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Abstract

This paper presents some general formulas for random partitions of a finite
set derived by Kingman’s model of random sampling from an interval partition
generated by subintervals whose lengths are the points of a Poisson point pro-
cess. These lengths can be also interpreted as the jumps of a subordinator, that is
an increasing process with stationary independent increments. Examples include
the two-parameter family of Poisson-Dirichlet models derived from the Poisson
process of jumps of a stable subordinator. Applications are made to the random
partition generated by the lengths of excursions of a Brownian motion or Brown-
ian bridge conditioned on its local time at zero.
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1 Introduction

This paper presents some general formulas for random partitions of a finite set de-
rived by Kingman’s model of random sampling from an interval partition generated
by subintervals whose lengths are the points of a Poisson point process. Instances and
variants of this model have found applications in the diverse fields of population genet-
ics [17, 19], combinatorics [4, 48], Bayesian statistics [23], ecology [15, 37], statistical
physics [11, 12, 13, 53, 55], and computer science [25].

Section 2 recalls some general results for partitions obtained by sampling from a
random discrete distribution. These results are then applied in Section 3 to the Poisson-
Kingman model. Section 4 discusses three basic operations on Poisson-Kingman mod-
els: scaling, exponential tilting, and deletion of classes. Section 5 then develops for-
mulas for specific examples of Poisson-Kingman models. Section 6 recalls the two-
parameter family of Poisson-Dirichlet models derived in [50] from the Poisson process
of jumps of a stable(at) subordinator for 0 < o < 1. Section 7 reviews some results
of [41, 46, 49, 50] relating the two-parameter family to the lengths of excursions of a
Markov process whose zero set is the range of a stable subordinator of index o. Section
8 provides further detail in the case o = % which corresponds to partitioning a time
interval by the lengths of excursions of a Brownian motion. As shown in [2, 3], it is
this stable( %) model which governs the asymptotic distribution of partitions derived
in various ways from random forests, random mappings, and the additive coalescent.
See also [5, 9] for further developments in terms of Brownian paths, and [10, 25] for
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applications to hashing and parking algorithms. This paper is a revision of the earlier
preprint [42]. See [48] for a broader context and further developments.

2 Preliminaries

This section recalls some basic ideas from Kingman’s theory of exchangeable random
partitions [30, 31], as further developed in [43]. See [45, 48] for more extensive reviews
of these ideas and their applications. Except where otherwise specified, all random
variables are assumed to be defined on some background probability space (Q, F,P),
and [E denotes expectation with respect to P. Let N := {1,2,...}, let F denote a random
probability distribution on the line, and let IT be a random partition of N generated by
sampling from F. That is to say, two positive integers i and j are in the same block
of IT iff X; = X;, where conditionally given F the X; are independent and identically
distributed according to . Formally, IT is identified with the sequence (I1,), where IT,
is the restriction of IT to the finite set N, := {1,...,n}. The distribution of I1, is such
that for each particular partition {4, ---,4;} of N, with #(4;) = n; for 1 <i < k, where
n; > 1 and fozln,- =n,

P(H,,:{Al,'-',Ak})=p(n1,---,nk) ()

for some symmetric function p of sequences of positive integers, called the exchange-
able partition probability function (EPPF) of I1. Conversely, Kingman [30, 31] showed
that if IT is an exchangeable random partition of N, meaning that the distribution of its
restrictions IT, is of the form (1) for every n, for some symmetric function p, then IT has
the same distribution as if generated by sampling from some random probability distri-
bution F'. Let P; denote the size of the ith largest atom of F. If F is a random discrete
distribution, then ¥; P; = 1 almost surely, and I1 is said to have proper frequencies (P;).
In that case, let 13]- denote the size of the jth atom discovered in the process of random
sampling. Put another way, Pj is the asymptotic frequency of the jth class of IT when
the classes are put in order of their least elements. It is assumed now for simplicity that
P; > 0 for all i almost surely, and hence Pj > 0 for all j almost surely. The sequence
(P;) is a size-biased permutation of (P;). That is to say, P; = Py, where for all finite
sequences (i;,1 < j < k) of distinct positive integers, the conditional probability of the
event (m; =i; forall 1 < j < k) given (P1,P,,...) is

Py Py
'1-p,  1-P,—...—P,_,

P, )]

The distribution of IT, is determined by the distribution of the sequence of ranked fre-
quencies (P;) through the distribution of the size-biased permutation (P;). To be precise,
the EPPF p in (1) is given by the formula [43]

k k—1 i
P(”17""”k) ZE[IIP:"”_I H <l - Zlf’z)
= j:

i=1

3)
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Alternatively [45]
k
p(nla"',nk)z Z EHP;:‘ (4)

(jl 7777 ./k) i=

—

where (J1,...,jk) ranges over all permutations of k positive integers, and the same for-
mula holds with Pj, replaced by }51-,,, Foreachn=1,2,--- the EPPF p, when restricted to
(n1,--+,nx) with ¥, n; = n, determines the distribution of I'T,,. Since I1, is the restriction
of IT,+ to N, the EPPF is subject to the following sequence of addition rules [43]: for
k=1,2,...

M=

P(’ll,"',”k)= p("'vnj+lv"')+p(n17"'ankal) (5)

1

J

where (...,n; +1,...) is derived from (ny,...,n;) by substituting n; + 1 for n;. The
first few rules are

1=p(1) = p(2) +p(1,1) (6
p(2)=p3)+p(2,1); p(1,1)=2p(2,1)+p(1,1,1) ™
where p(2,1) = p(1,2) by symmetry of p. Let u(q) denote the gth moment of P;:

" 1
ua):=EIF) = [ pro(ap), ®)

where V denotes the distribution of P on (0, 1]. Following Engen [15], call V the struc-
tural distribution associated with an random discrete distribution whose size-biased
permutation is (f’j), or with an exchangeable random partition IT whose sequence of
class frequencies is (13j). The special case of (3) for k =1and n; =nis

(n) =E[F " =p(n—-1) (n=1,2,---). ©

From (6), (7), and (9) the following values of the EPPF are also determined by the first
two moments of the structural distribution:

p(L,1) =1-u(1); p(2,1) =p(1)—u2); p(1,1,1) =1-3u(1)+2u(2). (10

So the distribution of the random partition of {1,2,3} induced by IT with class frequen-
cies (B;) is determined by the first two moments of the structural distribution of P;. It
is not true in general that the EPPF is determined for all (nj,---,n;) by the structural
distribution, because it is possible to construct different distributions for a sequence of
ranked frequencies which have the same structural distribution.

Continuing to suppose that (P;) is the sequence of ranked atoms of a random dis-
crete probability distribution, and that (P;) is a size-biased permutation of (P;), for an
arbitrary non-negative measurable function f, there is the well known formula

E[Zf(Pz) ~E Zf(ﬁj)}= [£50] = [ L an
i j
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This formula shows that the structural distribution V encodes much information about
the entire sequence of random frequencies. Taking f in (11) to be the indicator of
a subset B of (0,1], the quantity in (11) is v(B) = [; p~'V(dp). This measure v is
the mean intensity measure of the point process with a point at each P; € (0,1]. For
x> % there can be at most one P; > x, so the structural distribution V determines the
distribution of P; = max; P; on (3, 1] via the formula

P(P, > x) = v(x,1] :/( ]p_1\7(dp) (x> 1) (12)
x,1
Typically, formulas for P(P; > x) get progressively more complicated on the intervals
(%»%], (417% ,--+. See for instance [40, 50].

A random variable of interest in many applications is the sum of mth powers of
frequencies

where it is still assumed that §; = 1 almost surely. Let ©t:= {4,,---,4x} be some
particular partition of N, with #(4;) = n; for 1 <i < k, and consider the event (IT, > ),
meaning that each block of IT, is some union of blocks of w. Then it is easily shown
that

k
]P) I, >7T') {H‘Sn,:l = 2 z p(”Bl""?"Bj) (13)
j=1 {B1,...B;}

where the second sum is over partitions {By,...,B;} of Ny, and ng := Y,cpn;. In
particular, for n; = m this gives an expression for the Ath moment of S,, for each &k =
1,2,...:

k
1 k!
k| —
]E[Sm] =) Il > AR p(mky, ... ,mk;) (14)
J=1 77 (kyekg) J
where the second sum is over all sequences of j positive integers (ki,...,k;) with k; +

-+ +k; = k. Thus the EPPF associated with a random discrete distribution directly
determines the positive integer moments of the power sums S,,, hence the distribution
of S,,,, for each m.

3 The Poisson-Kingman Model

Following McCloskey [37], Kingman [29], Engen [15], Perman-Pitman-Yor [40, 41,

50], consider the ranked random discrete distribution (P;) = (J; /T ) derived from an
inhomogeneous Poisson point process of random lengths J; > J, > --- > 0 by normal-
izing these lengths by their sum T := Y2, J;. So it is assumed that the number N; of J;
that fall in an interval / is a Poisson variable with mean A(J), for some Lévy measure
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A on (0,e0), and the counts Nj,,---,Nj, are independent for every finite collection of
disjoint intervals Iy, - -, I;. It is also assumed that

1
/ xA(dx) < o and Afl,0) < oo
0

to ensure that P(T" < eo) = 1. The sequence (P;) may be regarded as a random element of
the space P+ of decreasing sequences of positive real numbers with sum 1. Throughout
this section, the following further assumption is made to ensure that various conditional
probabilities can be defined without quibbling about null sets:

Regularity assumption. The Lévy measure A has a density p(x) such that the distri-
bution of T is absolutely continuous with density

f(t):=P(T €dt)/dt

which is strictly positive and continuous on (0,).
Note that the regularity assumption implies the total mass of the Lévy measure is
infinite:

/Omp(x)dxzoo. (15)

The results described below also have weaker forms for a Lévy density p(x) just subject
to (15), with appropriate caveats about almost everywhere defined conditional proba-
bilities.

It is well known that f is uniquely determined by p via the Laplace transform

Ble) = [ e s =expl-wd)]  (+20) (16)
0
where, according to the Lévy-Khintchine formula,
v = [ (1-e)p(ax an

Alternatively, f is the unique solution of the following integral equation, which can be
derived from (16) and (17) by differentiation with respect to A:

10 = [ o0 te-v) La a9)

Let (P;) be a size-biased permutation of the normalized lengths (P;) := (J;/T) and let
(J;) = (TP;) be the corresponding size-biased permutation of the ranked lengths (J;).
Then (18) admits the following probabilistic interpretation [37, 41]:

P(J, € dv,T € dt) = p(v)dvf(t — v)dt;. (19)

This can be understood as follows. The left side of (19) is the probability that among
the Poisson lengths there is some length in dv near v, and the sum of the rest of the
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lengths falls in an interval of length dt near ¢ — v, and finally that the interval of length
about v is the one picked by length-biased sampling. Formally, (19) is justified by the
description of a Poisson process in terms of its Palm measures [41].

The following two Lemmas are read from [41, Theorem 2.1]. The first Lemma is
immediate from (19), and the second is obtained by a similar Palm calculation.

Lemma 1
[41] For each t > 0 the formula

- f(pt -

flplt) :=ptp(pt)% 0<p<1l;p=1-p), (20)
where p is the density of the Lévy measure of T and f is the probability density of T,
defines a function of p which is a probability density on (0,1). This is the density of
the structural distribution of P} := Jj /T givenT =t:

PP edp|t)=f(plydp (0<p<1). 1)

Lemma 2
[41] For j=0,1,2,--- let

j -]

TjIZT—ZJk: Z Jk (22)
k=1 k=j+1

which is the total length remaining after removal of the first j Poisson lengths Ji, ... ,J}

chosen by length-biased sampling. Then the family of densities (20) on (0, 1), parame-

terized by t > 0, provides the conditional density of the random variable

Gy = Sy P
’ T; Py +Pjja+---
given Tp,- -+, T; via the formula
P(Gj+1 €dp|To,---,T)) = f(pITy)dp  (0<p<1). (23)

Lemma 2 provides an explicit construction of a regular conditional distribution for
(P;) given T =t for arbitrary ¢ > 0. This conditional distribution of (7;) given T =t
determines corresponding conditional distributions for the P+-valued ranked sequence
(P;) and for an associated random partition IT of N.

Definition 3

The distribution of (P;) := (J;/T) on P* determined by the ranked points J; of a Poisson
process with Lévy density p will be called the Poisson-Kingman distribution with Lévy
density p, and denoted PK(p). Denote by PK(p|?) the regular conditional distribution
of (P;) given (T = t) constructed above. For a probability distribution y on (0, o), let

Pk(p,1) = [ Px(pl () 0
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be the distribution on P* obtained by mixing the PK(p|¢) with respect to y(dt). Call
PK(p,Y) the Poisson-Kingman distribution with Lévy density p and mixing distribution

Y.

Note that PK(p|?) = PK(p,d,), where &, is a unit mass at ¢, and that PK(p) = PK(p,Y)
for y(dt) = f(t)dt. A formula for the joint density of (Py,---,P,) for (P;) with PK(p|¢)
distribution was obtained by Perman [40] in terms of the joint density p;(¢,x) of T and
Ji. This function can be described in terms of p and f as the solution of an integral
equation [40], or as a series of repeated integrals [50]. But this formula will not be used
here.

For a probability distribution Q on P*, such as Q = PK(p,y), a random partition IT
of N will be called a Q-partition if I1 is an exchangeable random partition of N whose
ranked class frequencies are distributed according to Q. Immediately from Definition
3, the structural distribution of a PK(p,y)-partition IT of N, that is the distribution on
(0,1) of the frequency Py of the class of IT containing 1, has density

P(P edp)/dp= [ Jplintdr) (0<p<1) @5)

where f(p|t) given by (20) is the density of the structural distribution of P; given T = ¢
in the basic Poisson construction. Similarly, the EPPF of IT is

plnsyeeesme) = [ plmn, - mel e 26)

where p(ny,---,nk|t), the EPPF of a PK(p|#)-partition, is determined as follows:

Theorem 4
The EPPF of a PK(p |¢)-partition is given by the formula

1
plng,-- me|t) = 7! /0 P2 (ny, - nigtp) f(p|t)dp @7
where n = Y¥n;, I(n;v) = 1 ifk=1andn, = n, and fork =2,3,...
. : _ 2
I(ny,---,mg;v p(v /Sk I:ll:[p (vu;)u }dul ~dug_1 (28)

where Sy is the simplex {(uy,...,u) 1u; > 0andu; + -+ u = 1}.

Proof. In view of the formula (20) for f(p|¢), the formula (27) is obtained from for-
mula (31) in the following Lemma by dividing by f(¢)dt, letting p = ¥, x;/t, and inte-
grating out with respect to p and to u; =x;/(pt) for 1 <i<k—1. o

A change of variables gives the following variant of formula (27), whose connection
to the next lemma is a bit more obvious:

P(nl,"‘,nklt) = ‘/Otdv%-(t—;)vn—kk_ll(nla“'ank;v)p(v)' (29)



8 J. Pitman

Lemma §

Let 1, be the restriction to N,, of a PK(p) partition IT whose class frequencies (in order
of least elements) are P; = J;/T, where T = ¥;J; has density f, and the lengths J;
are the points of a Poisson process of lengths with intensity p, in length-biased random
order. Then for each partition {A,---,A;} of N,, such that #(4;) = n; for 1 <i <k,

P(I1, = {41, ,4},J; € dx; for 1 <i< k,T € dt) (30)

k
=" f(t— 35 x) dt T pli)x! dx;. @31
i=1
Proof. This can be derived by evaluation of the expectation (3) for the joint distribution
of Py,...,P, given T = t determined by Lemma 2. Alternatively, there is the following
more intuitive argument, which can be made rigorous using the characterization of
Poisson process by its a Palm measures, as in [49, 41]. Let IT be constructed as in [46]
using random intervals ; laid down on [0, 7] in some arbitrary random order, where the
lengths J; := |I;| are the ranked points of the Poisson process with intensity p(x), and
T =Y,;J;. LetU;,Us,- - be i.i.d. uniform on (0, 1) independent of this construction. Let
IT be the partition of N generated by the random equivalence relation n ~ m iff either
n=mor TU, and TU,, fall in the same interval J; for some i. Then by construction, I1
is a PK(p) partition. For the event in (30) to occur,
(i) there must be some Poisson point in dx; for each 1 <i < k, and
(ii) given (i), the sum of the rest of the Poisson points must fall in an interval of
length dt near t — Y%, x;, and
(ii1) given (i) and (i), for each 1 < i < k and each m € 4; the sample point TU,,
must fall in the interval of length x;.
The infinitesimal probability in (30) therefore equals

k ke
(Hp(x,—) dx,-) fe-sk x)d ] (—) (32)
i=1 i=1 t

which rearranges as (31). O
The formula (27) expresses p(n,---,n|t) as the expectation of a function of P
given T = ¢, where the function depends on ¢ and ny,---,n;. Because some values of

an EPPF can always be expressed as moments of Py, as in (8) and (10), it seems natural
to try to express an EPPF similarly whenever possible. This idea serves as a guide to
simplifying calculations in a number of particular cases treated later. The integrations
in (27) and (28) are essentially convolutions, which can be expressed or evaluated in
various ways. Consider for instance the length 7} := T — 2{-‘=IJ~,~ which remains after
removal of the first & lengths discovered by the sampling process. Then the formula of
Lemma 5 can be recast as

P(I1, = {41, -, Ay },J; € dx; for 1 <i <k, Ty € dv) (33)
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=W+, x6) " fv dv]’[p x;)x7 dx; (34)
i=1

which yields the following integrated forms of (27):

Corollary 6
The EPPF of a PK(p)-partition is given by the formula
n], .. / f dv Hl‘l p(xl)x dxl (35)
V + Zi:l xl)n
where n .= Z{-‘:] n;, or again by
[T i G / " 1 e O Ty () 36)
] ] F(I’l) 0 P n;

where y(A) := [5(1 — e ™)p(x)dx is the Laplace exponent as in (17), and

d" a [T om -
Yn(d) 1= Sw() = (=1)" 1/0 FeMp()dy (m=1,2,...).  (37)
Proof. Formula (34) yields (35) by integration, and (36) follows after applying the
formula b= = T'(n)~! [y A" le™Mdrtob=v+ 35 x;. O

These integrated forms (35) and (36) also hold more generally, with f(v)dv replaced
by P(T € dv), and p(x)dx replaced by the corresponding Lévy measure on (0,c), as-
suming only that the Lévy measure has infinite total mass.

Provided E(ef”) < oo for some € > 0, the Laplace exponent y can be expanded in a
neighbourhood of 0 as

=

) =— 3 S (=N)"

|
m=1 1"

where the cumulants «,, of T are the moments of the Lévy measure

k= (=17 yn(0) = [ p(x)dx

Then for each partition {4, ---,4x} of N, such that #(4;) = n; for 1 <i <k, Lemma 5
yields the formula

k
P(I, = {4,,---, A4}, T € dt) = t—"]P(T-}-Zf":;Ji,n,- € dt)HK,,i (38)

i=1
where J; »,, denotes a random length distributed according to the Lévy density tilted by
XM

P(Ji, € dx) = K;‘_lp(x)x"" dx
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and T and the J;,, for 1 <i < k are assumed to be independent. If f,, ., (¢) denotes
the probability density of 7 + Zk_,J; ,,, then formula (27) for the EPPF of a PK(p|¢)-
partition can be rewritten

k
p(n1,- - me|t) = f",'n fzt*(t ]:11 (39)

and formula (35) for the EPPF of a PK(p)-partition becomes

k
p(n1, - me) :E[(T+z{.;lj,-,,,,)—"]]'[x,,,. (40)
=1

See also James [23] for closely related formulas, with applications to Bayesian non-
parametric inference.

4 Operations

Later discussion of specific examples of Poisson-Kingman partitions will be guided
by a number of basic operations on Lévy densities p and their associated families of
partitions.

4.1 Scaling

By an obvious scaling argument, the PK (p) and PK(p’) distributions are identical when-
ever p'(x) = bp(bx) is a rescaling of p for some b > 0. The converse is less obvious,
but true [49, Lemma 7.5].

4.2 Exponential tilting

It is elementary that if p is a Lévy density, corresponding to a density f for T, and b is
a real number such that y(b) defined by (17) is finite, then

P (@) =px)e™ (@1)
is also a Lévy density, and the corresponding density of T is
ﬂb) t)e\" (b)—bt (42)

It is also well known [34, Proposition 2.1.3] that if P(®) denotes the probability dis-
tribution governing the Poisson set up with Lévy density p(® then (42) extends to the
absolute continuity relation

dp(®)
ar _ wib)-eT
50 =° . (43)
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This relation is equivalent to a combination of (42) and the following identity, which
can also be verified using the construction of Lemma 2:

PK(p® |¢) = PK(p|¢) forall £ > 0. (44)

Consequently
Pk (p®,7) = Px(p,) 45)

for every v. In particular, the distribution on P+ derived from the unconditioned Poisson
model with Lévy density p(®) is

pk(p®)) = Pk (p,¥?) (46)

where 1) is the P®) distribution of T, that is ¥®)(dt) = f{)(¢)dt for f®) as in (42).
It can also be shown that if p’ and p are two regular Lévy densities such that PK(p’) =
PK(p,7) for some v, then p’ = p(®) and y = ?) for some b.

4.3 Deletion of Classes

The following proposition, which generalizes a result of [41], provides motivation for
study of PK (p,Y)-partitions for other distributions y besides y(d?) = f(¢)dt correspond-
ing to the unconditioned Poisson set up, and y = §; corresponding to conditioning
on T =¢. Given a random partition IT of N with infinitely many classes, for each
k=0,1,--- let IT; be the partition of N derived from IT by deletion of the first k
classes, an operation made precise as follows. First let IT) be the restriction of IT to
H, :=N- G| —---— G, where Gy,--- Gy are the first k classes of IT in order of least
elements, then derive ITx on N from ITj on Hj by renumbering the points of Hj in
increasing order.

Proposition 7

Let IT be a PK(p, y)-partition of N, and let Iy be derived from I1 be deletion of its first
k classes. Then II; is a PK(p,Yx)-partition of N, where y, = y0* for Q the Markov
transition operator on (0, )

Q(t,dv) = p(t =v)(t =)t f(v)1(0 < v < £)dv.

In particular, if T1 is a PK(p) partition of N, then I is PK(p,Yx)-partition of N, where
Yk 1S the distribution of Ty, the total sum of Poisson lengths T minus the sum of the first
k lengths discovered by a process of length-biased sampling, as in (22).

Proof. According to a result of [41] which is implicit in Lemma 2, the sequence (7}%)
is Markov with stationary transition probabilities given by Q. The conclusion follows
from this observation, the construction of PK(p;Yy), and the general construction of an
exchangeable partition of N conditionally given its class frequencies [43].
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5 Examples
5.1 The one-parameter Poisson-Dirichlet distribution
Following Kingman [29], for the particular choice
p(x) =0x"le ™t (47)

where 6 > 0 and b > 0, corresponding to 7 with the gamma(6, ) density
bG
f(t) = et e, (48)

the PK(p) distribution is the Poisson-Dirichlet distribution with parameter 0, abbrevi-
ated PD(8). Note the lack of dependence on the inverse scale parameter b. The well
known fact the structural distribution of PD(8) is beta(1,8) follows immediately from
(20). It follows easily from any one of the previous general formulas (27), (35), (36) or
(40), that the EPPF of a PD(8)-partition IT = (I1,) is given by the formula

k k k
P, m) = gy LI =11 (= 3 9)

This is a known equivalent [32, 43] of the Ewens sampling formula [18, 17] for the joint
distribution of the number of blocks of IT, of various sizes. It is also known [41, 49]
that the following conditions on p are equivalent:

(1) p is of the form (47), for some b > 0,0 > 0;

(ii) PK(p|¢) =PK(p) for all ¢ > 0;

(iii) PK(p) =PD(0) for some 6 > 0.

(iv) a PK(p)-partition has EPPF of the form (49) for some 6 > 0.
See also [4, 33] for further properties and applications of PD(6).

5.2 Generalized gamma

After the one-parameter Poisson-Dirichlet family, the next simplest Lévy density p to
consider is '
Pacp(x) =cx @ e (50)

for positive constants ¢ and b, and o which is restricted to 0 < o < 1 by the constraints
on a Lévy density and (15). The corresponding distributions of 7" are known as gen-
eralized gamma distributions [8]. Note that the usual family of gamma distributions is
recovered for oo = 0, and that a stable distribution with index o is obtained for b = 0
and 0 < a < 1. One can also take oo = —x for arbitrary K > 0, except that in this model
the Lévy measure has a total mass (o) < oo s0

P(T = 0) = exp(—y(e)) >0,
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contrary to the present assumption that the distribution of T has a density. Such models
can be analyzed by first conditioning on the Poisson total number of lengths, which
reduces the model to one with say m i.i.d. lengths with probability density proportional
to p. In the case (50) for oo = —x, that is to say that the lengths are i.i.d. gamma(x,b)
variables. This model for random partitions has been extensively studied. It is well
known that features of the PD(6) model can be derived by taking limits of this more
elementary model with m i.i.d. gamma(x, b) lengths as x — 0 and m — e with km — 6.
See [45] for a review of this circle of ideas and its applications to species sampling
models.

The PK(po,c,») model for a random partition defined by pg s in (50) for 0 < o < 1
was proposed by McCloskey [37], who first exploited the key idea of size-biased sam-
pling in the setting of species sampling problems. Due to the remarks in Section 4 about
scaling and exponential tilting, for 0 < o < 1 the family of PK(pg,5,7Y) distributions,
as 7y varies over all distributions on (0,<), depends only on o and not on ¢ or b. So in
studying this family of distributions on P* and their associated exchangeable partitions
of N, the choice of ¢ and b is entirely a matter of convenience. This study is taken up in
the next section, with the choice of b = 0 and ¢ = 0./T'(1 — o) which leads to the sim-
plest form of most results. See also [8, 24, 23] regarding generalized gamma random
measures and further developments.

5.3 The stable (o) model

Suppose now that P, governs the Poisson model for 7 with stable (o) distribution with
Laplace transform

Eo [exp(—AT)] = /Om e““fa(x) dx = exp(—\L%) (51

for some 0 < o < 1, where f(x) is the stable(at) density of 7, that is [52]

1 e (L 1\k
Fult) = —n—l 3 I din (o)

k=0 k!

I(oak+1)

ey (52)

Fora = % this reduces to the following formula of Doetsch [14, pp. 401-402] and Lévy

[36]:

3 _
2

(2T € dx)/dx =1 fi(3x) = L ek, (53)

2 2 \/_2_,tx
Special results for o0 = %, discussed in Section 8, involve cancellations due to simplifi-
cation of fy(pt)/ fu(t) for 0 < p < 1, which does not appear to be possible for general
o.. The Lévy density corresponding to the Laplace transform (51) is well known to be

P

ax—a—l

Po(x) = " (x>0). (54)
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Write P (- |¢) for P (-| T = ¢). So the Py, distribution of (P;) on P* is PK(py,), and the
Py (-|2) distribution of () is PK(p |?). Note from (51) that if 7 is the total length in
the model governed by cp, for a constant ¢ > 0, then T has the same distribution as
c!/eTy for Ty = T as in (51). Together with similar scaling properties of the lengths J;,
this implies that for all 0 < o < 1 and ¢ > 0 there is the formula

PK(cpa ) = PK(po|c™/%1). (55)

Formulas for the PK(pq |¢) distribution are described in Section 5.4. These formulas
can be understood as disintegrations of simpler formulas obtained in [43], and recalled
in Section 6, for a particular subfamily of the class of PK(p,?) distributions.

One reason for special interest in the Kingman family associated with the stable
Lévy densities pg, is the following result which will be proved elsewhere.

Theorem 8
The EPPF of an exchangeable random partition I1 of N with an infinite number of
classes with proper frequencies has an EPPF of the Gibbs form

k

p(n1,- - mi) = cnp [ [ wn, wheren =35 n; (56)
i=1

for some positive weights w) = 1,w;,ws, ... and some c, if and only if

m—1

Wy = H(j—(x) (m=1,2,...)

j=1

for some 0 < o < 1. If o = O then the distribution of I1 corresponds to [;” PD(8)y(d8)
for some probability distribution y on (0,0), whereas if0 < o < 1 then the distribution
of TI corresponds to PK(pq,Y) := [y PK(pa|?)y(dt) for some .

See also Kerov [28] and Zabell [57] for related characterizations of the two-parameter
family discussed in Section 6. This family is characterized by an EPPF of the form (56)
with ¢, ¢ a product of a function of » and a function of £.

5.4 Conditioning on 7

Assume throughout this section that 0 < a < 1. Immediately from (20) and (54), in the
PK(po | ) model, the distribution of P} has density

opt)™* ful(1-p)t)

fa(Plt) = F(l_a) fon(t) (O<p< l) (57)

Let h be a non-negative measurable function with Eq4#(T) = [ h(t) fa(t)dt = 1, and
let /- fy denote the distribution on (0,c) with density A(f) fo(¢). Then by integration
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from (57), under the probability Py, governing the PK(pq, /- fo) model, the structural
distribution of 2, has density

~ o _ —
Pop(Pr € dp)[dp = gy P “(1=p)* Mas(1=p) (0<p<1)  (58)
where -
M) = [ v/ fuv)dy = Ea[T~H(T ) (59)
For instance, it is known [41] that
I(z+1)
e— -0y _ a _
So for 6 > —a, (58) and (59) imply:
if h(1) = C gt ~° then Py has beta(1 — &, 0+ 8) distribution. (61)

This example is discussed further in the next section. As another example, if A(t) =
exp(b* — bt) for some b > 0, then according to (46) the model PK(pq, /- fy) is identical
to the unconditioned generalized gamma model PK(p,p) with

—bx
—bx o e
pa,b(x) = p(l(x)e b = WW (x > 0)

So the structural density of the PK(pq,) model is given by formula (58) with

Mo,k () = exp(b*)Ea [T~ *exp(—bT /u)). (62)

For o = % the expectation in (62) can be evaluated by using (53) to write for § > 0
~Eer1//2 — g, /8
By 7 exp(-E1)) = 7= [ e 2\/;K1(\/E) (63)
where K is the usual modified Bessel function. Thus for b > 0 the PK(p1 ») model

associated with the inverse Gaussian distribution [54] has structural distribution with
density f b given by the formula

\/_
‘/Eeb)K< ( b 0<p<1). (64)

; _
NP = 25— 1-p)
Proposition 9

For0 < a < 1,q >0 let uy(q|t) denote the qgth moment of the structural density (57)
of the PK(pq | #) distribution:

|2) =/01qua<p|t)dp=1Ea(Pf’lt)- (65)
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Then for each t > 0 the EPPF of a PK(pq | ¢) partition of N is

_ T(1-0) okl k
palny, - m|t) = T(n k) (t‘(;) pa(n—1-ko+alt) g[l -1 (66)
where |
g I"(ni— (X.)
1- ni—1 = j_(x =
Alternatively,
ok k
Pa(”la"'a"klt) = _ga n_kalt l—[ n,-—l (67)

i=1

where ga(g]1) := (D()/a(0)) ™" i fult =i~

Proof. This is read from Theorem 4, since the integral (28) reduces to a standard
Dirichlet integral. O

As checks on (66), the symmetry in (n,...,n;) is still evident, and py(n|t) =
Ua(n—1|t) as required by (8). However, the addition rules (5) for this EPPF are not
at all obvious. Rather, they amount to the following identity involving moments of the
structural distribution:

Corollary 10
The moments 4 (q|t) of the structural distribution on (0, 1) associated with the PK (P | )
distribution on ‘P* satisfy the following identity: forall 1 <k <nandt >0

T'(n— koo™

pa(n—1—kotalt) = pa(n OHLO‘!t)Jrl“(nJrl—koc—oc)

Ho(n—kolt).  (68)
To illustrate, according to the simplest addition rule (6),

1 =pa(ZIl‘) + pa(l,1 lt)’
which amounts to (68) for n = k =1, that is

I'Nl-o) o

1= —ug (1

—alt). (69)
The addition rule underlying (68) can be checked for general o by an argument de-
scribed in Section 6. In the case o = %, the later formulae (99) and (93) show that (68)
reduces to a known recursion (106) for the Hermite function.

Repeated application of (68) shows that for each 1 < k& < »n the moment on the left
side of (66) can be expressed as a linear combination of integer moments uq(j|#) for
j=0,---,n—1, with coefficients depending on n, k, o, which could easily be computed
recursively. But except in the special case o0 = % discussed in Section 8, even the integer
moments seem difficult to evaluate.
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6 The two-parameter Poisson-Dirichlet family

For 0 < o < 1,0 > —a, let Yo ¢ denote the distribution on (0,0) with density C o (lat‘e at
t relative to the stable(a) distribution of T defined by (51), that is

Yoo0(dt) = Cy gt~ fu(t) dt (70)
where Co g := Eo(T7%) =T(2 +1)/T(8+ 1) as in (60) and (61).

Definition 11
[41, 50] The Poisson-Dirichlet distribution with two parameters (0.,8), denoted PD(c, 0),
is the distribution on P+ defined for 0 < o < 1,0 > —a. by

PD(6) foro=0,0 >0

PK(Pa,Ya,0) for0<a<1,6>-—a 71

PD(,0) = {

This family of distributions on P+ has some remarkable properties and applications. As

shown in [41], it follows from Lemma 2 that if (P;) has PD(a.,8)distribution then the
corresponding size-biased sequence (Pj) can be represented as

Bi=w [10-m) (72)

i=1
where the W; are independent with beta(1 — o, 8 + jo) distributions. (73)

So the PD(a, 0) distribution can just as well be defined, without reference to the Poisson-
Kingman construction, as the distribution of (7;) defined by ranking (#;) constructed
by (72) from independent ; as in (72). The sequence (13]-) defined by (72) and (73) for
0 < a < 1and 6 > 0 was considered by Engen [15] as a model for species abundances.
See [50] for further study of the PD(.,8) family. It was shown in [44] that if (P;) is
a random element of P+ with P; > 0 a.s. for all i and the corresponding size-biased
sequence (P;) admits the representation (72) with independent residual fractions 7,
then the W; must have beta distributions as described in (73), and hence the distribution
of (P;) must be pPD(c.,8) for some 0 < & < 1 and 6 > —a.. Reformulated in terms of
random partitions, and combined with Proposition 7, this yields the following:

Proposition 12

Let I be the exchangable random partition of N derived by sampling from a random
element (P;) of P+ with P, > 0 for all i. Let I1; be derived from I1 by deletion of the
first k classes of T1, with classes in order of appearance, as defined above Proposition 7.
Then the following are equivalent

(i) for each k, T, is independent of the frequencies (Py,--- P,) of the first k classes of
IT;

(ii) IT is a pD(a., ) -partition for some 0 < oo < 1 and © > —a., in which case Iy is a
PD(0., 8 + ko) -partition.
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As shown in [43], the independence property (72) of the residual fractions /¥; of a
PD(0, 8)-partition allows the corresponding EPPF pg (71, ... ,n) to be evaluated using
(3). The result is as follows. Forall0 < o < 1 and 6 > —q,

_ [9+ a]k—];a k

Pa,ﬂ(”lv-- '1nk) - W __1[1 - a]ni—l ‘ (74)

where n = 2{;1 n; and for real x and a and non-negative integer m

_ [ 1form=0
[x]m;a— x(x+a)...(x+(m—l)a) for m=1,2,...

and [x],, = [x]m;1. The previous formula (49) is the special case of (74) for o. = 0. Both
this case of (74), and the case when 0 < a < 1 and 8 = 0, follow easily from (36).
Formula (74) shows that a PD(a, 0) partition IT of N to be constructed sequentially as
follows [43, 45]. Starting from IT; = {{1}}, given that IT, has been constructed as a
partition of N,, with say k blocks of sizes (nj,---,ny), define IT, . by assigning the new
element n+ 1 to the jth class whose current size is n; with probability

nj—(x
n+0

IP(jTl"17"'7nk)= (75)

for 1 < j <k, and assigning n+ 1 to a new class numbered &+ 1 with the remaining
probability

_ ka
" n+8
For oo = 0 and 6 > 0 this is generalization of Polya’s urn scheme developed by Blackwell-
McQueen [7] and Hoppe [21]. See [43, 45, 20] for consideration of more general pre-
diction rules for exchangeable random partitions.

The following calculation shows how to derive either of the two EPPF’s (74) and
(66) from the other. The argument also shows that the function py(n;,---,ni|¢) defined
by (66) satisfies the addition rules of an EPPF as a consequence of the corresponding
addition rules for py g(n1,...,nk), which are much more obvious.

The kemel Yy g(dt) introduced in (70), is now viewed for a fixed a as a family of
probability distributions on (0, ) indexed by 6 € (—a, o), that is a Markov kernel y4
from (—a, o) to (0,°°). For a non-negative measurable function # = h(t) with domain
(0,e°), define a function yuh = (Yoh)(8) with domain (—q., ) by the usual action of
this Markov kernel as an integral operator:

Plk+ 171 |nyy---,m) (76)

(1ck) (©) = [ taole) 1) @

Then say (Yoh)(0) is the Yo-transform of h(t). Let Eq ¢ denote expectation with respect
to the probability distribution

mm=fmwmwm
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By definition, for each non-negative random variable X governed by the family of con-
ditional laws (Py(- |£),z > 0),

the Yy -transform of Eq (X |#) is Eq ¢ (X). (78)
In particular, for each (ny,...,nx),
the Yo-transform of py(ny,---,nk|t) is pae(ni,... n)- (79)

An obvious change of variable allows uniqueness and inversion results for the Yq-
transform to be deduced from standard results for Mellin or bilateral exponential trans-
forms. So the problem is just to show that the Yo-transform of the right side of (66) is
the right side of (74). To see this, observe first that for each g > 0, because uq(glt) :=
Eo (P 1),

Il -a+g)I'(1+6)
r1+6+4)I'(1-0)
where Eq ¢ (15;’ ) is evaluated using (61). To deal with the factor of 1~%*=1)2 i (66), note
from (60) that for each B > 0, and any A(z),

T +8+1re+1
the Yu-transform oft‘Bh'(t) is ((;+a+ JT(e+1)
T(2+1)I(e+B+1)

By (80) for g =n—1—ko+ o and (81) for B = ok — ot and h(r) = ue(g|?) the right
side of (66) has for its y,-transform the following function of 6:

the Yo-transform of g (q|t) is Eq e (P]) =

(80)

(rah)(0+B). (81

oM(1-a) T(E+Kre+1) T(n—ko)T(1+0+ ko — o) £ I
F(n—ko) T(2+1r(@+ko—a+1) I(n+0)I(1 - a) E[

which reduces by cancellation to the right side of (74).

6.1 The o-diversity

Let IT be an exchangeable random partition of N with ranked frequencies (P;). Let K,
denote the number of classes of I1,, the partition of N,, induced by IT. Say that IT has
o-diversity S and write a-DIVERSITY (IT) = S iff there exists a random variable S with
0<S§S<oas. and

K,~Sn%asn— oo (82)

where for two sequences of random variables 4, and B,, the notation 4, ~ B, will now
be used to indicate that 4,/B, — 1 almost surely as n — c. According to a result of
Karlin [27], applied conditionally given (P;), if these ranked frequencies are such that

s\
B~ (F(l —oc)i) ®3)

for some 0 < § < eo then IT has a-diversity S.
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Proposition 13
Suppose I1 is a PK(pq,Y) partition of N for some 0 < o < 1 and some probability
distribution y on (0,e). Then

(i) o-DIVERSITY (IT) = S for a random variable S with § = T~ where T = S~/*
has distribution y. In particular, S = ~* is constant if I is a PK(p | #) partition.

(i) A regular conditional distribution for IT given S = s is defined by the EPPF
pa(ni, -+ ,ng|s~1/) obtained by setting ¢ = s~'/* in (66).

(iii) In particular, both (i) and (ii) hold if IT is a PD(a,8) partition for some 6 > —o..
Then the a-diversity S of ITis S = T~ for T with the distribution Y ¢ defined by (70).

Proof. Suppose that (P;) has PK(pq,7) distribution. The fact that (83) holds for S =7~¢
in the unconditioned case where T has stable(a) distribution is due to Kingman [29].
Kingman’s argument, using the law of large numbers for small jumps of the Poisson
process, applies just as well for T conditioned to be a constant . So (83) follows in
general by mixing over ¢. O

See [50] and papers cited there for further information about the Mittag-Leffler dis-
tribution of § = 7~ derived from a PD(a,,0) partition. The corresponding distribution
of S for PD(t,8) has density at s proportional to s relative to this Mittag-Leffler
distribution.

As shown in [50, Proposition 10], if IT is a partition of N whose ranked frequencies
(P;) have the PD(c,0) distribution, then § = o-DIVERSITY (IT) can be recovered from
IT or (P;) via either (81) or (83). Then T = S~!/* has stable(c) distribution as in (51),
and (TP;) is then sequence of points of a Poisson process with Lévy density p,. See
also [47, 48] for more about the distribution of K, derived from a PD(c, 0) partition.

7 Application to lengths of excursions

This section reviews some results of [41, 49, 46, 50]. Let IP’g govern a strong Markov
process B starting at a recurrent point 0 of its statespace, such that the inverse (t,,£ > 0)
of the local time process (L,,t > 0) of B at zero is a stable subordinator of index a for
some 0 < o. < 1. That is to say, EJ exp(—At;) = exp(—cA®) for some constant ¢ > 0.
So the IPg distribution of 1, is the Py, distribution of ¢!/®T for T as in (51). For example,
B could be a one-dimensional Brownian motion (ot = %) or Bessel process of dimension
2 —20. In the Brownian case, take ¢ = /2 to obtain the usual normalization of local
time as occupation density relative to Lebesgue measure, which makes L 4 |By|. Let
M= {r:0<t<1,B, =0} denote the random closed subset of [0, 1] defined by the
zero set of B. Component intervals of the complement of M relative to [0, 1] are called
excursion intervals. For 0 <t <1 let G, = sup{M N [0,¢]}, the last zero of B before
time ¢. Note that with probability one, G; < 1, so one of the excursion intervals is the
meander interval (G, 1], whose length 1 — G| is one of the lengths appearing in the list
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(P;) say of ranked lengths of excursion intervals. According to the main result of [49],
the sequence (P;) of ranked lengths has PD(c,0) distribution (84)

Let Uy, U,,--- be a sequence of i.i.d. uniform [0, 1] random variables, independent of
B, called the sequence of sample points. Let I1 = (I1,) be the random partition of N
generated by the random equivalence relation i ~ j iff Gy, = Gy;. Thatis to say i ~ j iff
U; and U fall in the same excursion interval. So for example ITs = {{1,2,5},{3},{4}}
iff U,U, and Us fall in one excursion interval, Us in another, and U, in a third. By
translation of results of [49, 50] into present notation

IT is a PD(Q,, 0) partition and 0-DIVERSITY (IT) = cL, (85)

where L, is the local time of B at zero up to time 1. By construction, the sequence (7;)
of class frequencies of IT is the sequence of lengths of excursion intervals in the order
they are discovered by the sample points, and (P;) is recovered from (15,-) by ranking. To
illustrate formula (74), U; and U, fall in different excursion intervals with probability
Pao(l,1) = a, and in the same one with probability po(2) = 1 —o. Similarly, given
that the local time is L; = £, two sample points fall in the same excursion interval
with probability pe(2|(cf)~/%), and in different excursion intervals with probability
Pa(1,1](c)=1/), for py(--- |t) defined by (66). See Section 8 for evaluation of these
functions in the case o. = % corresponding to a Brownian motion B.

Let R, = 1— P —--- — P, which is the total length of excursions which remain
undiscovered after the sampling process has found » distinct excursion intervals. The
result of Proposition 12 in this setting, due to [41], is that for each n = 0,1,2,--- a
PD(o, nor) distributed sequence is obtained by ranking the sequence

1 . .
—(Pat1,Prt2s ") (86)

Ry

of relative excursion lengths which remain after discovery of the first n intervals. For
n =1 the same PD(0., o) distribution is obtained more simply by deleting the meander
of length 1 — G, renormalizing and reranking. This is due to the result of [49] that
the length 1 — G, of the meander interval is a size-biased choice from (P;). As the
excursion lengths in this case are just the excursion lengths of a standard bridge, equiv-
alent to conditioning on B; = 0, the ranked excursion lengths of such a bridge have
PD(0, @) distribution. As first shown in [49], this implies that both the unconditioned
process B and the bridge B given B; = 0 share a common conditional distribution for
the ranked excursion lengths (P;) given the local time L. In present notation, this con-
ditional distribution of (P;) given L; = £, with or without conditioning on B; = 0, is
PK(pa](c€)~1/).

One final identity is worth noting. As a consequence of the above discussion, for
the process B, the conditional distribution of the meander length 1 — G given L) = £ is
given by

PY(1 -G, €dp|L; = &) =P%(Py € dp|L; =) = Ju(pl(c)"*)dp  (87)
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where fy(plt) as in (57) is the structural density of the Poisson model for stable (o)
distributed T conditioned on T = ¢. So the moment function uq(g|¢) appearing in the
EPPF (66) of this model can be interpreted in the present setting as

Halglt) =B [(1-G)?|Ly =17 (88)

8 The Brownian excursion partition

In this section let I'T be the Brownian excursion partition, that is the random partition of
N generated by uniform random sampling of points from the interval [0, 1] partitioned
by the excursion intervals of a standard Brownian motion B. According to the result of
[49] recalled in (84),

MisaPK(py) = PD(4,0) partition. (89)

With conditioning on B; = 0, the process B becomes a standard Brownian bridge. So IT
givenB) =0isa PD(%, %) partition, as discussed in the previous subsection. Features of
the distribution of IT and the conditional distribution of I given B, = 0 were described
in [46]. This section presents refinements of these results obtained by conditioning on
L, the local time of B at 0 up to time 1, with the usual normalization of Brownian local
time as occupation density relative to Lebesgue measure. Unconditionally, L has the
same distribution as |B|, that is

P(L; € d\) = P(|B;| € dA) = 20(A)dA (A>0)

where @(z) := (1/v/2m)exp(—3z?) is the standard Gaussian density of B;. Whereas
the conditional distribution of L; given B = 0 is the Rayleigh distribution

P(L, € d\|B) = 0) = V2rA@(A)dA (A > 0).
Note from (85) that the %-diversity of I1 is the random variable v/2L;. So the number

K, of blocks of IT grows almost surely like v/2nL; as n — oo. For A > 0 let TT(A) denote
a random partition with

T(A) £ (T|L; = 1) £ (TT|L, =1, B, = 0) (90)
where £ denotes equality in distribution. So according to the previous discussion,
TI(A) is a PK(py | 1A72) partition 1)

whose —;—-diversity is V2A. Let PD(% [|A) denote the probability distribution on P+
associated with IT(A), that is the common distribution of ranked lengths of excursions
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of a Brownian motion or Brownian bridge over [0,1] given L; = A. Then by Definition
11 and (53), for 6 > —% there is the identity of probability laws on P+

pp(1,0) = E“B ST / (L11A)ABo)dr 92)

where, according to the gamma( ) distribution of B2 and the duplication formula for
the gamma function,

re+3) _,-ol(28+1)
rd)y 7 T(e+1)

It was shown in [3] (see also [5, 48]) that it is possible to construct the Brownian excur-
sion partitions as a partition valued fragmentation process (I1(L),A > 0), meaning that
TI(A) is constructed for each A on the same probability space, in such a way that IT(A)
is a coarser partition than Il(u) whenever A < u. The question of whether a similar
construction is possible for index o instead of index % remains open. A natural guess is
that such a construction might be made with one of the self-similar fragmentation pro-
cesses of Bertoin [6], but Miermont and Schweinsberg [38] have recently shown that a
construction of this form is possible only for o = %

E(|By %) =2° 6> -1). (93)

8.1 Length biased sampling

Let P;(X) denote the frequency of the jth class of TI(A). So (Pi(M),j =1,2...) is
distributed like the lengths of excursions of B over [0, 1] given L = A, as discovered by
a process of length-biased sampling. In view of Lévy’s formula (53) for the stable( )
density, the formula (57) reduces for a = 1 to the following more explicit formula for
the structural density of IT(A):

1 3 . 2
BOM edp) = =p =g e (-5 2 )dp 0<p<n) 09

or equivalently

IP(PISy)=2<D(k lyfy)-l (O<y<1) (95)
where ®(z) := P(B) < z) is the standard Gaussian distribution function. Put another
way, there is the equality in distribution

2
Ay L A

PiB (96)

Furthermore, by a similar analysis using Lemma 1, there is the following result which
shows how to construct the whole sequence (P;(1),j > 1) for any A > 0 from a single
sequence of independent standard Gaussian variables. Then IT(A) can be constructed
by sampling from (P;(A), j > 1) as discussed in Section 2.
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Proposition 14

[3, Corollary 5] Fix A > 0. A sequence (P;(A),j > 1) is d1stnbuted like a length-biased
random permutation of the lengths of excursions of a Brownian motion or standard
Brownian bridge over [0, 1] conditioned on Ly = A if and only if

3 A2 22
BN =55 " wws,

o7

where S; := 2{:1X,- for X; which are independent and identically distributed like Bf for
a standard Gaussian variable B.

Let u(q||A) denote the gth moment of the distribution of P;(A). So in the notation of
(65) and (68) )
wqlIh) = BB ()] =y (q] 1072). ©8)

Lemma 15
ForeachA >0

2 q
el =E[ (7o) | =EB A4 @>-h o9

where E(|B |*9) is given by (93) and h_,, is the Hermite function of index —2g, that is
ho(A) =1 and forq ¢ {0,1,2...}

S q+1/2( 7")
h_zg(A 2r(2q g (g+j/2)2 7 (100)
Also,
u(q||A) =Elexp(—A/2T,] (g>0) (101)

where T'; denotes a Gamma random variable with parameter q:
P(T, €dt) =T(q) 19 'e™dr  (¢t>0).

Proof. The first equality in (99) is read from (96). The second equality in (99) is
the integral representation of the Hermite function provided by Lebedev [35, Problem
10.8.1], and (100) is read from [35, (10.4.3)]. According to another well known integral
representation of the Hermite function [35, (10.5.2)], [16, 8.3 (3)], forg > 0

1 oo 1, zq‘l oo
ho (x) = ———-/ e M gy = / VI—lgmvxVavg, 102
2 (%) T (29) Jo T (29) Jo (102)

Formula (101) follows easily from this and (99). O

The identity

BZ q
E[(mﬂ Efexp(—A/2T,] (g >0), (103)
1
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which is implied by the previous proposition, can also be checked by the following
argument suggested by Marc Yor. Let X be a positive random variable independent of

Iy, and let € with € 4 I'; be a standard exponential variable independent of both X and
I';. Then by elementary conditioning arguments, for 6 > 0

E [ (%() q] - [e-erq/x] =P(eX/T, > 0). (104)

Take X = B? and 0 = A2, and use the identity B2 £ ¢2/2, which is a well known
probabilistic expression of the gamma duplication formula, to deduce (103) from (104).
The following display identifies 4y (z) in the notation of various authors:

hy(z) = 27VH,(z/vV2)=2"?¥(-v/2,1/2,22/2)  (Lebedev[35])
= 2Y2U(-v/2,1/2,22/2) ‘(Abramowitz and Stegun) [1]
= ¥ U(-v-1,2) (Miller[39])
= e Dy(2) (Erdelyi [16], Toscano [56])

The functions U (a,z) and Dy (z) are known as parabolic cylinder functions, Weber func-
tions or Whittaker functions. The function U (a, b,z), which is available in Mathematica
as HypergeometricU{a,b, z], is a confluent hypergeometric function of the second
kind. Note that h,(z) defined for n = 0,1,2,... by continuous extension of (100) is
the sequence of Hermite polynomials orthogonal with respect to the standard Gaussian
density @(x). Also, the function 4_(x) for real x is identified as Mill’s ratio [26, 33.7]:

P(B >
hoy(x) = ‘ *) '*2/ e 14z, (105)
For all complex v and z, the Hermite function satisfies the recursion

hvs1(z) = zhy(2) — Vhy-1(2), (106)

which combined with (105) and 4o(x) = 1 yields

h_a(x) =1—xh_y(x) (107)
21h_3(x) = —x+ (1 +x})h_ (x) (108)
3h_g(x) =2+x* = Bx+x*)h_; (x) (109)

and so on. See [51] for further interpretations of the Hermite function in terms of
Brownian motion and related stochastic processes.
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8.2 Partition probabilities

Recall the notation

Corollary 16
The distribution of TI(A), a Brownian excursion partition conditioned on L = A, is

determined by the following EPPF: forny,...,n; with Zf-;] ni=n

k
pi(ny,.-me|[A) = 2 2N TT B -1 (110)

i=1
Proof. This is read from (66), (99) and (93). ' O

Formula (110) combined with (14) gives an expression in terms of the Hermite
function for the positive integer moments of the sum S,,(A) of mth powers of lengths
of excursions of Brownian motion on [0, 1] given L; = A. This formula for m = 2 was
derived in another way by Janson [25, Theorem 7.4]. There the distribution of S>(A)
appears as the asymptotic distribution, in a suitable limit regime, of the cost of linear
probing hashing.

According to (91) and Definition 11, for each 6 > — %, the EPPF (110) describes
the conditional distribution of a PD(3,6) partition (I1,) given lim, K, //2n = A, where
K, is the number of blocks of I1,. Easily from (110), for each fixed A > 0, a sequential
description of (IT,(A),n = 1,2,...) is obtained by replacing the prediction rules (75)
and (76) by

hi—1-22 ()

P(jT]"17"',nk)=(2"j"1)hk+1_2 ) (1<j<k) (111)
_ )\-hk-Zn()")
Plk+171 |ny,---,m) = _—hk+1—2n()‘-)' (112)

The addition rule for the EPPF (110) is equivalent to the fact that these transition prob-
abilities sum to 1. As a check, this is implied the recurrence formula (106) for the
Hermite function.

Corollary 17

Let K,,(A) be the number of blocks of I1, (L), where (I1,(A),n = 1,2,...) is the Brow-
nian excursion partition conditioned on L; = A. Then (K,(A),n = 1,2,...) is a Markov
chain with the following inhomogeneous transition probabilities: for 1 < k<n

hi—1-2(A)

B(Kr1 () = k| Kn(d) =) = (21— k) p=——2755

(113)
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Ahy_an (A
P(Kni1 (1) = k1 [Kn(1) = ) = —b2al2) (14)
Pit1-2n(A)
Moreover, the distribution of K,()) is given by the formula
= 112 k-1
Bk, () = k) = S VAT heea®) gy ) (115)

(n—k)1(k—1)127F

Proof. The Markov property of (K,(A),n = 1,2,...) and the transition probabilities
(113)—(114) follow easily from (111)—«(112). Then (115) follows by induction on #,
using the forwards equations implied by the transition probabilities. O

Let K,, denote the number of blocks of IT,, where (I1,) is the unconditioned Brow-
nian excursion partition. Then, from the discussion around (90),

(Ka(A)yn > 1) £ (Kpon > 1 imK,/v2n = A). (116)

According to (89), (75) and (76), the sequence (K,,n > 1) is an inhomogeneous Markov
chain with transition probabilities

P(Knp = k| Ky = k) = 22K (17)
2n
k

which imply that the unconditional distribution of K, is given by the formula [46, Corol-
lary 3]

n—1

P(Kn =k) _ (Zn—k— 1>2k+1—2n (1 < kS n). (119)

Due to (116), for each A > 0 the inhomogeneous Markov chain (K,(A),n > 1) has
the same co-transition probabilities as (K,,n > 1). From (117), (118) and (119), the
co-transition probabilities of (K,,n > 1) are

2(n—k+1)

n= n :k = —
B(K, = k| Kup1 =K) = 5 — (120)
P(K, = k—1|K, —k)—--’il (121)

" mHl = T 2n—k+1°

As a check, the fact that (K,,(A),n > 1) has the same co-transition probabilities can be
read from (113), (114) and (115). It can be shown that the Markov chains (K,(A),n > 1)
for A € [0, ], with definition by weak continuity for A = 0 or e, are the extreme points
of the convex set of all laws of Markov chains with these co-transition probabilities. A
generalization of this fact, to o € (0, 1) instead of o = %, and similar considerations for
o = 0, yield the second sentence of Theorem 8.
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To illustrate the formulas above, according to (9) and (99), or (110) for n = 2, given
L, = A, two independent uniform [0, 1] variables fall in the same excursion interval of
the Brownian motion with probability

py(2lIA) = u(1]|A) = () = 1 =Ah1(R) (122)

and in different excursion intervals with probability Ak_;(A). According to (110) for
n =3, given L; = A, three independent uniform random points U, U,,Us with uni-
form distribution on [0, 1] fall in the same excursion interval of a Brownian motion or
Brownian bridge with probability

P(Ks(\) =1) = py31IA) =3h-s(M) = 1+ 322 = G A+ 300)h () (123)
while U) and U, fall in one excursion interval and Us in another with probability
FP(K3(A) =2) = py (2,1]|1A) = Mo3(A) = =322+ A+ 3A0h0 (M) (124)
and the three points fall in three different excursion intervals with probability
P(K3(A) =3) = p%(l, L1[|A) =A%h_y(A) =A% = A3h_ (M). (125)
As a check, the sum of expressions for P(K3(A) = k) over k = 1,2,3 reduces to 1. Since

P(Kn(l) = k) = z #(nla"',nk)p

ny 2> 2ng

(1, [) (126)
where the sum is over all decreasing sequences of positive integers (nj,---,n;) with

sum n, and #(n,, - - - ,nx) is the number of distinct partitions of N, into & subsets of sizes
(ny,---,ny), formula (115) amounts to

k 2n—k—1\ T(n) _y_
1 = 2k—2n
nlzzznk#(m, ,nk)ilzll[z]n,-—x = ( I ) 0 2 (127)

which can be checked as follows. According to (74) and (89), the unconditional EPPF
of the Brownian excursion partition IT is

(k)
Pyolnny - m) = F%;H[%lm_l (128)

=

s0 (127) can be deduced from (128), (119), and the unconditioned form of (126).

8.3 Some identities

As a consequence of (92) and (99), for all g > — 1 and 8 > —1 there is the identity

2

) 1
E(|B, ) /0 Ao = LOF VI +3)

CT(Hrg+e+1)

(129)
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where the right side is the gth moment of the beta( %, % + 6) structural distribution of
PD(%,G), and on the left side this moment is computed by conditioning on L,. As in
-(80), for each fixed g this formula provides a Mellin transform which uniquely deter-
mines u(q||A) as a function of A. In view of (129) and (93), the formula (99) for x(g||A)
in terms of the Hermite function amounts to the identity

ree+1)

Fa+o+1) =

2/0 A.zeh—ZQ()")q)(}»)d)\, —9—0-¢

As checks, since hg(x) = 1 and h_;(x) = ®(x)/@(x), the case g = 0 is obvious, and the
case g = 1 is easily verified since then the left side of (129) equals (26+ 1) ~'E(|B, |2%+!)
by integration by parts. Formula (130) can then be verified for g = m/2 for all m =
0,1,2,..., using the recursion (106). Formula (130) was just derived for g > — %, but
both sides are entire functions of g, so the identity holds for all g € C. Using the se-
ries formula (100) and integrating term by term, the substitution » = 6 + % allows the
identity (130) to be rewritten in the symmetric form

- J J\ (=2) _ 4v/ml(29)T(2r)
Z;)F <q+§)r(’+i) JU T T(g+r+1/2) (131)

where the series is absolutely convergent for real g and » with g +r+ % < —1, and can
otherwise be summed by Abel’s method provided neither 2g nor 2r is a non-positive
integer. This version of the identity is easily verified using standard identities involving
Gauss’s hypergeometric function and the gamma function. For —2¢ = n a positive
integer, when h,, is the nth Hermite polynomial

ln/2]
=Yy n—2k _ ef n\ (2k)!
hn(X) = & h,,,kx with hn,k = (—1) <2k> W

the identity (130) reduces easily to the following pair of identities of polynomials in 6,
which relate the rising and falling factorials [x], :=x(x+1)--- (x+n—1) and (x), :=
x(x—1)---(x—n+ 1), and which are easily verified directly: form=0,1,2...

m
> hami2 750+ Lok = (8)m
k=0

and

m
S Bami1 42750+ i = (8= L)m.
k=0

Thus the coefficients of the Hermite polynomials are related to some instances of gen-
eralized Stirling numbers [22, 48].
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