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Abstract

The use of the pseudo-likelihood estimator for Gibbs-Markov ran-
dom field models has a distinct advantage over more conventional ap-
proaches mainly due to its computational efficiency. Indeed, the max-
imum pseudo-likelihood estimator (MPLE) is often used as the Monte
Carlo parameter in Markov chain Monte Carlo (MCMC) simulations.
The MPLE itself has some very nice estimation properties, though its
variance is still undiscovered. In this paper, the moving-block boot-
strap is employed to estimate the variance of the MPLE in the Ising
model.

KEY WORDS: parameter estimation, Gibbs random fields, Markov
random fields, parametric bootstrap, πtoving-block bootstrap, subsam-
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1 Introduction

Gibbs-Markov random fields (GMRFs) are statistical models used to study
the spatial relationships among data taken on a grid. Although these models
were developed around the turn of the century in physics as models for
particle interactions (Gibbs, 1902), it has only been within the past fifteen
years or so that they have been seriously considered by statisticians and other
scientists as models for spatially related data. The form of the distribution
used in practice is fairly simple:



282 SEYMOUR

where x\ represents observations taken on a grid Λ, θ represents the param-
eters of the distribution, V(•) is a function strictly of the data, and Z is a
normalizing constant.

This model has many applications throughout the scientific community.
The pioneering paper of Besag (1974) used simple GMRFs to study the oc-
currence of new plant growth in a defunct mine, and to study grain and straw
yield of wheat plots. In each of these models, the area of interest was par-
titioned into a grid, and the presence of new growth and grain/straw yields,
respectively, were the data taken at each grid site. Classical development
of this model has been in image analysis, in which the grid consists of the
pixels on the computer screen, and the observed data are the colors at each
pixel. The model then aids in, for example, image restoration (Geman and
Geman, 1984; Tjelmeland and Besag, 1998), detecting boundaries (Geman,
Geman, Graffigne, and Dong, 1990), or recognizing and simulating textures
(Geman and Graffigne, 1986; Seymour, 1993). More recently, Smith et. al
(2000) and Seymour (2000) use such a model to study social networks; more
specifically, the clients of a social service agency are considered the "grid",
and the data indicate whether the clients changed case managers.

A first step in making inferences with any statistical model is parameter
estimation, which can be especially challenging for GMRFs due to the size
of the grid and/or the dependence of the data. Maximum likelihood esti-
mation (MLE) is a standard technique for most models, but the nature of
the GMRF model makes the MLE computationally intractable for even rea-
sonable grid sizes. A commonly-used way of circumventing this problem is
to approximate the MLE using Markov chain Monte Carlo (MCMC) meth-
ods (Geyer and Thompson, 1992), but this can become very cumbersome
in some applications and can be unstable for cases in which the dependence
in the data is strong (Seymour and Ji, 1996). Another standard technique
is method-of-moments estimation, which requires that the dependence be-
tween data at neighboring grid points to be weak (Sherman and Carlstein,
1994).

A non-standard parameter estimation technique that is very easy to im-
plement is the maximum pseudo-likelihood estimate (MPLE). Instead of
maximizing the likelihood based on the model in (1), a pseudo-likelihood is
maximized. The pseudo-likelihood which Besag (1975) first proposed sim-
ply multiplies the conditional distributions at grid sites given the values at
neighboring sites:

VC(Θ]XA) = H P ( X W = z w | X M = xMi), (2)

where Λ* C Λ is the set of all sites in Λ with a complete set of neighbors in
Λ, and M% C Λ is the set of points which are neighbors of the site i G Λ*.
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These single-site conditional distributions are easily calculated, making the
MPLE extremely appealing as an estimation technique.

The MPLE is often used to initialize the MCMC method of parameter
estimation, which is preferred over the MPLE because it gives an approxi-
mation of the likelihood function. The MPLE is used in this way because
it is quickly computed, and because it is close to the parameter the MCMC
method is trying to estimate (which cuts down on MCMC iterations).

2 Modelling Background

Let Λn be an n x n lattice in Z2, and let Xi be a random variable associated
with the site i G Z2. Then XAn = {Xi,i G Λn} is called a random field on
Λn. The state space S is the collection of all possible values of X^ i G Z2,
and Ωn = SAn is the collection of all possible realizations of the random field
XAn. For a site i G Z2, a collection Mi of sites having the properties i φ. Mi
and i G Mj «Φ j G Mi is called the neighborhood of the site i. The collection
of all neighborhoods 9ΐ = {Mi,i G Z2} is called the neighborhood system.

A random field is called a Markov random field (MRF) with respect to
the neighborhood system 9t if its probability distribution P on Ω 2̂ satisfies

P (Xi = Xi\Xz2\{i} = xχ2\{i}) =P(Xi = XilXjsfi = xtfi) (3)

for each i G Z 2 and x G ΩZ2. where Z2\{i} is the set of all sites in Z 2

except site i. These single-site conditional probabilities are called the local
characteristics of the MRF.

The pair potential il = {u(xi,Xj) : i,j G Z2, i φ j} is a collection of de-
terministic functions which quantify how values at pairs of sites interact. If
each of the functions in il is zero for every pair of sites farther than a fixed
finite range R from each other, then the collection is called a pair-potential
of range R. The energy associated with x G ΩZ2 on An, denoted H\n(x),
is a functional of u( , •) which summarizes all of the pair interactions of the
random field on Λn. For example, an energy function may take the form

HAn(X) = Σ \
\jeNijeAn

which gives an additive summary of the pair interactions on Λn.
A random field is called a Gibbs random field (GRF) induced by the

pair-potential il if its probability distribution P on Ω 2̂ satisfies

exp\-HAn(xAn;xAc)\
= XAc) = 1~ γ ^ (4)
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where Z\n is a normalizing factor which is a sum over all possible x E ΩΛn.
One of the more difficult problems with using GRFs is that, in some cases,
these conditional distributions do not uniquely determine the distribution
of the field. Such a condition is called phase transition, and implies spatial
long-range dependence in the field.

A random field is a MRF if and only if it is a GRF induced by finite-
range potentials (Besag, 1974; Geman, 1991). The model given in (1) is an
exponential family random field which satisfies both (3) and (4); hence the
name Gibbs-Markov random field.

3 The MPLE and its Properties

The likelihood function is computationally intractable for GMRFs due to the
normalizing factor in (4): For a 100 x 100 binary grid, which is trivial in most
applications, this factor is a sum of 21 0 0 terms. Hence alternatives to the
likelihood are very desirable for these models. Computationally intensive
alternatives include using a Markov chain Monte Carlo approximation to
the likelihood function (Geyer and Thompson, 1992), and estimating the
normalizing factor via simulation.

The alternative which was first proposed by Besag (1975) is to use the
pseudo-likelihood in (2), rather than the likelihood. Note that the pseudo-
likelihood is simply the product of the local characteristics (using the Markov
property), and that the conditional distributions at a single site make the
normalizing factor in (4) much easier to compute. Parameter estimates
derived by maximizing the pseudo-likelihood are called maximum pseudo-
likelihood estimates (MPLEs).

Asymptotics in a random field setting are traditionally taken on a single
realization of an n x n region as n goes to infinity. The existence, unique-
ness, and strong consistency of the MPLE were established by Geman and
Graffigne (1986), while Comets (1992) established that the convergence rate
of the MPLE (and, incidentally, of the MLE) is on the order of e~n as
n —> oo. Consistency of the MPLE is not restricted to a grid: Jensen and
M0ller (1991) show the MPLE to be consistent for point processes, and Mase
(1995) shows it to be consistent for continuous-state-space Gibbs processes.
The moderate deviation probabilities for the MPLE have been shown to
decay as n~α as n -> oo, where a is not necessarily less than one (Ji and
Seymour, 1996). Each of these convergence results have no requirements on
the strength of the dependence in the random field.

In addition, a model selection criterion based on penalized pseudo-likeli-
hood, similar to the Bayesian information criterion (BIC) of time series,
was shown to be weakly consistent without assuming any conditions on the
strength of dependence. In contrast, the traditional BIC for GMRFs using
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penalized likelihood (and using the MCMC approximation to the likelihood)
was shown to approximate the Bayesian solution (i.e., the solution which
minimizes the risk under a 0-1 loss function) to the model selection problem
only under a weak-dependence condition (Seymour and Ji, 1996). This
would seem to imply that the MPLE in some way makes more optimal use
of the dependence structure in the observed GMRF than the MLE or its
MCMC approximation. Further study is needed into the sufficiency of
these estimates.

Guyon (1987) has shown the asymptotic normality of the MPLE un-
der weak dependence conditions (specifically, under spatial mixing with an
exponentially decaying mixing coefficient). Jensen and Kunsch (1994) es-
tablished the asymptotic normality of a stochastically normed MPLE for
certain point processes, regardless of the strength of dependence. Janzura
and Lachout (1995) showed that the sampling distribution of the MPLE
is a normal mixture when the strength of spatial dependence is large, and
Comets and Janzura (1998) more recently establish the asymptotic normality
of the stochastically normed MPLE in complete generality for conditionally
centered random fields.

Grasping the variance of the MPLE is a difficult proposition - even
for the simplest GMRF models (Cressie, 1993) - though some results are
known. Guyon (1987) derived the asymptotic variance under weak spa-
tial dependence, but it depends upon the intractible joint distribution of
the field. The (restricted) mean square error has been shown to decrease
asymptotically like n~2 (Ji and Seymour, 1996) regardless of the strength
of dependence. Sherman (1996) developed a moving-block bootstrap, or
sub-sampling, method which can be used for estimating the variance, which
is /^2-consistent as long as the MPLE itself is asymptotically normal (i.e.,
under weak mixing conditions). The variance is an important component
for MPLE-based inference, but much remains to be done in both deriving
and estimating it.

Once the variance of the MPLE is better-understood, efficiency of the
MPLE relative to the MLE may be investigated. The MLE has been shown
to be efficient for GMRFs (Mase, 1984). However, the efficiency of the
MPLE relative to the MLE has been tabulated (Besag, 1977; Kashyap and
Chellappa, 1983), and it appears that the MPLE is not as efficient as the
MLE.

4 The Variance of the MPLE via Simulation

Before one can evaluate methods for estimating the variance of the MPLE,
one must have an idea of what the target value is. Thus a simulation study
was conducted in an effort to understand what the variance of the MPLE
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looks like.
This small simulation study employed the well-known Ising model, in

which the neighborhood around each site consists of its four nearest neigh-
bors, and the interactions between sites i and j behave according to θxiXj.
The parameter θ governs how strongly the data are dependent, and in fact
the Ising model is the only Gibbs distribution for which there are necessary
and sufficient conditions for no phase transition in terms of an explicit crit-
ical value: |0| < \ In (l + \/2) «0.44 (Ellis, 1985). Thus, in the case that
θ — 0.1, there is no phase transition and the data are weakly dependent,
as seen in Figure 1; if θ = 1 then there is phase transition and they are
very strongly dependent, as seen in Figure 2. The Gibbs sampler (Geman
and Geman, 1984) was used to generate 100 random fields of several sizes
from these Ising models. The MPLE was then calculated on each of these
fields to simulate its sampling distribution, and the sample variance of this
sampling distribution was computed.

Figure 1: A Realization for θ = 0.1
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Figure 2: A Realization for θ = 1

Table 1 and Table 2 give the average of 10 replications of the sample
variances for the simulated sampling distribution of the MPLE for several
nxn random fields. The third column of each table shows (variance) n 2 in
an effort to understand whether the variance is proportional to n~2. Figure
3 and Figure 4 plot the 10 sample variances, as well as these values multiplied
by n2, against n. In the weak-dependence case (Table 1; Figure 4), it is
clear that the variance behaves as O(n2). As is to be expected, this same
rate is not as apparent in the strong-dependence case (Table 2; Figure 4);
however, if one discounts the case n = 100 as possibly being too small for
the asymptotics, then the relationship is more clear.

Table 1: Average Simulated Variances, θ = 0.1

n

50

100

300

500

1000

average variance

0.00021125

0.00004664

0.00000570

0.00000200

0.00000040

(average variance) *n
2

0.5281

0.4664

0.5120

0.4889

0.4437
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Figure 3: Simulated Variances θ = 0.1
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Table 2: Average Simulated Variances, θ = 1

n

100
300

500
1000

average variance

0.00542753

0.00040862

0.00014896

0.00003478

(average variance) *n
2

54.26

36.78

37.24

34.78

Figure 4: Simulated Variances, θ = 1
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5 Estimating the Variance via Sub-sampling

In Section 4, the variance of the MPLE was estimated by sampling many
random fields. Rather than sampling repeatedly, one may simply sub-
sample the random field in hand, potentially saving much computing time
(though not necessarily). This will yield accurate results in many cases,
most notably when dependence is weak (Sherman, 1996).

Sherman and Carlstein (1994) introduced a sub-sampling procedure to
estimate a general statistic (cf. also Politis and Romano, 1993) which is
useful in estimating the variance of the MPLE. However, the MPLE must
be asymptotically normal for their estimate to be consistent, which is the
case only under weak dependence. The conjecture explored herein is that
a sub-sampling scheme may be used to estimate the variance of the MPLE
when there is a limiting distribution for the MPLE, as is the case whether
dependence is weak or strong.

In the following examples, we again look at the two cases of the Ising
model described in Section 4. In each case, we sample one n x n GMRF,
n = 100, 300, 500, 1000. We then partition that GMRF into sub-blocks that
are 10%, 15%, 20%, and 25% of the size of the sampled GMRF. In addition,
we allow three different degrees of overlap: None (shifting a whole sub-
block width), half (shifting a half sub-block width), and one pixel (shifting
one pixel, the maximum overlap possible while still shifting).

Table 3 and Table 4 summarize the results of the sub-blocking schemes
given above and compare the results to the simulated variances found in
Section 4. Several interesting phenomena may be observed.

Table 3 contains the results for the weak dependence case - the case for
which much is known. As is easily seen, the size of the sub-blocks and the
amount of overlap matter very little, and all sub-sampled estimates are close
to the simulated variance. Note that for the larger cases of n = 500 and
n = 1000, the one-pixel shift is omitted - this is due to the fact that the
number of sub-blocks for the one-pixel shift is prohibitively large in these
cases.
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Table 3: Variance Estimates when θ = 0.1

N

100

300

500

1000

Size of
Sub-block

10

15

20

25

30

45

60

75

50

75

100

125

100

150

200

250

Shift

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half
One

Whole
Half

Whole
Half

Whole
Half

Whole
Half

Whole
Half

Whole
Half

Whole
Half

Whole
Half

Number of
Sub-blocks

100

361

8281
36
121

7396
25

81

6561
16

36

5776
100

361

73441
36

144

65536
25

81

58081
16

36

51076
100
361

36

144

25

81

16
36
100

361

36
144

25

81
16

49

Average
MPLE
0.1152
0.1128
0.1157
0.1182
0.1107
0.1113
0.1097
0.1081
0.1100
0.1110
0.1102
0.1091
0.0993
0.0988
0.0991
0.1006
0.0988
0.0989
0.0994
0.987
0.0991
0.0991
0.0997
0.0994
0.1003
0.1013
0.1012
0.1016
0.1002
0.1010
0.1003
0.1033
0.0998
0.0997
0.1003
0.1000
0.0997
0.1000
0.0997
0.1000

Estimated
Var(MPLE)

80x10"°
89x10-°
83x10"°
69x10"°
54xlO~b

59x10"°
63x10"°
62x10"°
49x10"°
74x10"°
50x10"°
42x10"°
6x10-°
6x10"°
6xlO~°
6xlO~°
6x10-°
5xlO~°
4xlO~°
5x10"°
5xlO~°
6x10"°
4x10"°
5x10"°
2x10"°
2x10-°
2x10-°
2x10"°
2x10"°
2x10"°
2x10"°
2x10-°

0.5x10-°
0.5x10"°
0.6x10"°
0.4x10"°
0.3x10-°
0.5x10"°
0.6x10-°
0.5x10"°

Simulated
Var(MPLE)

46.6x10"°

5.7x10-°

2.0x10"°

0.4x10"°
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Table 4, which presents the results in the strong dependence case, con-
tains much more interesting phenomena. Notice how the schemes with
the smaller sub-blocks give bad estimates of the variance, and indeed of
the MPLE itself. This may be understood intuitively by realizing that if
the sub-blocks don't contain an accurate representation of the dependence
structure in the entire field, the sub-sampling scheme will fail to provide an
accurate estimate. For θ = 1, it is clear that good estimates of the MPLE
can be obtained from fields of size n = 75 or larger. Once the sub-block
size becomes large enough to capture the dependence structure in the entire
field, then the degree of overlap begins to play a role in the accuracy of the
estimate. Even that, however, seems to fade as is seen in the n = 500 and
n = 1000 cases. Again, the cases employing maximum overlap were too
computationally intense for inclusion here.
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Table 4: Variance Estimates when θ = 1

N

100

300

500

1000

Size of
Sub-block

10

15

20

25

30

45

60

75

50

75

100

125

100

150

200

250

Shift

Whole

Half
One

Whole

Half
One

Whole

Half

One

Whole

Half
One

Whole

Half

One

Whole
Half
One

Whole

Half

One

Whole
Half

One
Whole

Half

Whole

Half
Whole

Half

Whole

Half

Whole
Half

Whole
Half

Whole

Half
Whole

Half

Number of
Sub-blocks

100

361
8281

36

121

7396
25

81

6561

16

36
5776
100

361

73441

36
144

65536
25

81

58081

16
36

51076
100
361
36

144
25

81

16

36

100
361
36
144

25

81
16

49

Average
MPLE

4.5685

4.6020
5.2807

4.2588

4.6205
4.6828
3.7488

3.5458

4.2046

3.0882

2.6370
3.5785
2.8113

2.9351

3.1094

2.1644
2.0011
1.9984

1.3051

1.2719

1.3693
1.0137

0.9917

1.0665
1.4124
1.4113

1.0015

1.0388
1.0032

1.0008

0.9984

0.9955
1.0077
1.0084

1.0014
1.0000

0.9990

0.9988
0.9972
0.9954

Estimated
Var(MPLE)

0.021924

0.019078
0.013587

0.067236

0.066193

0.064116

0.160362

0.161188

0.170413

0.313485

0.191927
0.324719

0.045737

0.048044

0.051915

0.087682
0.078927
0.079410

0.043379

0.042598

0.060681

0.000794

0.000387

0.015967
0.015656

0.016536

0.000129

0.002883
0.000159

0.000139

0.000118

0.000130

0.000042
0.000042

0.000044
0.000033

0.000034

0.000041
0.000040
0.000039

Simulated
Var(MPLE)

0.00542753

0.00040862

0.00014896

0.00003478
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6 Conclusion

Several fundamental questions about the properties of the MPLE remain
unresolved - including the form of its sampling variance. However, because
of its simplicity and ease of use, it is an appealing estimator. The minimal
accomplishment of discovering the variance of the distribution of the MPLE
will aid scientists in drawing inferences from their data, and in some cases
render MCMC estimation redundant.

This simulation study demonstrates that the variance of the MPLE can
be estimated in spite of the fact that it is unknown. Weaknesses in the sub-
sampling strategy which result from overlapping sub-blocks are currently
being addressed by recasting the sub-sampled values as a stochastic process
in which correlation (induced by overlap) is routine.
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