Chapter 4

Lecture 13

The score function, Fisher information and bounds

Let Θ be an open interval in \mathbb{R}^{1} and suppose that $d P_{\theta}(s)=\ell_{\theta}(s) d \mu(s)$, where μ is a fixed measure on S. Suppose that $\theta \mapsto \ell_{\theta}(s)$ is differentiable for each fixed s; then $\delta \mapsto \Omega_{\delta, \theta}(s)=\frac{\ell_{\delta}(s)}{\ell_{\theta}(s)}$ is also differentiable for each fixed (s, θ). If we use dashes for derivatives with respect to the parameters as described, then

$$
\Omega_{\theta, \theta}^{\prime}(s)=\frac{\ell_{\theta}^{\prime}(s)}{\ell_{\theta}(s)}=: \gamma_{\theta}^{(1)}(s)
$$

is the SCORE fUNCTION at θ (given s). We also define $I(\theta):=E_{\theta}\left(\gamma_{\theta}^{(1)}(s)\right)^{2}$, the Fisher information (for estimating θ) in s.
Note.

$$
\begin{aligned}
\left(\int_{S} \ell_{\delta}(s) d \mu(s)=1 \forall \delta \in \Theta\right) & \\
\qquad\left(\int_{S} \Omega_{\delta, \theta}^{\prime}(s) d P_{\theta}(s)=\right. & \left.\int_{S} \frac{\ell_{\delta}^{\prime}(s)}{\ell_{\theta}(s)} \ell_{\theta}(s) d \mu(s)=\int_{S} \ell_{\delta}^{\prime}(s) d \mu(s)=0 \forall \delta \in \Theta\right) \\
& \Rightarrow E_{\theta}\left(\gamma_{\theta}^{(1)}(s)\right)=E_{\theta}\left(\Omega_{\theta, \theta}^{\prime}(s)\right)=0 \Rightarrow I(\theta)=\operatorname{Var}_{\theta}\left(\gamma_{\theta}^{(1)}\right)
\end{aligned}
$$

Similarly, we have $\int_{S} \ell_{\delta}^{\prime \prime}(s) d \mu(s)=0, \int_{S} \ell_{\delta}^{\prime \prime \prime}(s) d \mu(s)=0$, etc. for all $\delta \in \Theta$, so that $E_{\theta}\left(\gamma_{\theta}^{(j)}(s)\right)=0$ for $j=1,2,3, \ldots$, where $\gamma_{\theta}^{(j)}(s)=\left(\frac{\partial^{j} \ell_{\theta}(s)}{\partial \theta^{j}}\right) / \ell_{\theta}(s)$. Conditions under which the interchanging of differentiation and integration (as above) is valid will be given later.

Suppose that we are interested in W_{θ} and want some concrete method of constructing it. We have that

$$
\Omega_{\delta, \theta}(s)=\Omega_{\theta, \theta}+(\delta-\theta) \gamma_{\theta}^{(1)}(s)+\frac{1}{2}(\delta-\theta)^{2} \gamma_{\theta}^{(2)}(s)+\cdots,
$$

which suggests that $W_{\theta}=\operatorname{Span}\left\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \ldots\right\}$. We will see that this equality holds exactly in a one-parameter exponential family and approximately in general in large
samples. To see that $\gamma_{\theta}^{(j)} \in W_{\theta}$, we reason as follows: First, of course, we note that $1 \in W_{\theta}$. Then, since $\Omega_{\delta, \theta}, \Omega_{\theta, \theta} \in W_{\theta}$, we have that $\frac{1}{\delta-\theta}\left(\Omega_{\delta, \theta}-\Omega_{\theta, \theta}\right) \in W_{\theta}$ for $\delta \neq \theta$, from which it follows that $\gamma_{\theta}^{(1)} \in W_{\theta}$. Similar inductive reasoning allows us to conclude that each $\gamma_{\theta}^{(j)}$ is in W_{θ}.

It is clear that 1 and $\gamma_{\theta}^{(1)}$ are the most important generators if s is very informative, for then only δ near the true θ are important. In any case,

$$
W_{\theta}^{(k)}:=\operatorname{Span}\left\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \ldots, \gamma_{\theta}^{(k)}\right\} \subseteq W_{\theta} .
$$

We know that, in $V_{\theta}=L^{2}\left(P_{\theta}\right)$, every $t \in U_{g}$ projects to the same $\tilde{t} \in W_{\theta}$; thus every $t \in U_{g}$ has the same projection to $W_{\theta}^{(k)}$ - say $t_{\theta, k}^{*}$. Then we have:
11. Bhattacharya bounds: For each $t \in U_{g}$,

$$
\operatorname{Var}_{\theta}(t) \geq E_{\theta}\left(t_{\theta, k}^{*}\right)^{2}-[g(\theta)]^{2}
$$

for $k=1,2, \ldots$.
Proof. This follows since

$$
\operatorname{Var}_{\theta}(t)+[g(\theta)]^{2}=E_{\theta}\left(t^{2}\right) \geq E_{\theta}\left(t_{\theta, k}^{*}\right)^{2}
$$

Let us consider the case $k=1$ - i.e., projection to $\operatorname{Span}\left\{1, \gamma_{\theta}^{(1)}\right\}$. We have seen that $1 \perp \gamma_{\theta}^{(1)}$ - i.e., that $E_{\theta}\left(\gamma_{\theta}^{(1)}\right)=0$ - and that $\left\|\gamma_{\theta}^{(1)}\right\|^{2}=I(\theta)$. Hence $\left\{1, \gamma_{\theta}^{(1)} /\left\|\gamma_{\theta}^{(1)}\right\|\right\}$ is an orthonormal basis in $W_{\theta}^{(1)}$ and, for any $t \in V_{\theta}$, the projection $t_{\theta, 1}^{*}$ of t to $W_{\theta}^{(1)}$ is

$$
t_{\theta, 1}^{*}=(1, t) 1+\left(\frac{\gamma_{\theta}^{(1)}}{\left\|\gamma_{\theta}^{(1)}\right\|}, t\right) \frac{\gamma_{\theta}^{(1)}}{\left\|\gamma_{\theta}^{(1)}\right\|} .
$$

Now $(1, t)=E_{\theta}(t)=g(\theta)$ since t is unbiased, and

$$
\begin{aligned}
\left(\gamma_{\theta}^{(1)}, t\right)=E_{\theta}\left(t \cdot \gamma_{\theta}^{(1)}\right)=\int_{S} t(s) \frac{\ell_{\theta}^{\prime}(s)}{\ell_{\theta}(s)} d P_{\theta}(s) & =\int_{S} t(s) \ell_{\theta}^{\prime}(s) d \mu(s) \\
& \stackrel{(?)}{=} \frac{d}{d \theta} \int_{S} t(s) \ell_{\theta}(s) d \mu(s)=\frac{d}{d \theta} g(\theta)=g^{\prime}(\theta) .
\end{aligned}
$$

The above calculations give us that

$$
t_{\theta, 1}^{*}=g(\theta)+\frac{g^{\prime}(\theta)}{\left\|\gamma_{\theta}^{(1)}(s)\right\|} \frac{\gamma_{\theta}^{(1)}(s)}{\left\|\gamma_{\theta}^{(1)}(s)\right\|}
$$

since the summands are orthogonal,

$$
\left\|t_{\theta, 1}^{*}\right\|^{2}=g(\theta)^{2}+\frac{\left(g^{\prime}(\theta)\right)^{2}}{\left\|\gamma_{\theta}^{(1)}(s)\right\|^{2}}=g(\theta)^{2}+\frac{\left(g^{\prime}(\theta)\right)^{2}}{I(\theta)}
$$

From this we see:

12 (Fisher-Darmois-Cramér-Rao). Information inequality: For $t \in U_{g}$,

$$
\operatorname{Var}_{\theta}(t) \geq \frac{\left(g^{\prime}(\theta)\right)^{2}}{I(\theta)}
$$

The Fisher information can be related to the second derivative of the log-likelihood: Let $L_{\theta}(s)=\log _{e} \ell_{\theta}(s)$. Then $L_{\theta}^{\prime}(s)=\frac{\ell_{\theta}^{\prime}(s)}{\ell_{\theta}(s)}=\gamma_{\theta}^{(1)}(s)$ and

$$
L_{\theta}^{\prime \prime}(s)=\frac{\ell_{\theta}^{\prime \prime}(s)}{\ell_{\theta}(s)}-\left(\frac{\ell_{\theta}^{\prime}(s)}{\ell_{\theta}(s)}\right)^{2}=\frac{\ell_{\theta}^{\prime \prime}(s)}{\ell_{\theta}(s)}-\left[\gamma_{\theta}^{(1)}\right]^{2}
$$

but $E_{\theta}\left(\ell_{\theta}^{\prime \prime}(s) / \ell_{\theta}(s)\right)=\int_{S} \ell_{\theta}^{\prime \prime}(s) d \mu(s)=0$, and so
13. $E_{\theta}\left(L_{\theta}^{\prime \prime}(s)\right)=-I(\theta)$.

Exact conditions under which statements (11)-(13) hold are deferred until Lecture 5.1.

Lecture 14

Heuristics for maximum likelihood estimate:
i. $W_{\theta}=\operatorname{Span}\left\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \ldots\right\}$.
ii. $W_{\theta} \approx \operatorname{Span}\left\{1, \gamma_{\theta}^{(1)}\right\}$ if s is highly informative.
iii. The $\operatorname{MLE} \hat{\theta}(s) \dot{\in} W_{\theta}$ (whatever θ may be!).

The last item gives us that:
iv. $\hat{\theta}$ is approximately the UMVUE of its own expected value function (the same is true of estimates related to $\hat{\theta}$ in certain ways).

Let $\hat{\theta}(s)$ be the MLE of θ and assume that $\hat{\theta}$ is close to θ. Since $\hat{\theta}(s)$ maximizes L_{δ}, we have

$$
0=L_{\hat{\theta}}^{\prime}=L_{\theta}^{\prime}+(\hat{\theta}-\theta) L_{\theta}^{\prime \prime}+\cdots \approx L_{\theta}^{\prime}+(\hat{\theta}-\theta) L_{\theta}^{\prime \prime}
$$

Assume also that the experiment (that is, $\left.\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta\right)$ is highly informative in the sense that $I(\theta)$ is large (for a given θ). We know that $E_{\theta}\left(L_{\theta}^{\prime}\right)=0$ and $\operatorname{Var}_{\theta}\left(L_{\theta}^{\prime}\right)=$ $I(\theta)$; hence, informally, L_{θ}^{\prime} is "about" 0 , "give or take" about $\sqrt{I(\theta)}$. From (13), $E_{\theta}\left(-L_{\theta}^{\prime \prime}\right)=I(\theta)-$ i.e., $E_{\theta}\left(-\frac{L_{\theta}^{\prime \prime}}{I(\theta)}\right)=1$. Assume that the random variable $-\frac{L_{\theta}^{\prime \prime}}{I(\theta)} \approx 1$. Then

$$
\begin{equation*}
\hat{\theta} \approx \theta-\frac{L_{\theta}^{\prime}}{L_{\theta}^{\prime \prime}}=\theta+\frac{L_{\theta}^{\prime}}{\sqrt{I(\theta)}} \frac{1}{\sqrt{I(\theta)}} \frac{1}{-L_{\theta}^{\prime \prime} / I(\theta)} \approx \theta+\frac{1}{\sqrt{I_{\theta}}} \frac{\gamma_{\theta}^{(1)}}{\left\|\gamma_{\theta}^{(1)}\right\|} \tag{}
\end{equation*}
$$

and hence $\hat{\theta}$ is nearly in $W_{\theta}^{(1)} \subseteq W_{\theta}$; so $\hat{\theta}$ is nearly LMVU, and hence $\hat{\theta}$ is nearly the UMVUE (of θ). From (${ }^{*}$),

$$
E_{\theta}(\hat{\theta}) \approx \theta \quad \text { and } \quad \operatorname{Var}_{\theta}(\hat{\theta}) \approx \frac{1}{I(\theta)}
$$

The MLE of $g(\theta)$ is $g(\hat{\theta})$. Assuming that g is continuously differentiable, we have

$$
g(\hat{\theta}) \approx g(\theta)+g^{\prime}(\theta)(\hat{\theta}-\theta) .
$$

So $g(\hat{\theta})$ is nearly in W_{θ} (since $1 \in W_{\theta}$ and $\hat{\theta}$ is nearly in W_{θ}). Hence

$$
E_{\theta} g(\hat{\theta}) \approx g(\theta) \quad \text { and } \quad \operatorname{Var}_{\theta}(g(\hat{\theta})) \approx \frac{\left(g^{\prime}(\theta)\right)^{2}}{I(\theta)}
$$

where $\frac{\left[g^{\prime}(\theta)\right]^{2}}{I(\theta)}$ is the lower bound in (12).
Note. $\frac{I(\theta)}{\left[g^{\prime}(\theta)\right]^{2}}$ is the information in s for estimating $g(\theta)$.
Suppose that $\left(S_{1}, \mathcal{A}_{1}, P_{\theta}^{(1)}\right)$ and $\left(S_{2}, \mathcal{A}_{2}, P_{\theta}^{(2)}\right), \theta \in \Theta$, are independent experiments concerning θ, with sample points s_{1} and s_{2}. Let $s=\left(s_{1}, s_{2}\right), \mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$ and $P_{\theta}=P_{\theta}^{(1)} \times P_{\theta}^{(2)}$, and let $I_{i}(\theta)$ be the information in s_{i} for estimating $\theta(i=1,2)$. Then the information in s for estimating θ is $I(\theta)=I_{1}(\theta)+I_{2}(\theta)$. (This result extends inductively to any finite number of independent experiments.)
Proof. $d P_{\theta}^{(i)}(s)=\ell_{\theta}^{(i)}\left(s_{i}\right) d \mu^{(i)}\left(s_{i}\right)$ for $i=1,2$, so $d P_{\theta}(s)=\ell_{\theta}^{(1)}\left(s_{1}\right) \ell_{\theta}^{(2)}\left(s_{2}\right) d \nu(s)$ and hence

$$
L_{\theta}(s)=\log \ell_{\theta}^{(1)}\left(s_{1}\right)+\log \ell_{\theta}^{(2)}\left(s_{2}\right)=L_{\theta}^{(1)}(s)+L_{\theta}^{(2)}(s)
$$

The result now follows from (13).
Example $1(a) . s=\left(X_{1}, \ldots, X_{n}\right), X_{i} \stackrel{\text { iid }}{\sim} N(\theta, 1)$. The information in s for estimating θ is the sum of the information in X_{1}, \ldots, X_{n}, respectively, for estimating θ, which sum is (since the X_{i} are iid) n times the information in X_{1}, which product is (since X_{1} is distributed as $N(\theta, 1)$) just $n . L_{\theta}^{\prime}\left(X_{1}\right)=X_{1}-\theta=\gamma_{\theta}^{(1)}\left(X_{1}\right)$ and $\operatorname{Var}_{\theta}\left(\gamma_{\theta}^{(1)}\right)=1=I_{1}(\theta)$. (We check that $\frac{L_{\theta}^{\prime}(s)}{\sqrt{I(\theta)}}$ is about 0 , give or take about 1 ; and $\frac{L_{\theta}^{\prime \prime}(s)}{I(\theta)} \approx 1$ (indeed, here it is identically 1).)
Example 2. $X_{1}, \ldots, X_{n}, \ldots$ are iid as

$$
\begin{cases}0 & \text { with probability } 1-\theta \\ 1 & \text { with probability } \theta\end{cases}
$$

and $\Theta=(0,1) . s=\left(X_{1}, \ldots, X_{N}\right), N$ the stopping time. The three cases we discussed are:
a. $N \equiv n$ (n a fixed positive integer).
b. N is the first time k successes (i.e., 1 s) are recorded (k a fixed positive integer).
c. Two-stage scheme.

In all cases (even other than (a)-(c) above), $\ell_{\theta}(s)=\theta^{T(s)}(1-\theta)^{N(s)-T(s)}$, where $T(s)=\sum_{i=1}^{N(s)} X_{i}$, and hence

$$
L_{\theta}^{\prime}(s)=\frac{T(s)}{\theta}-\frac{V(s)}{1-\theta}
$$

and

$$
L_{\theta}^{\prime \prime}(s)=-\frac{T(s)}{\theta^{2}}-\frac{V(s)}{(1-\theta)^{2}},
$$

where $V(s)=N(s)-T(s)$. Since $E_{\theta}\left(L_{\theta}^{\prime}\right)=0$, we have

$$
\begin{gather*}
\frac{E_{\theta}(T)}{\theta}=\frac{E_{\theta}(V)}{1-\theta}, \tag{4.1}\\
I(\theta)=\operatorname{Var}_{\theta}\left(L_{\theta}^{\prime}\right)=\frac{\operatorname{Var}_{\theta}(T)}{\theta^{2}}+\frac{\operatorname{Var}_{\theta}(V)}{(1-\theta)^{2}}-\frac{2}{\theta(1-\theta)} \operatorname{Cov}_{\theta}(T, V) \tag{4.2}
\end{gather*}
$$

and

$$
\begin{equation*}
I(\theta)=E_{\theta}\left(-L_{\theta}^{\prime \prime}\right)=\frac{1}{\theta^{2}} E_{\theta}(T)+\frac{1}{(1-\theta)^{2}} E_{\theta}(V) . \tag{4.3}
\end{equation*}
$$

Exercise: What happens in case (a) (i.e., $N \equiv n$)? This is like Example 1(a) except that $I(\theta)^{-1}=\frac{\theta(1-\theta)}{n}$ depends on θ.

Suppose now that we are in case (b). Then $T \equiv k$ and $V(s)=N(s)-k$. Hence, from (4.1), $\frac{k}{\theta}=\frac{E_{\theta}(N-k)}{1-\theta}$ and therefore $E_{\theta}(N)=\frac{k}{\theta}$ (which we could also compute directly) and

$$
I(\theta)=\frac{k}{\theta^{2}}+\frac{1}{(1-\theta)^{2}} E_{\theta}(N-k)=\frac{k}{\theta^{2}(1-\theta)}
$$

(from equation (4.3) above). Hence the heuristics apply when k is large. In all cases $\hat{\theta}(s)$ is $\frac{T(s)}{N(s)}$.

Exercise: Derive $\operatorname{Var}_{\theta}(N)$ from (4.2) and check the behavior of $L_{\theta}^{\prime} / \sqrt{I(\theta)}$ and $L_{\theta}^{\prime \prime} / \sqrt{I(\theta)}$.
Example $1(e) . s=\left(X_{1}, \cdots, X_{n}\right)$, with the X_{i} iid with density $a e^{-b(x-\theta)^{4}}(a, b>0)$.

Homework 3

1. a. Find a and b such that $\operatorname{Var}_{\theta}\left(X_{1}\right)=1$ (to make it comparable to Example 1(a)).
b. Find $I(\theta)$.
c. $E_{\theta}(\bar{X}) \equiv \theta$, so \bar{X} is unbiased for θ. Is \bar{X} the UMVUE? (Note the answer is no.)
d. What is the UMVUE?
e. Give an explicit method for finding $\hat{\theta}(s)$.

Lecture 15

$13(\mathrm{a})$. Suppose $t \in U_{g}$ is such that

$$
\operatorname{Var}_{\theta}(t)=\frac{\left[g^{\prime}(\theta)\right]^{2}}{I(\theta)} \forall \theta \in \Theta ;
$$

then $\left\{P_{\theta}: \theta \in \Theta\right\}$ is a one-parameter exponential family with statistic t-i.e.,

$$
\frac{d P_{\theta}}{d \mu}(s)=\ell_{\theta}(s)=\varphi(s) e^{A(\theta)+B(\theta) t(s)}
$$

where A and B are smooth functions; moreover, $g(\theta)=-A^{\prime}(\theta) / B^{\prime}(\theta)$.
Proof. By the same argument as used in the proof of (12), we have that $t \in W_{\theta}^{(1)}$ for all θ - i.e., that

$$
t(s)=a(\theta)+b(\theta) L_{\theta}^{\prime}(s) \quad \text { a.e. }\left(P_{\theta}\right)
$$

for all θ. From this it follows that $L_{\theta}^{\prime}(s)=\alpha(\theta)+\beta(\theta) t(s)$ (if $b \equiv 0$ then $\operatorname{Var}_{\theta}(t)=0$ for all θ. We rule out this case) and hence that

$$
L_{\theta}(s)=A(\theta)+B(\theta) t(s)+C(s)
$$

where $A(\theta)=\int \alpha(\theta) d \theta$. This gives the required form for $\ell_{\theta}(s)$. Also,

$$
0=E_{\theta}\left(L_{\theta}^{\prime}\right)=\alpha(\theta)+\beta(\theta) E_{\theta}(t)=\alpha(\theta)+\beta(\theta) g(\theta)
$$

and so $g(\theta)=-\alpha(\theta) / \beta(\theta)=-A^{\prime}(\theta) / B^{\prime}(\theta)$.
Note. For a near-rigorous proof, see R. A. Wijsman 1973 AS, pp. 538-542, and V. M. Joshi 1976 AS, pp. 998-1002.

Note. The necessary conditions on $\left\{P_{\theta}: \theta \in \Theta\right\}$ and g are also sufficient for the attainment of the C-R bound. We will see this later.

Example 1(a). Since

$$
\ell_{\theta}(s)=\varphi_{1}(s) e^{-\frac{n}{2}(\bar{X}-\theta)^{2}}=\varphi_{2}(s) e^{-\frac{n \theta^{2}}{2}+(n \theta) \bar{X}},
$$

the C-R bound is attained by \bar{X} for estimating $g(\theta)=\theta$. This implies that \bar{X} is LMVU at θ, which in turn implies that it is UMVU. Also, the C-R bound is not attained by any unbiased estimate of any g which is not an affine function of θ. In particular, since $\bar{X}^{2}-\frac{1}{n}$ is an unbiased estimate of $g(\theta)=\theta^{2}$, it does not attain the C-R bound since $\theta^{2} \neq-A^{\prime}(\theta) / B^{\prime}(\theta)$. We have seen before, however, that $\bar{X}^{2}-\frac{1}{n}$ is the UMVUE.

To study the Bhattacharya bounds, note that $\ell_{\theta}^{\prime}=\ell_{\theta} \cdot[-n \theta+n \bar{X}]$ and $\ell_{\theta}^{\prime \prime}=$ $\ell_{\theta} \cdot[-n \theta+n \bar{X}]^{2}+\ell_{\theta} \cdot[-n]$, so that $\ell_{\theta}^{\prime} / \ell_{\theta}$ is affine in \bar{X} and $\ell_{\theta}^{\prime \prime} / \ell_{\theta}$ is quadratic. This implies that

$$
W_{\theta}^{(1)}=\operatorname{Span}\left\{1, \ell_{\theta}^{\prime} / \ell_{\theta}\right\}=\operatorname{Span}\{1, \bar{X}\}
$$

and

$$
W_{\theta}^{(2)}=\operatorname{Span}\left\{1, \ell_{\theta}^{\prime} / \ell_{\theta}, \ell_{\theta}^{\prime \prime} / \ell_{\theta}\right\}=\operatorname{Span}\left\{1, \bar{X}, \bar{X}^{2}\right\},
$$

whence $\bar{X}^{2}-\frac{1}{n} \in W_{\theta}^{(2)}$ attains the Bhattacharya bound and is the UMVUE. In fact, W_{θ} is the space of all functions of \bar{X}, and hence any function of \bar{X} (but not θ) is the UMVUE of its expectation.
Example $1(b)$. $s=\left(X_{1}, X_{2}, \ldots\right)$ are iid from $\frac{1}{2} e^{-|x-\theta|}$ on \mathbb{R}^{1}. Here W_{θ} is well-defined (i.e., (8)-(10) hold), but (11)-(13) are not applicable since ℓ_{θ} is not sufficiently smooth. In such a situation, the following is useful.

14 (Chapman-Robbins). Given $\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta$, with Θ an open interval in \mathbb{R}^{1}, if $t \in U_{g}$ then

$$
\operatorname{Var}_{\theta}(t) \geq \varlimsup_{\delta \rightarrow \theta}\left(\frac{g(\delta)-g(\theta)}{\delta-\theta}\right)^{2} / E_{\theta}\left(\frac{\Omega_{\delta, \theta}-1}{\delta-\theta}\right)^{2}
$$

for all θ such that $\Omega_{\delta, \theta}=\frac{d P_{\delta}}{d P_{\theta}}$ exists for all δ in a neighborhood of θ.
Proof.

$$
E_{\delta}(t)=g(\delta) \Rightarrow \int_{S} t \cdot \Omega_{\delta, \theta} d P_{\theta}=g(\delta) \Rightarrow \int_{S} t\left(\Omega_{\delta, \theta}-1\right) d P_{\theta}=g(\delta)-g(\theta)
$$

Dividing by $\delta-\theta$, we find that

$$
\begin{aligned}
& \int t\left(\frac{\Omega_{\delta, \theta}-1}{\delta-\theta}\right) d P_{\theta}=\frac{g(\delta)-g(\theta)}{\delta-\theta} \\
& \Rightarrow \int_{S}(t-g(\theta))\left(\frac{\Omega_{\delta, \theta}-1}{\delta-\theta}\right) d P_{\theta}=\frac{g(\delta)-g(\theta)}{\delta-\theta} \\
& \Rightarrow\left(\frac{g(\delta)-g(\theta)}{\delta-\theta}\right)^{2} \leq \operatorname{Var}_{\theta}(t) \cdot E_{\theta}\left(\frac{\Omega_{\delta, \theta}-1}{\delta-\theta}\right)^{2}
\end{aligned}
$$

Note. If g is differentiable at θ, then

$$
\operatorname{Var}_{\theta}(t) \geq\left(g^{\prime}(\theta)\right)^{2} / \lim _{\delta \rightarrow \theta} E_{\theta}\left(\frac{\Omega_{\delta, \theta}-1}{\delta-\theta}\right)^{2}
$$

If, further, $\Omega_{\delta, \theta}$ is differentiable (see (12E) below for exact conditions), then this is the same as $\frac{\left[g^{\prime}(\theta)\right]^{2}}{I(\theta)}$.

Homework 3

2. What is the Chapman-Robbins bound for $g(\theta)=\theta$ in Example 1(b)?
3. In Example $1(c), s$ consists of n iid observations from $\frac{1}{\pi\left(1+(x-\theta)^{2}\right)}$. For any g, the C-R bound is not attained by any t; but $\hat{\theta}$ has nearly the variance $\frac{1}{I(\theta)}$ if $I(\theta)$ is large. Here $I(\theta)=n I_{1}(\theta)$. Show that $I_{1}(\theta)=\frac{1}{2}$.
