Chapter 4

Lecture 13

The score function, Fisher information and bounds

Let Θ be an open interval in \mathbb{R}^1 and suppose that $dP_{\theta}(s) = \ell_{\theta}(s)d\mu(s)$, where μ is a fixed measure on S. Suppose that $\theta \mapsto \ell_{\theta}(s)$ is differentiable for each fixed s; then $\delta \mapsto \Omega_{\delta,\theta}(s) = \frac{\ell_{\delta}(s)}{\ell_{\theta}(s)}$ is also differentiable for each fixed (s, θ) . If we use dashes for derivatives with respect to the parameters as described, then

$$\Omega'_{\theta,\theta}(s) = \frac{\ell'_{\theta}(s)}{\ell_{\theta}(s)} =: \gamma_{\theta}^{(1)}(s)$$

is the SCORE FUNCTION at θ (given s). We also define $I(\theta) := E_{\theta} (\gamma_{\theta}^{(1)}(s))^2$, the FISHER INFORMATION (for estimating θ) in s.

Note.

$$(\int_{S} \ell_{\delta}(s) d\mu(s) = 1 \ \forall \delta \in \Theta)$$

$$\Rightarrow (\int_{S} \Omega_{\delta,\theta}'(s) dP_{\theta}(s) = \int_{S} \frac{\ell_{\delta}'(s)}{\ell_{\theta}(s)} \ell_{\theta}(s) d\mu(s) = \int_{S} \ell_{\delta}'(s) d\mu(s) = 0 \ \forall \delta \in \Theta)$$

$$\Rightarrow E_{\theta} \left(\gamma_{\theta}^{(1)}(s) \right) = E_{\theta} \left(\Omega_{\theta,\theta}'(s) \right) = 0 \Rightarrow I(\theta) = \operatorname{Var}_{\theta}(\gamma_{\theta}^{(1)})$$

Similarly, we have $\int_{S} \ell_{\delta}''(s) d\mu(s) = 0$, $\int_{S} \ell_{\delta}'''(s) d\mu(s) = 0$, etc. for all $\delta \in \Theta$, so that $E_{\theta}(\gamma_{\theta}^{(j)}(s)) = 0$ for $j = 1, 2, 3, \ldots$, where $\gamma_{\theta}^{(j)}(s) = \left(\frac{\partial^{j} \ell_{\theta}(s)}{\partial \theta^{j}}\right)/\ell_{\theta}(s)$. Conditions under which the interchanging of differentiation and integration (as above) is valid will be given later.

Suppose that we are interested in W_{θ} and want some concrete method of constructing it. We have that

$$\Omega_{\delta,\theta}(s) = \Omega_{\theta,\theta} + (\delta - \theta)\gamma_{\theta}^{(1)}(s) + \frac{1}{2}(\delta - \theta)^2\gamma_{\theta}^{(2)}(s) + \cdots,$$

which suggests that $W_{\theta} = \text{Span}\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \ldots\}$. We will see that this equality holds exactly in a one-parameter exponential family and approximately in general in large

samples. To see that $\gamma_{\theta}^{(j)} \in W_{\theta}$, we reason as follows: First, of course, we note that $1 \in W_{\theta}$. Then, since $\Omega_{\delta,\theta}, \Omega_{\theta,\theta} \in W_{\theta}$, we have that $\frac{1}{\delta-\theta}(\Omega_{\delta,\theta} - \Omega_{\theta,\theta}) \in W_{\theta}$ for $\delta \neq \theta$, from which it follows that $\gamma_{\theta}^{(1)} \in W_{\theta}$. Similar inductive reasoning allows us to conclude that each $\gamma_{\theta}^{(j)}$ is in W_{θ} .

It is clear that 1 and $\gamma_{\theta}^{(1)}$ are the most important generators if s is very informative, for then only δ near the true θ are important. In any case,

$$W_{\theta}^{(k)} := \operatorname{Span}\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \dots, \gamma_{\theta}^{(k)}\} \subseteq W_{\theta}.$$

We know that, in $V_{\theta} = L^2(P_{\theta})$, every $t \in U_g$ projects to the same $\tilde{t} \in W_{\theta}$; thus every $t \in U_g$ has the same projection to $W_{\theta}^{(k)}$ – say $t_{\theta,k}^*$. Then we have:

11. BHATTACHARYA BOUNDS: For each $t \in U_g$,

$$\operatorname{Var}_{\theta}(t) \ge E_{\theta}(t^*_{\theta,k})^2 - \left[g(\theta)\right]^2$$

for k = 1, 2, ...

Proof. This follows since

$$\operatorname{Var}_{\theta}(t) + \left[g(\theta)\right]^2 = E_{\theta}(t^2) \ge E_{\theta}(t^*_{\theta,k})^2.$$

Let us consider the case k = 1 - i.e., projection to $\text{Span}\{1, \gamma_{\theta}^{(1)}\}$. We have seen that $1 \perp \gamma_{\theta}^{(1)} - i.e.$, that $E_{\theta}(\gamma_{\theta}^{(1)}) = 0$ - and that $||\gamma_{\theta}^{(1)}||^2 = I(\theta)$. Hence $\{1, \gamma_{\theta}^{(1)}/||\gamma_{\theta}^{(1)}||\}$ is an orthonormal basis in $W_{\theta}^{(1)}$ and, for any $t \in V_{\theta}$, the projection $t_{\theta,1}^*$ of t to $W_{\theta}^{(1)}$ is

$$t_{\theta,1}^* = (1,t)1 + \left(\frac{\gamma_{\theta}^{(1)}}{||\gamma_{\theta}^{(1)}||}, t\right) \frac{\gamma_{\theta}^{(1)}}{||\gamma_{\theta}^{(1)}||}.$$

Now $(1,t) = E_{\theta}(t) = g(\theta)$ since t is unbiased, and

$$\begin{aligned} (\gamma_{\theta}^{(1)}, t) &= E_{\theta}(t \cdot \gamma_{\theta}^{(1)}) = \int_{S} t(s) \frac{\ell_{\theta}'(s)}{\ell_{\theta}(s)} dP_{\theta}(s) = \int_{S} t(s) \ell_{\theta}'(s) d\mu(s) \\ &\stackrel{(?)}{=} \frac{d}{d\theta} \int_{S} t(s) \ell_{\theta}(s) d\mu(s) = \frac{d}{d\theta} g(\theta) = g'(\theta). \end{aligned}$$

The above calculations give us that

$$t^*_{\theta,1} = g(\theta) + \frac{g'(\theta)}{||\gamma^{(1)}_{\theta}(s)||} \frac{\gamma^{(1)}_{\theta}(s)}{||\gamma^{(1)}_{\theta}(s)||};$$

since the summands are orthogonal,

$$||t_{\theta,1}^*||^2 = g(\theta)^2 + \frac{(g'(\theta))^2}{||\gamma_{\theta}^{(1)}(s)||^2} = g(\theta)^2 + \frac{(g'(\theta))^2}{I(\theta)}.$$

From this we see:

12 (Fisher-Darmois-Cramér-Rao). INFORMATION INEQUALITY: For $t \in U_g$,

$$\operatorname{Var}_{\theta}(t) \ge \frac{(g'(\theta))^2}{I(\theta)}.$$

The Fisher information can be related to the second derivative of the log-likelihood: Let $L_{\theta}(s) = \log_{e} \ell_{\theta}(s)$. Then $L'_{\theta}(s) = \frac{\ell'_{\theta}(s)}{\ell_{\theta}(s)} = \gamma_{\theta}^{(1)}(s)$ and

$$L_{\theta}''(s) = \frac{\ell_{\theta}''(s)}{\ell_{\theta}(s)} - \left(\frac{\ell_{\theta}'(s)}{\ell_{\theta}(s)}\right)^2 = \frac{\ell_{\theta}''(s)}{\ell_{\theta}(s)} - \left[\gamma_{\theta}^{(1)}\right]^2;$$

but $E_{\theta}(\ell_{\theta}''(s)/\ell_{\theta}(s)) = \int_{S} \ell_{\theta}''(s) d\mu(s) = 0$, and so

13. $E_{\theta}(L''_{\theta}(s)) = -I(\theta).$

Exact conditions under which statements (11)-(13) hold are deferred until Lecture 5.1.

Lecture 14

Heuristics for maximum likelihood estimate:

- i. $W_{\theta} = \operatorname{Span}\{1, \gamma_{\theta}^{(1)}, \gamma_{\theta}^{(2)}, \ldots\}.$
- ii. $W_{\theta} \approx \text{Span}\{1, \gamma_{\theta}^{(1)}\}$ if s is highly informative.
- iii. The MLE $\hat{\theta}(s) \in W_{\theta}$ (whatever θ may be!).

The last item gives us that:

iv. $\hat{\theta}$ is approximately the UMVUE of its own expected value function (the same is true of estimates related to $\hat{\theta}$ in certain ways).

Let $\hat{\theta}(s)$ be the MLE of θ and assume that $\hat{\theta}$ is close to θ . Since $\hat{\theta}(s)$ maximizes L_{δ} , we have

$$0 = L'_{\hat{\theta}} = L'_{\theta} + (\hat{\theta} - \theta)L''_{\theta} + \cdots \approx L'_{\theta} + (\hat{\theta} - \theta)L''_{\theta}.$$

Assume also that the experiment (that is, $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$) is highly informative in the sense that $I(\theta)$ is large (for a given θ). We know that $E_{\theta}(L'_{\theta}) = 0$ and $\operatorname{Var}_{\theta}(L'_{\theta}) = I(\theta)$; hence, informally, L'_{θ} is "about" 0, "give or take" about $\sqrt{I(\theta)}$. From (13), $E_{\theta}(-L''_{\theta}) = I(\theta) - \text{i.e.}, E_{\theta}(-\frac{L''_{\theta}}{I(\theta)}) = 1$. Assume that the random variable $-\frac{L''_{\theta}}{I(\theta)} \approx 1$. Then

$$\hat{\theta} \approx \theta - \frac{L'_{\theta}}{L''_{\theta}} = \theta + \frac{L'_{\theta}}{\sqrt{I(\theta)}} \frac{1}{\sqrt{I(\theta)}} \frac{1}{-L''_{\theta}/I(\theta)} \approx \theta + \frac{1}{\sqrt{I_{\theta}}} \frac{\gamma_{\theta}^{(1)}}{||\gamma_{\theta}^{(1)}||}, \qquad (*)$$

and hence $\hat{\theta}$ is nearly in $W_{\theta}^{(1)} \subseteq W_{\theta}$; so $\hat{\theta}$ is nearly LMVU, and hence $\hat{\theta}$ is nearly the UMVUE (of θ). From (*),

$$E_{ heta}(\hat{ heta})pprox heta \quad ext{and} \quad ext{Var}_{ heta}(\hat{ heta})pprox rac{1}{I(heta)}.$$

The MLE of $g(\theta)$ is $g(\hat{\theta})$. Assuming that g is continuously differentiable, we have

$$g(heta) pprox g(heta) + g'(heta)(heta - heta).$$

So $g(\hat{\theta})$ is nearly in W_{θ} (since $1 \in W_{\theta}$ and $\hat{\theta}$ is nearly in W_{θ}). Hence

$$E_{ heta}g(\hat{ heta})pprox g(heta) \quad ext{ and } \quad ext{Var}_{ heta}ig(g(\hat{ heta})ig)pprox rac{(g'(heta))^2}{I(heta)},$$

where $\frac{[g'(\theta)]^2}{I(\theta)}$ is the lower bound in (12).

Note. $\frac{I(\theta)}{[g'(\theta)]^2}$ is the information in s for estimating $g(\theta)$.

Suppose that $(S_1, \mathcal{A}_1, P_{\theta}^{(1)})$ and $(S_2, \mathcal{A}_2, P_{\theta}^{(2)}), \theta \in \Theta$, are independent experiments concerning θ , with sample points s_1 and s_2 . Let $s = (s_1, s_2), \mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ and $P_{\theta} = P_{\theta}^{(1)} \times P_{\theta}^{(2)}$, and let $I_i(\theta)$ be the information in s_i for estimating θ (i = 1, 2). Then the information in s for estimating θ is $I(\theta) = I_1(\theta) + I_2(\theta)$. (This result extends inductively to any finite number of independent experiments.)

Proof. $dP_{\theta}^{(i)}(s) = \ell_{\theta}^{(i)}(s_i) d\mu^{(i)}(s_i)$ for i = 1, 2, so $dP_{\theta}(s) = \ell_{\theta}^{(1)}(s_1)\ell_{\theta}^{(2)}(s_2)d\nu(s)$ and hence $L_{\theta}(s) = \log \ell_{\theta}^{(1)}(s_1) + \log \ell_{\theta}^{(2)}(s_2) = L_{\theta}^{(1)}(s) + L_{\theta}^{(2)}(s).$

$$L_{\theta}(s) = \log \ell_{\theta}^{(1)}(s_1) + \log \ell_{\theta}^{(2)}(s_2) = L_{\theta}^{(1)}(s) + L_{\theta}^{(2)}(s_2)$$

The result now follows from (13).

Example 1(a). $s = (X_1, \ldots, X_n), X_i \stackrel{\text{iid}}{\sim} N(\theta, 1)$. The information in s for estimating θ is the sum of the information in X_1, \ldots, X_n , respectively, for estimating θ , which sum is (since the X_i are iid) n times the information in X_1 , which product is (since X_1 is distributed as $N(\theta, 1)$) just n. $L'_{\theta}(X_1) = X_1 - \theta = \gamma_{\theta}^{(1)}(X_1)$ and $\operatorname{Var}_{\theta}(\gamma_{\theta}^{(1)}) = 1 = I_1(\theta)$. (We check that $\frac{L'_{\theta}(s)}{\sqrt{I(\theta)}}$ is about 0, give or take about 1; and $\frac{L''_{\theta}(s)}{I(\theta)} \approx 1$ (indeed, here it is identically 1).)

Example 2. X_1, \ldots, X_n, \ldots are iid as

and $\Theta = (0, 1)$. $s = (X_1, \ldots, X_N)$, N the stopping time. The three cases we discussed are:

a. $N \equiv n$ (*n* a fixed positive integer).

b. N is the first time k successes (i.e., 1s) are recorded (k a fixed positive integer).

c. Two-stage scheme.

In all cases (even other than (a)–(c) above), $\ell_{\theta}(s) = \theta^{T(s)}(1-\theta)^{N(s)-T(s)}$, where $T(s) = \sum_{i=1}^{N(s)} X_i$, and hence

$$L'_{\theta}(s) = \frac{T(s)}{\theta} - \frac{V(s)}{1-\theta}$$

and

$$L''_{\theta}(s) = -\frac{T(s)}{\theta^2} - \frac{V(s)}{(1-\theta)^2},$$

where V(s) = N(s) - T(s). Since $E_{\theta}(L'_{\theta}) = 0$, we have

$$\frac{E_{\theta}(T)}{\theta} = \frac{E_{\theta}(V)}{1-\theta},\tag{4.1}$$

$$I(\theta) = \operatorname{Var}_{\theta}(L'_{\theta}) = \frac{\operatorname{Var}_{\theta}(T)}{\theta^2} + \frac{\operatorname{Var}_{\theta}(V)}{(1-\theta)^2} - \frac{2}{\theta(1-\theta)}\operatorname{Cov}_{\theta}(T,V)$$
(4.2)

and

$$I(\theta) = E_{\theta}(-L''_{\theta}) = \frac{1}{\theta^2} E_{\theta}(T) + \frac{1}{(1-\theta)^2} E_{\theta}(V).$$
(4.3)

Exercise: What happens in case (a) (i.e., $N \equiv n$)? This is like Example 1(a) except that $I(\theta)^{-1} = \frac{\theta(1-\theta)}{n}$ depends on θ .

Suppose now that we are in case (b). Then $T \equiv k$ and V(s) = N(s) - k. Hence, from (4.1), $\frac{k}{\theta} = \frac{E_{\theta}(N-k)}{1-\theta}$ and therefore $E_{\theta}(N) = \frac{k}{\theta}$ (which we could also compute directly) and

$$I(\theta) = \frac{k}{\theta^2} + \frac{1}{(1-\theta)^2} E_{\theta}(N-k) = \frac{k}{\theta^2(1-\theta)}$$

(from equation (4.3) above). Hence the heuristics apply when k is large. In all cases $\hat{\theta}(s)$ is $\frac{T(s)}{N(s)}$.

Exercise: Derive $\operatorname{Var}_{\theta}(N)$ from (4.2) and check the behavior of $L'_{\theta}/\sqrt{I(\theta)}$ and $L''_{\theta}/\sqrt{I(\theta)}$.

Example 1(e). $s = (X_1, \dots, X_n)$, with the X_i iid with density $ae^{-b(x-\theta)^4}$ (a, b > 0).

Homework 3

- 1. a. Find a and b such that $\operatorname{Var}_{\theta}(X_1) = 1$ (to make it comparable to Example 1(a)).
 - b. Find $I(\theta)$.
 - c. $E_{\theta}(\overline{X}) \equiv \theta$, so \overline{X} is unbiased for θ . Is \overline{X} the UMVUE? (Note the answer is no.)
 - d. What is the UMVUE?
 - e. Give an explicit method for finding $\hat{\theta}(s)$.

Lecture 15

13(a). Suppose $t \in U_g$ is such that

$$\operatorname{Var}_{\theta}(t) = \frac{[g'(\theta)]^2}{I(\theta)} \ \forall \theta \in \Theta;$$

then $\{P_{\theta} : \theta \in \Theta\}$ is a one-parameter exponential family with statistic t – i.e.,

$$\frac{dP_{\theta}}{d\mu}(s) = \ell_{\theta}(s) = \varphi(s)e^{A(\theta) + B(\theta)t(s)},$$

where A and B are smooth functions; moreover, $g(\theta) = -A'(\theta)/B'(\theta)$.

Proof. By the same argument as used in the proof of (12), we have that $t \in W_{\theta}^{(1)}$ for all θ – i.e., that

$$t(s) = a(\theta) + b(\theta)L'_{\theta}(s)$$
 a.e. (P_{θ})

for all θ . From this it follows that $L'_{\theta}(s) = \alpha(\theta) + \beta(\theta)t(s)$ (if $b \equiv 0$ then $\operatorname{Var}_{\theta}(t) = 0$ for all θ . We rule out this case) and hence that

$$L_{\theta}(s) = A(\theta) + B(\theta)t(s) + C(s),$$

where $A(\theta) = \int \alpha(\theta) d\theta$. This gives the required form for $\ell_{\theta}(s)$. Also,

$$0 = E_{\theta}(L'_{\theta}) = \alpha(\theta) + \beta(\theta)E_{\theta}(t) = \alpha(\theta) + \beta(\theta)g(\theta)$$

and so $g(\theta) = -\alpha(\theta)/\beta(\theta) = -A'(\theta)/B'(\theta)$.

Note. For a near-rigorous proof, see R. A. Wijsman 1973 AS, pp. 538–542, and V. M. Joshi 1976 AS, pp. 998–1002.

Note. The necessary conditions on $\{P_{\theta} : \theta \in \Theta\}$ and g are also sufficient for the attainment of the C-R bound. We will see this later.

Example 1(a). Since

$$\ell_{\theta}(s) = \varphi_1(s)e^{-\frac{n}{2}(\overline{X}-\theta)^2} = \varphi_2(s)e^{-\frac{n\theta^2}{2} + (n\theta)\overline{X}},$$

the C-R bound is attained by \overline{X} for estimating $g(\theta) = \theta$. This implies that \overline{X} is LMVU at θ , which in turn implies that it is UMVU. Also, the C-R bound is not attained by any unbiased estimate of any g which is not an affine function of θ . In particular, since $\overline{X}^2 - \frac{1}{n}$ is an unbiased estimate of $g(\theta) = \theta^2$, it does not attain the C-R bound since $\theta^2 \neq -A'(\theta)/B'(\theta)$. We have seen before, however, that $\overline{X}^2 - \frac{1}{n}$ is the UMVUE.

To study the Bhattacharya bounds, note that $\ell'_{\theta} = \ell_{\theta} \cdot [-n\theta + n\overline{X}]$ and $\ell''_{\theta} = \ell_{\theta} \cdot [-n\theta + n\overline{X}]^2 + \ell_{\theta} \cdot [-n]$, so that $\ell'_{\theta}/\ell_{\theta}$ is affine in \overline{X} and $\ell''_{\theta}/\ell_{\theta}$ is quadratic. This implies that

$$W_{\theta}^{(1)} = \operatorname{Span}\{1, \ell_{\theta}'/\ell_{\theta}\} = \operatorname{Span}\{1, \overline{X}\}$$

and

$$W_{\theta}^{(2)} = \operatorname{Span}\{1, \ell_{\theta}^{\prime}/\ell_{\theta}, \ell_{\theta}^{\prime\prime}/\ell_{\theta}\} = \operatorname{Span}\{1, \overline{X}, \overline{X}^{2}\},$$

whence $\overline{X}^2 - \frac{1}{n} \in W_{\theta}^{(2)}$ attains the Bhattacharya bound and is the UMVUE. In fact, W_{θ} is the space of *all* functions of \overline{X} , and hence any function of \overline{X} (but not θ) is the UMVUE of its expectation.

Example 1(b). $s = (X_1, X_2, ...)$ are iid from $\frac{1}{2}e^{-|x-\theta|}$ on \mathbb{R}^1 . Here W_{θ} is well-defined (i.e., (8)-(10) hold), but (11)-(13) are not applicable since ℓ_{θ} is not sufficiently smooth. In such a situation, the following is useful.

14 (Chapman-Robbins). Given $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$, with Θ an open interval in \mathbb{R}^1 , if $t \in U_q$ then

$$\operatorname{Var}_{\theta}(t) \geq \overline{\lim_{\delta \to \theta}} \left(\frac{g(\delta) - g(\theta)}{\delta - \theta} \right)^2 / E_{\theta} \left(\frac{\Omega_{\delta, \theta} - 1}{\delta - \theta} \right)^2$$

for all θ such that $\Omega_{\delta,\theta} = \frac{dP_{\delta}}{dP_{\theta}}$ exists for all δ in a neighborhood of θ .

Proof.

$$E_{\delta}(t) = g(\delta) \Rightarrow \int_{S} t \cdot \Omega_{\delta,\theta} dP_{\theta} = g(\delta) \Rightarrow \int_{S} t(\Omega_{\delta,\theta} - 1) dP_{\theta} = g(\delta) - g(\theta).$$

Dividing by $\delta - \theta$, we find that

$$\int t \left(\frac{\Omega_{\delta,\theta} - 1}{\delta - \theta}\right) dP_{\theta} = \frac{g(\delta) - g(\theta)}{\delta - \theta}$$

$$\Rightarrow \int_{S} \left(t - g(\theta)\right) \left(\frac{\Omega_{\delta,\theta} - 1}{\delta - \theta}\right) dP_{\theta} = \frac{g(\delta) - g(\theta)}{\delta - \theta}$$

$$\Rightarrow \left(\frac{g(\delta) - g(\theta)}{\delta - \theta}\right)^{2} \leq \operatorname{Var}_{\theta}(t) \cdot E_{\theta} \left(\frac{\Omega_{\delta,\theta} - 1}{\delta - \theta}\right)^{2}.$$

Note. If g is differentiable at θ , then

$$\operatorname{Var}_{\theta}(t) \geq \left(g'(\theta)\right)^2 / \lim_{\delta \to \theta} E_{\theta} \left(\frac{\Omega_{\delta,\theta} - 1}{\delta - \theta}\right)^2.$$

If, further, $\Omega_{\delta,\theta}$ is differentiable (see (12E) below for exact conditions), then this is the same as $\frac{[g'(\theta)]^2}{I(\theta)}$.

Homework 3

- 2. What is the Chapman-Robbins bound for $g(\theta) = \theta$ in Example 1(b)?
- 3. In Example 1(c), s consists of n iid observations from $\frac{1}{\pi(1+(x-\theta)^2)}$. For any g, the C-R bound is not attained by any t; but $\hat{\theta}$ has nearly the variance $\frac{1}{I(\theta)}$ if $I(\theta)$ is large. Here $I(\theta) = nI_1(\theta)$. Show that $I_1(\theta) = \frac{1}{2}$.