j—1)]
j=r1 [(r2 + 3)B(re,ne — 12)B(4,m1 — J)] ,

where (-, ) is a beta function and
Big =p1B(r1+ 1,n1 4+ 1,79,n9) + (1 — 1) B(r1,n1 + 1,79, 19);
B,k is similarly defined. At termination,
B = (N —my— my)P* if p1 > Po,

(N—ml—mg)(l—P*) lf ﬁl Sﬁz

. P(CS) is the probability of correct selection. It is likely to be
more affected by introducing a stopping rule than are E(R) and
E(N(1)) because it is only based on the number of pulls to termi-
nation. Let C be the probability of correct selection at the point
(r1,n1,72,n2); then

C = [Cig, CEl ,
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where Cjg and Cyr are the expected probabilities of correct se-
lection if arms 1 or 2, respectively, are pulled at the next trial.
These are defined in a similar way to B1g and B,y above, and

C = (1-P) i 5>,
p* if p1 < pa.

4. To obtain E(M), the expected sample size, let D be the ex-
pected number of observations remaining to termination when
the process is in state (r;,7n1,79,m,) and let D; and Dy depend
on whether arm 1 or 2 is pulled at the next trial. Then

D = [Dy, Dy;
Dy, =1+ Dsg;
Dy =1+ Dsp;

D =0 at termination.

If more than one observation is taken at a time on a single arm,
then the above recurrence relations may be modified easily by using
the probability of reaching all points together with the values A, B,C
or D at those points. If the process is in state (r;,n1,79,7n2), then
the posterior predictive probability of obtaining r successes in a fixed
number of further trials n on arm 1 is given by

p— (™ B(ri+rn+n—ry—r)
A B(ri,n1 — 1)

)

with P, defined similarly. In group sequential sampling, there is no
choice between the arms, and strictly speaking, the resulting procedure
is not a design, but a stopping problem. The characteristics in this
case may again be obtained by a simple modification of the recurrence
relations. Here there is just a choice between stopping or continuing,
so at each point visited, the value of the characteristic

(B(R), E(Nw), P(CS) )

is either the terminal value or the expected return from taking a further
batch of observations.
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3. Optimal designs. In this section, several sequential procedures
are compared for the three characteristics E(R), E(N(1)), P(CS) using
exact numerical results obtained from the recurrence relations in the
previous section. These are optimal within the method of sampling
used and with respect to the stoppling rule and criterion chosen. For
example, the fully sequential design takes single observations and the
group sequential design takes observations in batches, and the optimal
sampling rule is found for both. The recurrence relations above may
also be used to evaluate non-optimal designs. Results when all N pulls
are used are also presented; in the group sequential case, this gives a
fixed sample size scheme. In all computational results it is assumed
that the p;’s are assigned uniform or beta(1,2) priors, N = 40, and
for the stopping rule, A = 0.4. This value of A was chosen to give
reasonable values for the characteristics, especially P(CS); it was not
chosen in any optimal manner. Obvious alternatives are possible; for
example, the value of P*, defined earlier, could be used.

Fully sequential procedures are designs which have a single obser-
vation at each stage; they are denoted F'S. A hybrid design called
grouped fully sequential (denoted G/F) is also considered; this is a
design in which more than one observation is made on the better arm
at each stage. Results are presented for the two observations at each
stage.

Two group sequential procedures are considered. In one (denoted
GS), pairs of observations are taken, one on each arm. The second
one is a multistage sampling procedure (denoted GSV), in which the
number taken at each stage is not uniform and decreases throughout
the procedure. Results are presented for a four stage procedure with
10, 5, 3 and 2 observations on each arm at stages 1 to 4, respectively.

GSV is essentially a GS design in which the results of sampling
are looked at after 20, 30, 36, and 40 observations, respectively, unless
sampling has stopped at a previous stage. Hence the characteristics of
the GSV design may be obtained by using the GS procedure when the
stopping rule is only used at each of the four stages.

4. Results. The results for maximizing E(R) are given in Table
1, minimizing E(N(y)) in Table 2 and maximizing P(CS) in Table 3.
In each case, the expected sample sizes of the procedures that employ
stopping rules are also given.
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Table 1.
Maximum values of E(R), uniform priors, A = 0.4.

Procedure E(R) | E(M)
FS (all N) 95.4469
F'S (stopping) | 25.4138 | 23.9750
C/F GLN) | 253129
G/F (stopping) | 25.3060 | 25.8134

GS 23.9266 | 22.5774
GSV 22.0522 | 32.4840
Fixed s.s. 20.0000
Table 2.
Maximum values of E(N(y)), uniform priors, A = 0.4.
Procedure E(R) | E(M)
FS (all N) 7.2584

F'S (stopping) | 7.3926 | 23.2365
G/F (all N) 7.5680
G/F (stopping) | 7.6048 | 24.8883

GS 12.1791 | 22.5774
GSV 16.2718 | 32.4840
Fixed s.s. 20.0000

Table 3.

Maximum values of P(CS), uniform priors, A = 0.4.

Procedure E(R) | E(M)
FS (all N) 0.9051
'S (stopping) | 0.9030 | 20.4833
G/F (&I N) | 0.9048
G/F (stopping) | 0.9045 | 30.2532

GS 0.8945 | 22.5774
GSV 0.9027 | 32.4840
Fixed s.s. 0.9027
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As expected, the fully sequential procedures are the best performers
when maximizing E(R) with minimal reductions introduced by stop-
ping. The superiority is more marked when minimizing F(N(y)); how-
ever, one would not expect group sequential designs to do well here
since, prior to stopping, equal numbers are taken on each arm. In
Table 3, very little difference is noted in the values when maximizing
P(CS). The GS design with stopping requires a sample size consid-
erably smaller than N to attain a value close to the optimal given by
using the F'S (all N) procedure.

5. Discussion. A fair comparison among the methods discussed
above should take account of the complexity of the sampling procedure.
Obviously the group sequential procedures are easier to use since only
the stopping rule needs to be checked each time a batch of results
is obtained. One way of accounting for this would be to introduce
a cost structure into the problem where the reward is adjusted by a
cost per observation and a cost per look at the results of sampling.
Which procedure is chosen will depend on the primary objective of the
experimenter or player. In a clinical trial, for example, the objective
could be to make a terminal decision on the better treatment, hence
maximizing P(CS) could be the main objective. It is shown in the
previous section that this seems fairly robust with respect to the choice
of sampling procedure. However, ethical considerations could dictate
that E(R) and F(N(1)) are more important. Alternatively, target levels
could set for certain objectives or a weighted combination could be
considered.

References

JONES, P.W. (1975). The two armed bandit. Biometrika 62 523-524.

JONES, P.W. (1992). Multiobjective Bayesian bandits. Bayesian
Statistics 4 (Bernardo, J.M., Berger, J.O., Dawid, A.P. and Smith,
A.F.M., eds). Oxford: Clarendon Press, 689-695.

DEPARTMENT OF MATHEMATICS
KEELE UNIVERSITY

KEELE ST5 5BG

UNITED KINGDOM

94





