
Chapter 4

Lecture 13

The score function, Fisher information and bounds

Let θ be an open interval in Rι and suppose that dPθ{s) = £θ(s)dμ(s), where μ is a
fixed measure on 5. Suppose that θ »-* £Θ(S) is differentiate for each fixed s; then
δ \-> Ωs,θ{s) = f4f) is also differentiate for each fixed (s,θ). If we use dashes for
derivatives with respect to the parameters as described, then

is the SCORE FUNCTION at θ (given s). We also define I(θ) := EΘ(JQ1\S)) , the
FISHER INFORMATION (for estimating θ) in s.

Note.

( [ iδ(s)dμ(s) = 1 Vδ G θ)

= ί i'δ{s)dμ{s) = 0 V5 G θ)
Js

(s)) = 0 =

Similarly, we have fsί'l(s)dμ(s) = 0, Js£^f(s)dμ(s) = 0, etc. for all δ G θ, so that

^ U j ) ( 5 ) ) = 0 for j = 1,2,3,..., where 7J
j )(s) = ( ^ f t / M 5 ) - Conditions under

which the interchanging of differentiation and integration (as above) is valid will be
given later.

Suppose that we are interested in We and want some concrete method of con-
structing it. We have that

Ω w ( β ) = SUj + ( δ - θ h P b ) + \ { δ - θ ) 2

Ί f \ s ) + •••,

which suggests that Wθ = Span{l, γ ^ , ηf \ ...}. We will see that this equality holds
exactly in a one-parameter exponential family and approximately in general in large
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samples. To see that jg e ^ , we reason as follows: First, of course, we note
that 1 G WQ. Then, since Ω ^ , Ω ^ G W#, we have that ^ ( Ω ^ — Ωθj) G We for

δ φ 0, from which it follows that 7^ G WQ. Similar inductive reasoning allows us to

conclude that each jβ is in We-

lt is clear that 1 and 7^ are the most important generators if s is very informative,

for then only δ near the true θ are important. In any case,

We know that, in VQ — L2(Pe), every t eUg projects to the same t G Wβ\ thus every

t eUg has the same projection to WQ - say tβk. Then we have:

11. BHATTACHARYA BOUNDS: For each t G Ug,

Var,(ί) > Eθ(tlk)
2 - [g(θ)}2

for A: = l ,2, . . . .

Proof. This follows since

D

Let us consider the case k = 1 - i.e., projection to Span{l, % }• We have seen that

1 ± 7ί 1 } - i.e., that Eθ{Ίf
]) = 0 - and that HT^II 2 = Uβ) Hence { l ^ f V l l Λ } is

an orthonormal basis in Wg and, for any t G VΘ, the projection t*θι of t to Wg is

Now (l,ί) = J5^(ί) = ^(β) since t is unbiased, and

(7?),*)=^(ί 7{1))= [ t(s)ff\dPθ(s) = ί t(s)eθ(s)dμ(s)
Js Zθ{s) Js

The above calculations give us that

since the summands are orthogonal,

From this we see:
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12 (Fisher-Darmois-Cramer-Rao). INFORMATION INEQUALITY: Fort G Ug,

The Fisher information can be related to the second derivative of the log-likelihood:

Let Lθ(s) = logJθ(s). Then L'θ(s) = %$ = T^ί*) a n d

L"(s)-
£e(s) /WV W

but Eβ(t'β{s)/tθ{s)) = fs£';(s)dμ(s) = 0, and so

13. E9(V9{3)) =-I{β).

Exact conditions under which statements (11)—(13) hold are deferred until Lecture
5.1.

Lecture 14

Heuristics for maximum likelihood estimate:

i. Wί = Span{l>7ί
1),7?\ ..}

ii. WQ ~ Span{l, 7̂  } if s is highly informative,

iii. The MLE θ(s) G Wθ (whatever θ may be!).

The last item gives us that:

iv. θ is approximately the UMVUE of its own expected value function (the same
is true of estimates related to θ in certain ways).

Let θ(s) be the MLE of θ and assume that θ is close to θ. Since θ(s) maximizes Z ,̂
we have

0 = L J = L'θ + (θ - Θ)L"Q + . . . & L ' Θ + ( Θ - θ ) L l

Assume also that the experiment (that is, (S,A,PΘ), θ G θ) is highly informative in
the sense that I(θ) is large (for a given θ). We know that Eθ(Lf

θ) = 0 and Var^(L^) =
7(0); hence, informally, L'θ is "about" 0, "give or take" about y/l(θ). From (13),

EΘ(—L'Q) — 7(0) - i.e., Eθ{--φj) = 1. Assume that the random variable —jfa ~ 1.
Then

θ ^ θ 4 θ + θ + φ n
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and hence θ is nearly in Wθ

( ' C W ;̂ so 0 is nearly LMVU, and hence 0 is nearly the
UMVUE (of0). From(*),

Eθ(θ)faθ and Varβ(£) :

Hfl)'

The MLE oΐ g(θ) is #(0). Assuming that # is continuously differentiate, we have

So g(θ) is nearly in We (since 1 G W0 and 0 is nearly in WQ). Hence

Eθg(θ) « p(0) and

where ^7UJ is the lower bound in (12).

Note. Γ770\ϊ2 is the information in s for estimating g(θ).

Suppose that (SΊ, -4i, PQ ) and (52, ̂ 2, -P̂  ), θ G θ , are independent experiments
concerning 0, with sample points s± and S2 Let s = (51,52), A = A\ x A2 and
P(9 = Pfl^ x P j 2 \ and let Ii(θ) be the information in 5̂  for estimating θ (i = 1,2).
Then the information in 5 for estimating θ is 7(0) = Iι(θ) + I2{θ). (This result extends
inductively to any finite number of independent experiments.)

Proof. dP$\s) = lf{si)dμ®(si) for i = 1,2, so ^ ( 5 ) = l{p(sι)ίf\s2)dv(s) and
hence

The result now follows from (13). D

Example l(a). s = (X l 5 . . . , Xn), X{ ^ N(θ, 1). The information in 5 for estimating θ

is the sum of the information in Xu . . . , Xn, respectively, for estimating #, which sum

is (since the Xi are iid) n times the information in ΛΊ, which product is (since X\ is

distributed as N(θ, 1)) just n. L^(Xi) = Xλ-Θ = ^(Xi) and Var^T^) - 1 = I^θ).

(We check that L<piL is about 0, give or take about 1; and -f^γ w 1 (indeed, here it

is identically 1).)

Example 2. X\,..., Xn,... are iid as

0 with probability 1 — θ

1 with probability 0,

and θ = (0,1). s = (ΛΊ,. . . , XN), N the stopping time. The three cases we discussed
are:

a. N = n (n a fixed positive integer).
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b. N is the first time k successes (i.e., Is) are recorded (k a fixed positive integer).

c. Two-stage scheme.

In all cases (even other than (a)-(c) above), £θ(s) = 0TW(1 - fl^W-TW, where

τ(s) = Σΰ? χi>and h e n c e

where V(s) = N(s) - T(s). Since Eβ(L'e) = 0, we have

EΘ(T) EΘ{V)
(4.1)

0 1 - 0 '

- — — Cov^T, V) (4.2)

and
1 1

(4.3)LZ) = ^ ^

Exercise: What happens in case (a) (i.e., N = n)? This is like Example l(a)

except that I(θ)~ι = ^^"^ depends on 0.

Suppose now that we are in case (b). Then T = k and V(s) = N(s) — k. Hence,

from (4.1), | = Eθψ^k^ and therefore Eg{N) — | (which we could also compute

directly) and

(from equation (4.3) above). Hence the heuristics apply when k is large. In all cases

V\S) 1 S N(s)'

Exercise: Derive V&τθ(N) from (4.2) and check the behavior of L'θ/y/I(θ) and

Example l(e). s = {Xι, ,Xn), w i t h t h e Xi i id w i t h d e n s i t y ae-b(>χ-θ)4 (a,b> 0 ) .

Homework 3

1. a. Find a and b such that Var^(X1) = 1 (to make it comparable to Example
l(a)).

b. Find 1(0).

c. EΘ(X) Ξ ί . s o ϊ is unbiased for θ. Is X the UMVUE? (Note the answer
is no.)

d. What is the UMVUE?

e. Give an explicit method for finding θ(s).
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Lecture 15

13(a). Suppose t G Ug is such that

Ά e θ;

then {PQ : 0 G θ } is a one-parameter exponential family with statistic t - i.e.,

= £θ(s) = φ{sp
dμ

where A and B are smooth functions; moreover, g(θ) = —A'(θ)/B'{θ).

Proof. By the same argument as used in the proof of (12), we have that t G W^
for all 0 - i.e., that

t(s) = a(θ) + b(θ)L'θ(s) a.e.(Pfl)

for all 0. From this it follows that L'θ(s) = a{θ) + β(θ)t(s) (if 6 Ξ 0 then
Var^(ί) = 0 for all θ. We rule out this case) and hence that

where A(θ) — f a(θ)dθ. This gives the required form for ig(s). Also,

0 = E9(L'Θ) = a(θ) + β(θ)Eθ(t) = a(θ) + β(θ)g(θ)

and so g(θ) = -a(θ)/β(θ) = -A'(θ)/B'(θ). D

Note. For a near-rigorous proof, see R. A. Wijsman 1973 AS, pp. 538-542, and
V. M. Joshi 1976 AS, pp. 998-1002.

Note. The necessary conditions on {PQ : θ G θ } and g are also sufficient for the
attainment of the C-R bound. We will see this later.

Example l(a). Since

£θ(s) = φi(s)e-n^-^ = φ2(s)e-n-

the C-R bound is attained by X for estimating g(θ) = θ. This implies that X is

LMVU at 0, which in turn implies that it is UMVU. Also, the C-R bound is not

attained by any unbiased estimate of any g which is not an affine function of θ. In

particular, since X — M s an unbiased estimate of g(θ) = 02, it does not attain the

C-R bound since θ2 ψ -A'(θ)/B'(θ). We have seen before, however, that X 2 - J is
the UMVUE.
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To study the Bhattacharya bounds, note that ί'θ — IQ [-nθ + nX] and ί'g —
lβ [-nθ + nXf + U [-n], so that f ^ is affine in X and ̂ / ^ is quadratic. This
implies that

^ 4/^} = Span{l,X}

and
Wjp = Span{l,^Λ7M = Span{l,X,X },

whence X — £ € W^2^ attains the Bhattacharya bound and is the UMVUE. In fact,
We is the space of all functions of X, and hence any function of X (but not θ) is the
UMVUE of its expectation.

Example l(b). s = (Xi,X2, •) are iid from ie"1*"*1 on R1. Here Wθ is well-defined
(i.e., (8)-(10) hold), but (11)—(13) are not applicable since IQ is not sufficiently
smooth. In such a situation, the following is useful.

14 (Chapman-Robbins). Given (5, A, Pe), θ € θ, with θ an open interval in M1,
ΊΐteUg then

for all θ such that Ω^ = j ^ exists for all δ in a neighborhood of θ.

Proof.

Eδ(t) = g(δ) => / t - Ωδ,θdPθ = g{δ) =* / t ( Ω w - l)dP^ = g(δ) - g(θ).
Js Js

Dividing by δ — 0, we find that

_ 9{δ) - g(θ)

- 9(θ)
δ-θ

2

D

Note. If g is differentiable at θ, then

If, further, Ωδj is difFerentiable (see (12E) below for exact conditions), then this
is the same as WW\
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Homework 3

2. What is the Chapman-Robbins bound for g(θ) = θ in Example l(b)?

3. In Example l(c), s consists of n iid observations from π/1+Λ m2\ For any g,

the C-R bound is not attained by any ί; but θ has nearly the variance jhη if

I(θ) is large. Here 7(0) = nh{θ). Show that h{θ) = | .
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