Chapter 8

Lecture 28

Ezample 7. X; are iid uniformly over (0,6) for § € © = (0, c0).

Homework 6

1. Show that

a. With respect to Lebesgue measure on R”,

00| 5,) = 1/0™ if6 > X; Vi
" o otherwise

and = max{Xy,..., X,}.

b. Condition 2 in the Theorem above is satisfied, and hence 6, ==  for
all  (which we check directly also); but the likelihood function is not
continuous, and hence the information function is not defined.

A

c. Ep(0,) = ;250, and 6, := n+19 is unbiased.

d. n(6—6,) has the asymptotic distribution with density ze~# on (0, 00), and
so 0, has a non-normal limiting distribution and 8, — 8 = O(1/n).

(In regular cases, f has a normal limiting distribution and 6, — 8 = O(1/4/n).)

Asymptotic distribution of § (6 real) in regular cases

X = {z} (arbitrary), C is a o-field on X, Py is a probability on C and 6 € © for
© an open interval in R'. dPy(z) = £(0 | z)dv(z), with v a fixed measure. Let
Sn=(X1,..., Xn) €ESM =X x--.xX, AW =Cx-.-xCand P\") = By x --- x B
on A™. We assume that £(8 | z) > 0, L(0 | ) = log,£(f | z) has at least two
continuous derivatives, Eg(L'(f | z)) = 0 and

L) = Eo(L'(8 | 2))* = —Eo(L"(8 | 7)) > 0.
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We have L(0 | s,) =Y 0y L(0 | Xi), L'(0 | sn) = Y1y L'(0 | Xi) and L"(0 | sn) =
>r,L"(0 | X;). For any given 6, we know that a good estimate of 6 based on s, will
be approximately a(#) + b(6)L' (0 | s,), and L'(6 | sp,) = N(0, %), so a good estimate
of 6 based on s, will be approximately normally distributed when n is large. We have
ﬂzl—s’ﬁ — —I;(0). Assume that:

Condition (*). Given any 0 € ©, we may find an € = €(d) > 0 such that

L"(§
Iglggal (6 ]z

has a finite expectation under P;.

Assume also that én exists and is consistent. Then
0=L'0y|50) =L'0 ] 5,) + (0, — O)L" (67 | 50),
where 6} is between 6 and én. Since 6, — 0 in Py, we have

L"(67 | sn)

L2 L 1(6)] =0 in P (**)
%0 r@ls) 1
- s
6, — ) = n) ,
Vil m0="0 T e
where &, — 0 in Fy. Since
L'(6] sn) .
— — N(0,1;(6)) in distribution under P,
we have:

1 (Fisher). /n(6, —60) — N(0,1,(9)).
Note. This does not assert that Ey(6,) = 6 + o(1) or that Varg(8,) = i T o(r)-
Proof of (**). Fix 6. Under (*), we have

h(r) := E, [max|5_9|5,|L"((5 |z) — L"(6 | a:)|] < 400

for sufficiently small r > 0. h is continuous in r and decreases to 0 as r — 0.
For any 7 > 0, choose r such that h(r) < . We have

1 1 ( n* _1 "
L (00 [ sn) = ~L"(8 | sn) + An,

where

n

Al = 2767 1) - 20| X0) | < = 3 [(6; | X - 70| X))

=1
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Suppose that |0, — 0] < r; then |% — 8] < r and hence |A,| < L5 L M(X;), where
M(X) = maxs_g<,|L"(6 | X) = L"(0 | X)|.
Since E[M(X;)] < n, we have

—ZM ) 2% Eg[M(X)] < 1.

Since 7 is arbitrary and 6, — 0 in P,, we have that |Ap| = 0in Py. O

Note. It was asserted by Fisher (and believed for a long time) that, if t,, = #,(s,) is
any estimate of # such that

Vn(t, —8) = N(0,v(6)) in distribution as n — oo,

then v(f) > 1/I;(6). This is, however, not quite correct, as shown by the following
counterexample (due to J. L. Hodges, 1951): Let X; be iid N(6,1) and © = R". Let
0, = X,,. (0, —6) is N(0,1) and I;(6) = 1. Let

(X %] > noie
"X i [Xa] < nVH

then v/n(t, — 8) — N(0,v(6)) for all 6, where

1 if0£0
0) =
v() {02 if 6 =0,

and so v(#) > 1 breaks down at § = 0 (if we choose —1 < ¢ < 1).

Lecture 29

Definition. We say that {z,,} is AN(u,,o?2) if

P(Z” — Hn < z) — ®(z) for all 2.

On
Consider the condition
Condition (***). {t, — 6} is AN(0,v(6)/n) under  (for each 6).
In Hodges’s counterexample in the context of Example 1(a),
Vilta — ) = POVA(K, - 6) + &(s.6),
where &, — 0 in P;-probability and

1 if6#0
0) =
#(0) {c if 6 =0,

so that t, is AN(6,v(d)/n) for v(f) = ¢*(f). This provides an example of the
following theorem:
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2 (Le Cam/Bahadur). The set

{0:U(9) < F}fﬁ}

is always of Lebesgue measure zero for any ¢, satisfying (***).

Corollary. If {t,} is regular in the sense that v is continuous in © and I s
also continuous, then v(6) > 1/1,(9) for all § € ©.

Note. This should not be confused with the C-R bound, since (***) does not
imply that ¢, is unbiased, nor that v(f) = n Vary(t,).

In the general case, (***) does imply that ¢, is asymptotically median unbiased, i.e.,
that Py(t, < 0) — % as n — oo for each #. Suppose this holds uniformly; then also
it must be true that v(6) > 1/I;(0) for all §. This follows from:

3. If # is a point in ©, a > 0 and d,(a) =0 + 5> and

DN =

lim P, (a) (tn > (5n(a)) >

then v(6) > 1/1,(0) (for the given 6).

Corollary. Suppose that t, is super-efficient (v < 1/1;) at a point 6. Then,
given any a > 0, we may find e; = e1(a) > 0 and €5 = e2(a) > 0 such that

a 1 a 1
Py, a (t, — = — —a | Ty - — - —
0+ﬁ(t >0+\/ﬁ)<2 €1 and Py ﬁ(t <40 \/ﬁ><2 €9
for all sufficiently large n.

Definition. Let F}, be a sequence of distributions on R¥ and F; be a given distribution
on R*. We say that F, = F, iff

/ b@)dFa(z) — | b@)dF(z)
RE RE

for all bounded continuous functions b : R¥ — R!.

4 (Hajek). Let Fop = L(\/n(r, — 8)) and suppose that Frpts L G for all

la| < 1. Then G is the distribution function of X +Y, where X is N(0,1/1;(6))
and X and Y are independent. (This is true for all . G can depend on 6.)

Corollary. The variance of G (if it exists) is at least 1/1,(0).

Conclusion. At least in the iid case, Fisher’s assertion is essentially correct.
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Proof of (3) (outline). Choose §# € © and a > 0, and let 6, = 6 + - For fixed

n, consider testing 6 against dy,. %’ﬁ'—s%) is the optimal (LR) test statistic, whose

logarithm is

_a/ a2l!*__il_12
Ln(62) = L(O) = Z=I/(0) + 5 1'(03) = —oL/(0) = 50°1(6) + -
where the omitted terms are negligible. Let
K. (s )——1—<L(5 50) = L(0] 5 )+1a21(a)>
n\°n G,ZIl (0) n n n 2 1 .

K, is equivalent to the LR statistic and K, 5 N (0,1) under Py. Consider the
distribution of K, under &y,

Ps, (Kn < 2) = / dPJ(:) = / eL(bnlsn)=L(6]sn) 4 Pa(n) (50)
Kn<z Kn(sn)<z

—_—/ e—%0211(9)+\/0211(0)Kn(Sn)dp£")(sn)=/ e—%0211(0)+\/a211(ﬂ)den(y)
Kn(sn)<z

y<z

o [ o aa) = o [ et Oy
y<z 21 J -
=P(N(0,1) < z — Va2 I1(6)),

where F,(y) = Py(K, < y). Note that F,(y) — ®(y).

Given a sequence {t,} such that lim, ., Ps, (t, > 6,) > 1/2, choose z > /a2, (9).
Then, by the above result, Ps, (K, > z) < 1/2 for all sufficiently large n. Regard
{tn > 6n} and {K,, > z,} as critical regions for the test; then, by the Neyman-Pearson
lemma, we have that, for some subsequence {n;}, Po(K,, > 2) < Py(ts, > 6n,) for
all sufficiently large k; but

Py(tn > 6,) = Pp(Vn(tn —0) > a) and Py(K, > 2) » 1 - &(z),

SO
z > /a2 (0) = Py(Kn, > 2) < Py(tn, > 0 +a/\/ng).

Letting £ — oo, we find that
P(N(0,1) > 2) < P(N(0,1) > a/+/v(6))

and hence z > a/+/v(6). Since z was arbitrary, we must have \/a?I;(0) > a/+/v(6)
and hence v(0) > 1/I1;(6). d
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Lecture 30

Proof of (2). Assume only (***), i.e., that \/n(t, — 0) N N(0,v(8)) for 6§ € ©, and
let J be a bounded subinterval of ©, say (a,b). Let

U(0) = Polta > 0) and oa(8) = |¥a(6) - %\.

Then 0 < ¢,(8) < % and, from (***), ¥,(6) — § and @, (0) — 0 for each 6. Hence
0 — I;(0)pn(6), where I; is an indicator function, is bounded on © and tends to 0,
50 [ I;(0)n(0)df — 0, or

/RIIJ(5+-}T—Z>%<5+%)@—>O;

but I;(6 + %) — I;(6) except for § an endpoint of J, so

le L(6)0n <5+ —\%)da 0.

Noticing that I;()p, (5+71—ﬁ) > 0, we have I;(8)py, (5+ﬁ) — 0in Lebesgue measure,
so that there is some sequence {n,} such that I;(8)pn, (6 + \/—177-;) — 0 a.e.(Lebesgue);
thus ¢n, (5+ﬁ) — 0 a.e.(Lebesgue) on J —1i.e., P0+_\/_+_k (tn, > 9+—\/}1=k)—% — Oa.e.on
J. Returning to the original sequence, we have that lim,_,., P, . (tn > 0+ ﬁ) >1/2

a.e. on J and so, from (3), v(8) > 1/I,(f) a.e. on J. Since J was any bounded
subinterval of ©, this means that v(#) > 1/I,(#) a.e. on O. O

General regular case
For each n, let (S,, An, P(,(")) be an experiment with common parameter

6=(01,...,9p)€@,

where O is open in RP, such that S, consists of points s,. No relation between n and
n + 1 is assumed.
In Examples 1-5, we have S, = X x --- x X and P\ = Py x - - Py. In Examples
N e’

n times
6 and 7, Pé") is the distribution of s, = (Xi,...,X,), where the X; are not iid.
Ezample 8. For n = 2,3,.. ., let ny; and n, be positive integers such that n = nq + n..

Let s, = (X1,..., Xn;3 Y1,..., Yy,), where Xi,...,X,,,Y],...,Y,, are independent,
X1,...,Xp, are N(u1,0?) distributed and V3, ..., Yy, are N(u,, 0®) distributed. Here

0 = (p1, p2, 0%) is entirely unknown. This is a three-parameter exponential family,
and the complete sufficient statistic is

(ZXnZYi)@ + i}ff).
=1 i=1 i=1 =1
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If ny/na — p as n — oo for some 0 < p < oo, all regularity conditions to follow are
satisfied.
The local asymptotic normality condition

Choose # € O and assume that dPJ(")(sn) = Qg,g(sn)dPa(")(sn) holds for all ¢ in a
neighborhood of 6.

Condition LAN (at § € ©). For each a € RP,
1
loge (Q9+%, (Sn)) = az;z(e) - 5(1’[1 (9)& + An(ev Sn),

where I; is a fixed p x p positive definite matrix, z,(f) € R? and z,(6) Lo N (0, I 1(9))
and A, (6, s,) — 0 in P{™-probability.
Note.

i. If s, = (X3,...,X,), where the X;s are iid, and I is the information matrix
for X, then LAN is satisfied for this I;; but the LAN condition holds in some
“irregular” cases also — see Example 1(b).

ii. The right-hand side in LAN with A, omitted is exactly the log-likelihood in
the multivariate normal translation-parameter case. See Example 4.

Let g : © — R! be continuously differentiable and write h(f) = grad g(6).
2? (Le Cam). If ¢, = t,(sn,) is an estimate of g such that
Va(t, — g(8)) £ N(0,0(6)) V6 € ©,

then {0 : v() < b1(0)} is of (p-dimensional) Lebesgue measure 0 if we let
bi(8) = h(O)IT(B)1'(6).

4P (Hajek). Suppose that u, : S, — © is s.t.

V(s — (0+a/v)) 2T,

(ug independent of a), then ug may be represented as vy + wy, where vy and wy
are independent and vy ~ N (0, I7(9)).

Note. No uniformity in a is needed in Hajek’s theorem.

From the above we see that, for large n, the N (0, I;*()/n) distribution is nearly the
best possible for estimates of . n is the “sample size”, or cost of observing s,.
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Sufficient conditions for LAN

Suppose that L(6 | s,) exists for each n, i.e., that dP{™ (s,) = eLCls)dy(™ (s,) for all
n, and that, for each n, L(- | s,) has at least two continuous derivatives. We write
¢=¢el. Let LM | s,) =grad L(6 | s,).

Condition 1. ﬁL(l)w | 50) 25 N(0,1;(8)) for some positive definite I;.
Condition 2. 2{Li;(0 | sx)} = —L(f) in Pon)-probability.
Condition 3. With

1
M(6,7, sp) == - ||amaah)i {|Li;(0 | 5n) — Liz(0 | sa)1},

1,j=1,...,p
lim,jo limy, ;00 Po(n) (M(O, v, 8n) > €) = 0 for every € > 0.
Conditions 1-3 imply LAN with A, — 0, and also the following:

A

P (Fisher). Under Conditions 1-3, if 6, = 0n(sn), the MLE of 6, exists and is
consistent, then

Va0, —6) £ N(0,I71(6)) V8 € ©.

Definition. Let u, = u,(s,) be an estimate of 6. u,, is CONSISTENT if u,, Do, 6 for all

8, or, equivalently, (u, — 0)(u, — )’ 2,0, up is \/n-CONSISTENT if n(u, — 0)(u, — )’
is bounded in Py for all §. (We say that Y, is BOUNDED in P if, given any € > 0, we
may find & such that P(|Y,| > k) < ¢ for all n sufficiently large.)

17 (continued). If u, is a \/n-consistent estimate of # and
Uy, = tp + {(Li; (0| 50)) LD | 50)| -, }

and -
ut = u, + {In(en)_lL(l)(e ( 3n)|o—u }’

then u;, and u}* are both AN(6,I7'()/n). Consequently, t; = g(u’) and
tt = g(uy*) are both AN (g(6),b,(6)/n), where b,(6) = h(6)I; ( YR'(6).
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