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Abstract

Although many clustering methods have been applied to analyze gene ex-
pression data, genes in the same cluster may have neither common functions nor
common regulation. As a result, computational approaches have been developed
to identify motifs in the regulatory regions of a cluster of genes or of genes with
similar gene expression levels that are responsible for DNA-protein binding and
similar gene expression levels. However, these motifs are neither sufficient nor
necessary for a transcription factor to bind to the promoter region of a gene with
these motif patterns. More recently, molecular methods have been developed to
directly measure DNA-protein binding at the genomic level. In this article, we
first evaluate the predictive power of computational approaches to predict DNA-
protein binding from a study involving nine transcription factors in the cell cycle.
We then compare how much variation in gene expression levels can be explained
either by the observed DNA-protein binding or by the binding predicted through
computational approaches. We find that current computational approaches may
be limited both in predicting DNA-protein binding as well as in predicting gene
expression levels. We also observe indirectly that the correspondence between
gene expression levels and protein levels may be rather poor, which suggests that
there may be difficulty in modeling genetic networks purely through gene expres-
sion data. To better understand gene expression patterns, an integrated approach
to incorporating different kinds of information should be developed.
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1 Introduction

With the completion of the Human Genome Project, large-scale gene expression exper-
iments have become common practice in the scientific community. Such experiments
normally have different objectives: (1) to identify differentially expressed genes, (2)
to identify genes expressed in a coordinated manner across a set of conditions, (3) to
identify gene expression patterns that distinguish different samples {e.g. normal ver-
sus tumor tissues), and (4) to define global biological pathways. Genomics research is
different from traditional molecular biology in that traditional approaches focus on the
study of individual genes considered in isolation, whereas functional genomics allows
researchers to determine the principles underlying complex biological processes {e.g.
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development) by examining the expression patterns of large numbers of genes in par-
allel, taking into consideration temporal, as well as anatomical, patterns. Identification
and characterization of regulatory ds-elements and trans-foctors of a gene is essential
for understanding the mechanisms of the control of gene expression, which can further
shed light on gene function.

Currently, three types of statistical methods are under active development for gene
expression data, including methods to identify differentially expressed genes (e.g. [8,
20] for cDNA arrays and [9, 22] for Aflymetrix arrays), methods to identify clusters
of genes with correlated expression patterns, e.g. [3, 10, 16, 21, 31], and methods to
use gene expression patterns to distinguish phenotypes and predict clinical outcomes,
e.g. [7, 13, 15, 32]. Although clustering methods have given some insight into gene
function, similar gene expression patterns imply neither similar functions nor similar
regulation for a group of genes. In addition, clustering results strongly depend on the
set of experiments used to define similarities among genes, and results from different
clustering algorithms may disagree with each other [12].

In contrast to standard statistical treatments of microarray data where data are
mostly treated as a two-dimensional matrix, bioinformatics tools have been developed
to use other information, mostly sequence information, to assist in the interpretation
of gene expression patterns. For example, motif searches have been integrated in gene
expression analysis in yeast studies, e.g. [4, 5, 24, 30]. The rationale is that genes
having similar expression patterns are more likely to share common regulatory motifs
in their promoter regions. These methods represent integration of expression data with
sequence information. A more ambitious goal has been taken by some researchers to
develop computational methods to reconstruct genetic networks, e.g. correlation metric
construction [2], Boolean networks [1,23,28], and Bayesian networks [11, 14]. Unfor-
tunately, most of these computational methods were not developed specifically for the
analysis of gene expression data; therefore, it is difficult to incorporate biological infor-
mation in these methods. They may generate results that are both hard to interpret and
to verify, and they impose assumptions that are likely to be violated in real biological
systems. This computational approach is in contrast to biologically driven approaches
to dissecting pathways [18]. It has become clear that "the combination of predictive
modeling with systematic experimental verification will be required to gain a deeper
insight into living organisms, therapeutic targeting and bioengineering" [6].

Although many computational approaches have been proposed to identify DNA-
protein binding motifs from gene expression patterns, such analyses may only provide
indirect inference on binding. In addition, binding motifs are neither necessary nor suf-
ficient for a given transcription factor to bind to the regulatory region of a gene [29].
Regulatory networks cannot be accurately deduced from expression profiles, partly be-
cause it is difficult to distinguish direct and indirect effects. Recently, experimental
procedures have been developed to directly identify the in vivo genome binding sites
for known transcription factors [19, 26]. Using this method, Simon et al [29] studied
genomic targets of nine known cell cycle transcription activators: Swi4, Swi6, Mbpl,
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Fkhl, Fkh2, Mcml, Nddl, Ace2, and Swi5. MBF (Swi4 and Swi6) and SBF (Mbpl

and Swi6) control late Gl (cell cycle gap 1 phase) genes. Mcml, together with Fkhl

or Fkh2, recruits the Nddl protein in late G2 (cell cycle gap 2) and controls G2/M (cell

cycle gap 2 and mitosis phases) genes. Mcml is involved in M/Gl genes, whereas

Swi5 and Ace2 control late M and early Gl genes [29]. Although Simon et al [29]

were able to infer binding motifs for each factor based on their data, they noted that the

putative binding motifs are neither sufficient nor necessary to identify binding sites for

a transcription factor.

In this article, using both gene expression data and binding data, we study how

much DNA binding information explains gene expression levels through two approaches.

In the first approach, we directly model expression levels as a function of the empir-

ically measured binding of known transcription factors. In the second approach, we

first infer putative motifs for each transcription factor based on the binding data, then

predict binding based on these putative motifs, and finally model expression levels as

a function of the predicted binding. Therefore, the second approach is an "indirect"

computational method. We found that although the existing computational approaches

yield significant associations between gene expression levels and predicted binding, the

proportion of variation explained by these computational methods are much lower than

those explained by empirically measured binding data. Our results suggest that better

computational models and methods are needed to identify binding motifs and then to

predict DNA-protein binding in the analysis and interpretation of gene expression data.

2 Methods

2.1 Gene expression data

We analyze cell cycle gene expression data reported in Spellman et al. [30], where

yeast cell cultures were synchronized by three independent methods: α factor arrest,

elutriation, and arrest of a cdcl5 temperature-sensitive mutant. Approximately 800

genes, >10% of all yeast protein-coding genes, were identified as cell cycle regulated.

In this article, we analyze the time course data from the α factor based synchronization

experiment and gene expression levels of cell cycle regulated genes. The expression

patterns of these genes were studied in detail by Spellman et al. [30] and a number

of clusters of genes based on expression levels were investigated; this investigation

included the identification of motifs for each gene cluster.

2.2 DNA binding data

The DNA binding data used in this article are those collected by Simon et al. [29];

the details of their experiments and statistical analysis of binding data can be found

in Ren et al. [26]. Each experiment was done in triplicate. An estimate of the ratio

of binding intensities of two fluorescents was calculated for each promoter region for

a given transcription factor. This ratio, called the binding ratio here, is a measure of
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the binding intensity of the given transcription factor. A statistical procedure was used
by Simon et al. [29] to evaluate the statistical significance of the binding. In this
article, we use their estimated p-values to assess statistical evidence for binding. These
data revealed that genes encoding several of the cell cycle transcriptional regulators
are themselves bound by other cell cycle regulators. Their data also suggested partial
functional redundancy between homologous activators.

2.3 Motif searches

We use AlignACE [17, 27] to identify motifs that are over-represented in the upstream
regulatory regions of a set of genes. In this article, we apply AlignACE to nine sets
of genes, each of which were bound by the nine transcription factors, respectively. We
then use CompareACE to identify those putative motifs that are similar to known motifs
in yeast. Finally, ScanACE, a program that searches a genome for close matches to a
motif found by AlignACE [17], is used to scan the upstream regions of the cell cycle
regulated genes to identify those containing putative motifs. For each putative motif,
each gene is defined as either having (coded "1") or not having (coded "0") this motif.

3 Results

3.1 Gene clusters based on binding data and gene clusters based on gene
expression data

Transcription factors induce expression levels of cell cycle genes at different stages of
the cell cycle. Simon et al. [29] observed consistency between DNA binding and gene
expression levels. For example, SBF (Swi4 and Swi6) and MBF (Mbpl and Swi6)
are important activators of late Gl genes, and the expression levels for most of the
genes bound by Swi4, Swi6, or Mbpl are highest at the late Gl stage in the cell cycle
[30]. When we cluster the nine transcription factors according to their binding ratios
across the genome, transcription factors active at the same stage of the cell cycle are
clustered together (Figure 1). However, when these factors are clustered according to
their expression levels reported in Spellman et al [30], there is no such ordering among
them (Figure 2). This indicates that gene expression levels of the nine transcription
levels are rather uninformative for correlating their functions in the cell cycle.

3.2 Binding motifs and binding ratios

To investigate how much computational methods can offer in predicting binding ra-
tios, we apply AlignACE to genes bound by the same transcription factor to identify
common motifs in the upstream promoter regions of these genes. We then select those
putative motifs that are similar to known motifs, and run ScanACE on all cell cycle reg-
ulated genes to determine whether these motifs occur in the promoter regions of these
genes. After this step, for each transcription factor, we fit a linear regression model
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Figure 1: Clustering of nine transcription factors based on DNA binding data

with the observed binding ratios for cell cycle regulated genes as the response variable

and the presence or absence of each putative motif in each gene as predictors, i.e.

where yt is the observed binding ratio for the ith gene, My is a binary variable repre-

senting the presence (M ιy = 1) or absence (My = 0) of theyth putative motif for this

transcription factor in the ith gene, and k is the number of putative motifs for this factor.

In addition to this additive model, we also consider interactions among the My, i.e.

k-\

y i =

7=1

k

Σ ijMn + β, .

The results are summarized in Table 1, where all significant predictors for each tran-

scription factor are listed, together with the proportion of variation in binding ratios

explained by these predictors (R2).

There are a few common features across all factors. First, SCB is the most com-

monly shared motif in these factors. Second, there are significant interaction terms for
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Figure 2: Clustering of nine transcription factors based on gene expression data

all the factors, which suggests that these putative motifs may interact with each other to

recruit factors to the promoter regions. It is also clear from this table that the proportion

of variation explained by the putative binding motifs varies across different transcrip-

tion factors, with the variation in the binding ratios for Swi4, Swi6, and Ace explained

most by the putative motifs. But overall, the R2 is rather modest, which suggests that

either there is substantial amount of measurement variation in binding ratios, or the

motif search and binding prediction methods are far from satisfactory, or both.

3.3 Gene expression levels and empirically measured binding ratios

We consider how useful the binding ratios are to predict gene expression levels for cell

cycle regulated genes. We analyze two sets of genes separately. The first set of genes

includes all cell cycle regulated genes defined by Spellman et al [30], whereas the

second set of genes includes only those 298 genes that were found to be significantly

bound (p-value < 0.001) by at least one of the nine transcription factors [29]. At each

time point, for each set of genes, we first fit regression models with gene expression

levels as the response variable and the observed binding ratios as predictors, i.e.
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Table 1: Significant binding motifs as well as significant interactions among these motifs in
the prediction of the binding ratios for each of the nine transcription factors studied. The last
column is the proportion of variation explained by the joint effects of the binding motifs on
the observed binding ratios

TF Significant motifs and interactions Ί&

Swi4 SCB LEU MCB PDR SCB.MCB PDR.MCB 19%

Swi6 MCB STRE SCB:MCB MCB:STRE 14%

Mbp 1 MCB RRPE MCB:RRPE 4%

Fkhl RRPE STRE RRPE.STRE 1%

Fkh2 SCB RPN SCB.RPN 2%

Mem 1 SCB LYS SCB :LYS 4%

Nddl SCB REB SCB REB 6%

Ace2 SCB LEU RAP STRE SCB RAP SCB:STRE LEU RAP 21%

Swi5 SCB STRE SCBrSTRE 6%

where Rtj is the binding ratio between the ith gene and the yth factor, βy is the regression

parameter for the jth factor, and yι is the observed expression level of the /th gene. The

R2 of the model for each of the 18 time points in the cell cycle are plotted in Figures 3

and 4 (solid lines).

It can be seen from these figures that the proportion of variation explained by the

binding ratios is a function of time in the cell cycle, with the most variation explained

at the S/G2 phase. The R2 is increased if we focus on the subset of genes with each

gene bound by at least one of the nine transcription factors. In the above analyses, we

only consider the additive effects of different transcription factors. When interactions

among factors are included in the model, we observe a significant increase in the R2

for all time points. The comparisons between the additive models and the models with

two-way interactions for the second set of genes are summarized in Figure 5, and the

significant individual factors as well as significant interacting factors at each time point

are summarized in Table 2. It can be seen that some interaction terms are significant,

and that including interaction terms does improve the overall proportion of variation

explained by the binding of these nine factors.

3.4 Gene expression levels and computationally predicted binding ratios

To evaluate the power of the predicted binding ratios in explaining gene expression

levels, we fit regression models with the same response variable, i.e. gene expression
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Figure 3: The proportions of variation explained by the observed binding data (solid line)
and by the predicted binding (dotted line) for all cell cycle genes

levels, as above, but we use the predicted binding ratios through putative motifs as pre-
dictors this time. The R2 of the model is plotted in Figures 3 and 4 (dashed line). It is
clear from this figure that the observed binding data provides better information to ex-
plain expression levels. When interactions are included in the models, the overall R2 is
improved, but is still lower than that based on the empirically measured binding ratios.
Therefore, although computational approaches are able to identify binding motifs that
explain a statistically significant proportion of the variation in gene expression levels,
their utility is limited compared to the directly observed binding data. Because we only
consider nine transcription factors here, the unexplained proportion of the variation
may be due to the effects from those transcription factors not included in the analysis,
measurement errors in binding ratios, and sample variation in gene expression levels.
Despite these other uncertainties, it is remarkable that these nine factors could explain
up to 56% of the total variation at certain time points.

3.5 Estimation of transcription factor levels

These binding data also allow us to estimate relative protein expression levels for the
transcription factors if we make the simple assumption that the effects of each tran-
scription factor on inducing other genes' expression levels are proportional to the pro-
tein levels of the transcription factors in the cell. To estimate the protein levels of the
nine transcription factors, we find the regression coefficients in the following regression
model for each time point:
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15

Figure 4: The proportions of variation explained by the observed binding data (solid line)
and by the predicted binding (dotted line) for the 298 genes significantly bound by at least
one of the nine transcription factors

yι = BnL\ + . . . + Bi9L9 + eu

where 5 / ; is the binding ratio between the ith gene and the jth transcription factor for

the zth gene, and yι is the gene expression level for the ith gene. Then the estimated Lj is

the estimated protein expression level. Note that because the binding data only measure

the relative levels, we should interpret the estimated Lj as equal to some constant times

the protein level. Because we normalize the levels for the same protein across different

time points in our summary (Figure 6), this is a reasonable approach to examine how

the protein levels change across time. In Figure 6, we plot the observed gene expression

levels and estimated protein expression levels at all 18 time points for each of the nine

transcription factors. It can be seen from this figure that the correspondence between

gene expression levels and protein levels is rather poor for some genes {e.g. Ace2),

strong for some genes {e.g. Fkhl, Fkh2, and Nddl), and a phase delay for other genes

{e.g. Swi4 and Swi5).

4 Conclusions

We have first studied how well computational approaches can predict empirically ob-

served DNA-protein interactions. Although we found that the computational approaches

can yield results that are statistically significantly associated with the observed data, the
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Figure 5: The proportions of variation explained by the observed binding data when only
additive models are considered (solid line) and when interactions among factors are also
considered (dotted line) for the 298 genes significantly bound by at least one of the nine
transcription factors

correlation is rather modest. Current computational methods search for binding motifs
separately; however, our results suggest the presence of interactions among putative
binding motifs to jointly determine binding ratios. Similar observations were made by
Pilpel et al [25]. This suggests that interaction effects need to be taken into account
in the search for binding motifs. Overall, even after interactions are taken into account,
the proportion of variation in binding ratios explained by binding motifs through lin-
ear models is low. Therefore, there is ample room for methodology developments to
predict DNA-protein binding.

We studied how well gene expression levels can be explained by DNA binding
through two approaches. We found that a significant proportion of expression level
variation across genes can be explained by the empirically measured DNA binding
data. Similarly, computationally predicted binding also explain a significant proportion
of the observed expression variation, but at much lower levels. We also investigated
whether the predicted binding provide extra information to explain gene expression
levels in addition to the observed binding by including both the observed binding and
the predicted binding in the model. We found that the improvement of the model by
the inclusion of the predicted binding was not significant (data not shown). Because it
is well known that other transcription factors are involved in the cell cycle, we expect
that the availability of binding data from other factors will further improve the pre-
diction of the model. We also found that there is statistically significant evidence that
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Table 2: Significant transcription factors and interacting terms in the prediction of gene ex-
pression levels at different time points

Time Significant Terms

1 Nddl, Ace2, Mbpl, Swi4, Mcml:Swi4, Mcml.Swiό, Mbpl.Swiό, Nddl.Mcml

2 Fkhl, Fkh2, Mbpl, Swi4, Mcml:Swi4, Mcml:Swi6, Mbpl:Swi6, Fkhl:Nddl

3 Fkh2, Nddl, Mbpl, Swi6, Nddl:Swi5, Ace2:Swi5, Nddl Mbpl, FkhliNddl, Mcml:Swi6

4 Fkh2, Ace2, Mbpl, Swi6, Fkh2:Ndd2, Nddl:Swi6, Mcml:Swi4

5 Nddl, Mcml, Ace2, Swi5, Mbpl, Swi6, Mbpl:Swi6, Nddl.Mcml

6 Fkh2, Mcml, Ace2, Swi5, Swi6, Mbpl:Swi6

7 Fkh2, Nddl, Mcml, Ace2, Swi5, Swi4, Swi6, Fkhl:Fkh2, Mcml:Swi6, Mbpl:Swi4, Swi5:Swi6

8 Fkhl, Fkh2, Nddl, Mcml, Ace2, Swi6, Fkhl Nddl, Mcml:Swi6, Ace2:Swi5

9 Nddl, Ace2, Swi5, Swi4, Swi6, Mcml:Swi6, Fkhl Nddl, Nddl:Mcml

10 Nddl, Mcml, Ace2, Swi5, Swi4, Swi6, Ace2:Swi4

11 Fkhl, Mcml, Swi5, Swi4, Fkhl:Swi4

12 Fkh2, Mcml, Ace2, Swi5, Swi6, Mcml:Swi6, Fk2:Nddl, Fkh2:Ace2, Nddl:Ace2

13 Ace2, Swi4, Swi6, Ace2:Swi4, Mcml:Swi4, Nddl:Swi5

14 Mbpl, Ace2, Swi4, Ace2:Swi4, Nddl Mcml

15 Fkh2, Mcml, Ace2, Swi5, Swi4, Ace2:Swi4

16 Fkhl, Fkh2, Nddl, Swi6, Mcml:Ace2, Fkh2:Nddl, Ace2:Swi5, Nddl:Swi5, Nddl Swiό

17 Fkh2, Nddl, Ace2, Swi5, Mbpl, Swi6, Fkh2:Nddl, Mcml:Swi6, Mcml:Ace2

18 Nddl, Swi5, Swi6, Fkh2:Mcml, Mcml:Swi6, Fkh2:Swi6

different transcription factors interact with each other to contribute to the levels of gene

expression. The interacting pairs not only include those known to work as a complex or

present at the same stage of the cell cycle, they also include other pairs, suggesting that

the interactions among these factors may be far more complex than currently thought.

In our analysis, we observed that the variation explained by the nine transcription

factors is a function of time in the cell cycle. This indicates the importance of these

nine transcription factors, as a group, varies at different stages of the cell cycle.

From the observed gene expression levels for different genes and the binding ratios

between each gene and each factor, under a simple assumption, we were able to esti-

mate the relative protein levels of the nine transcription factors studied. We found that

although there is good correspondence between expression levels and "protein" levels

for some factors, the correspondence is rather weak for others. There is no general

relationship, and it appears that the relationship is both gene specific and time specific.

The lack of consistency between gene expression data and protein expression data was

noted by Ideker et al. [18]. However, factors with similar functions, e.g. Fkhl and

Fkh2, seem to have similar patterns between the observed gene expression data and

the estimated protein expression levels. From the generally weak correlations between

gene expression data and the estimated protein levels, we expect that computational

models that only use gene expression data to reconstruct biological pathways may have

limited power to make precise quantitative predictions. On the other hand, other types

of data, such as the binding information, will be very useful in such efforts.

Another question that is of biological interest but has not been addressed in this

paper is to examine how much of the gene expression similarities among a group of



270 K Zhao, B. Wu and N. Sun

Fkh1 Fkh2 Ndd1

0 20 40 60 80 100 120

lime

Mcm1

0 20 40 60 80 100 120

time

Ace2

0 20 40 60 80 100 120

time

Swi5

0 20 40 60 80 100 120

Mbp1

0 20 40 60 80 100 120

time

Swi6

0 20 40 60 80 100 120

Figure 6: The observed expression levels of the nine transcription factors and their estimated
protein expression levels. The data are normalized so that gene expression levels and protein
expression levels have the same variance for a given transcription factor

genes can be explained by their regulation through a set of transcription factors. We
can study this issue by comparing clusters derived purely from gene expression data and
clusters derived purely from DNA binding data. Consistency between the two types of
clusters would imply that the studied transcription factors may explain the regulation of
these genes well, whereas a poor correlation implies that there are major mechanisms
that drive the gene expression patterns but have not been uncovered or included in the
study.

We have mainly used AlignACE and ScanACE to identify binding motifs for a
group of genes. There are other computer programs available for motif findings and
they may offer results better than we have found here. In addition, we have only con-
sidered those putative motifs that are similar to known motifs for the nine transcription
factors. Although this procedure may exclude some unknown motifs that could play
some role in determining DNA-protein binding, the likelihood of missing motifs with
strong effects is small: these factors have been under intensive study by yeast geneti-
cists, thus we expect that motifs with strong effects would have been identified. We
are currently conducting a more thorough analysis to assess the importance of these
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unmatched putative motifs.
Here we have considered the binding as a continuous measurement using the es-

timated binding ratios from replicate experiments. When we tried to dichotomize the
binding data through the p-values reported by Simon et al. [29] (0 for the absence of
binding and 1 for the presence of binding), the overall fit of the models is not as good
as those we reported above (data not shown). This suggests that the continuous mea-
surements do have more information on the regulation and interactions between genes
and the transcription factors.

The ultimate goal of genomics studies is to understand biological pathways. In this
article, we have shown the limitation of one existing computational method for studying
gene regulation and the need to integrate gene expression data with other types data to
dissect biological pathways. Incorporating DNA binding data is only the first step to
move beyond purely statistical approaches for gene expression analysis.
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