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Abstract

Optimal joint estimating equations for fixed and random parame-
ters are derived via an extension of the Godambe criterion. Applica-
tions to autoregressive processes and generalized linear mixed models
for Markov processes are discussed. Marginal optimal estimating func-
tions for fixed parameters are also discussed.
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1 Introduction

Mixed effects models containing both fixed and random parameters are used

extensively in both applied and methodological literature. A review of linear

mixed models and their applications is given by Robinson(1991). General-

ized linear mixed models are discussed by Breslow and Clayton(1993) among

others. Work on the extension of mixed effects models to dependent obser-

vations appears relatively scarce. Our main goal in this paper is to develop

optimal estimating equations for mixed effects models with dependent ob-

servations. See Basawa et al.(1997), Heyde(1997), and Godambe(1991) for

recent literature on optimal estimating functions. Desmond(1997) gives an

overview of estimating functions.

Suppose Yt is a vector of observations on n individuals at time £, and

Y(t — 1) = (YΊ,..., Yt-ι). Conditional on Y(t — 1) and a random parameter

7, the density of Yt is denoted by p(yt\y{t — l),/3,7) where β is a fixed

parameter. Let π(7|α) denote the (prior) density of 7 which may depend on

a parameter a. Suppose, for simplicity, a is known, and we wish to estimate

β and 7 from a sample Y{T) = (Yi,..., Yτ).

The likelihood function, conditional on 7, is given by

) =P(yo)TiJ=lP(yt\y(t- l),β,j). (1.1)
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The joint density of 7 and Y(T) is

p(7,v(T)|α,/?)=LGS,7)π(7|α). (1-2)

An intuitive way, often used in practice, to estimate the "mixed effects" β

and 7, is to maximize p(7,y(T)|α,/3) with respect to β and 7 and obtain

formally the estimating equations :

of°y=0, (i.3)

dlogL(β,j) + d/ogπ(7|α) = Q

97 ^7

Example 1. Linear mixed models
Take T = 1, and YQ = yo fixed(given). Suppose, conditional on 7, Y\ is

normal with mean vector X β + Z 7 and covariance matrix Σ, where X and
Z are known covariate matrices. Further, assume that 7 is a normal vector
with mean zero and covariance matrix Γ. It is assumed, for simplicity, that
Σ and Γ are known. Equations (1.3) and (1.4) then lead to the well known
mixed linear model equations, see, for instance, Robinson(1991) for a review.
Example 2. Generalized Linear Mixed Models

Again, set T = 1, and suppose

) , (1-5)

and

Var\Yλ\β,η] = V(β,Ί) = U(μ(β,Ί)). (1.6)

Without further assumptions regarding the conditional density of Y\ given
7, one may be interested in estimating β and 7. If we choose

h(μ(β,Ί))=X'β + Z'Ί, (1.7)

for an appropriate link function /ι( ), and retain the normality assumption

regarding 7 (i.e. 7 ~ iVίo, Γj), a penalized quasi-likelihood approach (see

Breslow and Clayton( 1993)) yields the estimating equations :

(1.8)

)-1(Y1-μ)-Γ-1

Ί = 0, (1.9)

where μ = μ(β,j) = hΓι{X'β + Z'j) = g(X'β + Z'j), say. Equations
(1.8) and (1.9) correspond to (1.3) and (1.4) if the conditional density of
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Y\ given 7 is a member of an exponential family. See also Sutradhar and

Godambe(1997), and Waclawiw and Liang(1993).

Analogous to (1.8) and (1.9), we now propose a general method based

on the penalized quasi-likelihood equations for dependent data. Let

E[Yt\Y(t-l),βΠ]=μt(β,Ί): (1.10)

and

Var[Yt\Y(t-l),β,Ί] = Vt(β,Ί). (1.11)

Suppose further that the prior density of 7 is known to be π(7|α). Consider
the estimating equations:

(1.12)

( L 1 3 )

If the conditional density of Yt given Y (t — 1) and 7 belongs to an exponential
family, the equations in (1.12) and (1.13) correpond to (1.3) and (1.4).

Suppose that 7 has a prior density τr(y\a) with mean 0 and variance
Γ(α). Consider a modified equation for 7 :

E [iaJ^^\ Γ(α)"'7 = 0. (1.14)

If 7 - N(θ, Γ(α)), we have

_ dlog-κ(η\ά)

dη

Hence, in this special case, (1.14) reduces to (1.13).
We show in this paper that the equations in (1.12) and (1.14) are optimal

estimating equations in the sense of a generalized Godambe criterion. The
question of the performance (sampling properties) of the estimates obtained
from (1.12) and (1.14) needs to be addressed via asymptotics. In the special
case of linear mixed models (example 1), the estimates are known to be best
linear unbiased predictors(BLUP), see Robinson(1991). In the general case,
we may use an extension of the asymptotic optimality criterion discussed by
Wefelmeyer(1996), at least for the estimation of the fixed effects parameter
β. See also Heyde(1997). This topic will not be considered in this paper.
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In general, the information matrix(or its estimate) corresponding to the
optimal estimating functions can be used to compute the standard errors of
the estimates.

The paper is organized as follows. The general optimality criterion for
the estimation of mixed effects is introduced in Section 2. The optimal esti-
mating equations are derived in Section 3. Section 4 discusses applications
to autoregressive processes and generalized linear mixed models for Markov
processes. Section 5 considers an alternative method based on a marginal
model specification. Finally, Section 6 contains some concluding remarks on
work in progress.

2 Optimality Criterion

Let y be the sample space, (Θi x Θ2) C Rk the parameter space, where
Θi C Rm,m < k. Assume that 71̂ (7) is a prior density of 7 for a fixed /?,
where 7 € Θi and β e Θ2. Let C be the set of all functions g : y x (Θi x
Θ2) -> Rk such that E\g(Y,j,β)\β] = 0, V/3 E Θ2, where the expectation is
with respect to the joint distribution of Y and 7, for a fixed β. Assume that
E[g{Y,η,β)g(Y,η,β)'] is finite for any g £ £.

We shall use the notation

< gug2 >β= E[gι{Y,Ί,β)g2{Y,Ί,β)'\β], V J l j f t 6 A (2.1)

where the expectation is with respect to the joint distribution of Y and 7,
for a fixed β.

Let p(Y, 7, β) denote the joint density of Y and 7. We assume throughout
that the following conditions are satisfied :

C.I. For any g € £, g is differentiate with respect to both 7 and β\ Both

E[%] and E[%) exist.

C.2. The joint density p(y, 7, β) is differentiate with respect to both 7 and
β. The support of p(y,7,/3) does not depend on the parameters.

C.3. For any g G £, E[g] is differentiate with respect to β under the
integral sign.

CΛ. The support of conditional density Pβ(y\j) does not depend on the

parameters 7 and β. For any g G £, i?[#|7] is differentiate with respect

to 7 under the integral sign; E[^E{g\Ί)] and E[E(g\j)dl°9^h)] exist.

The above conditions ensure the existence of various quantities in (2.4) and
the validity of the derivation of the information function defined in (2.6)
below.
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sj =

Let s = (s i , 52,. . •, Sfc), where

dlogp(Y,y,β) , ,
sm+ι=

dlogp{Y,η,

For any g € £0, A) C £,

^M = E dlogp(Y,Ί,β)'
1

dβi

, j = l , . . . ,m.

Note that p(Y,j, β) = Pβ{Y\Ί)κβ{Ί)i where pβ{Y\^) is the conditional den-
sity of Y given 7 with respect to an appropriate measure μ(y) and πβ(j) is
the density of 7 with respect to a measure 1̂ (7). We then have

E[gSj] = E

= E

= E

dlogpβ(Y\-y) dlogπβ(j)

dΊj dΊj

f

dE\g\Ί]\ dg \dlogπβ(j)
E[g\l] • (2.2)

Now,

dlogp(Y,Ί,β)
E[gsm+ι] = E^g

f dp{y, Ί,
J Oui

-dμ(y)dυ(j), I = 1,..., k - m.

(2 3>

Combining (2.2) and (2.3), we obtain

dg ^ Γ ̂  1 Λ

Note that if E\g\η] = 0, (2.4) reduces to

/ J
(2.4)

(2.5)
LC/p J /

We define the information function by

Ig(β) = E[gs]Έ[gg]~ιE[gs], (2.6)

for any g E £o5 where E[gs] is given by (2.4). The criterion of optimality is
to maximize the information function Ig{β) over J G £ Q
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Definition 2.1 A function g* is an optimal estimating function in Co if

I9.(β)-Ig(β)

is nonnegative definite, for all g E Co and all β.

Case I (Fixed Effects) : m = 0, i.e. the model involves only the
parameters of fixed effects.
When m = 0, E[gs'} — -£?[ | | ] . So the information function is given by

Let g* be the optimal estimating function for β in £o Then

It is easily verified that the nonnegative definiteness of Ig*{β) — Ig{β) is
equivalent to that of

E(gg) - H{H*)-'E[g*g*']{H*')-lH'.

The latter turns out to be the optimality criterion given by Godambe(1985)

when only fixed parameters are present with H = E \-ga\ and H* = E -A- .

See also Godambe(1960) and Durbin(1960).
Case II (Random Effects) : ra = fc, i.e. the model involves only the

parameters of random effects.
When m = k, E\gs) = -E [f}] + E [ ^ 1 + ̂ | 7 ] « 2 ^ 2 i ] . Thus the
information function is given by

Ig(β) = j'E[gg'}J,

where J = -E [^] + E [ ^ M + E[g\Ί]
dl°9^{Ί)] . Let g* be the optimal

estimating function for 7 in Co- Then we require

Ig*{β) - I9(β) = J*'E[g*g*'}J* - JE[gg]J

to be nonnegative definite. This turns out to be Chan and Ghosh(1998)'s
optimality criterion when only the parameters of random effects are present
and J* is J with g replaced by g*. See also Ferreira(1981, 1982) and Go-
dambe(1998).
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3 Optimal Estimating Equations

Here we derive optimal estimating functions for parameters of mixed effects.

Let y be the sample space and F? the σ-field generated by a specified

partition of y. Let hi be a real-valued function of Y, 7, and β such that

= 0, < = l,2,. . . ,n.

Let u( ,β) :Θι^Rm with E[u( ,β)] = 0, for fixed β.
We consider the linear estimating space given by

B(β)u(Ί,β)\ ,

where 0 (̂7,/3) is a k x 1 vector which is measurable with respect to the

σ-field Flf and B(β) is a, k x m non-random matrix.

Let

α*(7,/?) = -E [ ( ^ ί , ?jjf) l*f ,7,/{ ^ α r ( / ^ > 7 , / 3 ) ] ^ (3.1)

and

(3.2)

Theorem 3.1 Let

9* =

Suppose that hi's are mutually orthogonal in the sense that E[h*h*j \F^, 7, /3] =

0 for alii φ j , ij = 1,2, . . . , n ; wΛere ΛJ =a*(η,β)hi.

Then g* is an optimal estimating function in £Q

Proof: From Chan and Ghosh(1998), it is enough to show that g* is an

orthogonal projection of s into £o> i-e., < g,s — g* >= 0 for any # G CQ. We

have

<g,s-g* > = <g,s> - <g,g* > . (3.3)

Note that, for the simplicity of notation, we use α̂  and B for 0 (̂7,/3) and

B(β), respectively in this proof. Now the first term on the righthand side of

(3.3) can be expressed as

n

<g,s> = } E[ajhjS ] + BE[us }

\Fί,Ί,β]\ +BE[us'].
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From (2.4), since E[hi\FY^,β] = 0 for all i and any β,

Also, from (2.4), we have

- L
- \u

Since the function u is only a function of 7 and 5, the conditional expectation
of ti, conditional on 7 and 5, is u itself. Thus we have

Next the second term on the righthand side of (3.3)can be found as

2=1.7=1

[[aM^\F^Ί,β)] +BE[uu]B*'.

Since the functions aihi and a^hj are orthogonal for all i

*=1 j=l

Substituting α̂  and J5*, we get

( 3 5 )

Hence, from 3.4 and 3.5, we have < g,s > — < g,g* >= 0. This complete

the proof.

Independent Observations
If the elementary estimating functions h{, i = 1, . . . , n are independent with
£7[/ii(y, 7, /?)|7, /?] = 0, Vi = 1,2, . . . , n , it's not necessary to partition y
i.e. Fj is y itself. For an example, if Y = (y\,y2, 52/n) and y '̂s are
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independent, we take hi to be a function of yι, 7 and β such that E[hi\^, β] =
0, Vi. Here h^s are independent. Hence, the optimal estimating function in
the space Co is given by g* in Theorem 3.1 with α*(7,/3) replaced by

a?(Ί,β) = -E [ ( | ^ , 0 ) |7,/3J [Fαr^lT,/?)]-1. (3.6)

Application to discrete time stochastic processes
As an example of dependent data we develop an optimal estimating function
for a discrete time stochastic process. Let {Yi, Y2,..., YT} be a discrete time
stochastic process. Let ht be a real-valued function of YΊ,..., Yj, 7, and /?
such that

where i*1^ is the σ-field generated by the past observations Yi, Y2,..., Yt-ι
Let u(Ίβ) : Θi -> i ϊ m with E[tz( ,/3)] = 0, for fixed β.

We consider the estimating space

where αί_ 1(7, β) is a A; x 1 vector measurable with respect to F£_ι and
is a k x m non-random matrix.

Let

and

B*(β)=E\[u(Ί,l

(3.8)

Theorem 3.2 Let

T

<?* = Σ α t- i(7,/^t + B*{β)u{Ί,β).
t=\

Then g* is an optimal estimating function in Co-

The proof follows from Theorem 3.1 with Fj = F^_x.
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4 Applications

In this section, we will discuss two applications and demonstrate the deriva-

tion of optimal estimating functions.

4.1 Autoregressive Processes

Suppose that yt(j), t = 1,2,..., T, j — 1,2,..., n are observed at time t on

the j t h subject from the first order autoregressive process(AR(l) process),

(4.1)

and

φ(j) = x'jβ + zjΊ, (4.2)

where 7 ~ JVu),Γj and εt = (εί(l), .. ,εt(n))',ί = 1,2,... ,T, are iid ran-

dom vectors with E[εt] = 0 and Vαr[εί] = Vn(a). Assume that 7 and εt

are independent for any t. Here β is a (ra x 1) vector of fixed parameters

and 7 is a (g x 1) vector of random parameters, and Xj and Zj are vectors of

known covariates. Note that we are not making distributional assumptions

regarding εt other than the mean and variance assumptions.

Let

yt = (y t(l),...,y t(n))\ φ =

and

0 0

0
0
.

yt-i(n)

Then (4.1) can be written in a vector form

We consider optimal estimation for (7, β) assuming a known. We choose
elementary estimating functions ht and u such that £J(/ιί|F^_1,7,/3) = 0 and
E(u\β) = 0. Let

ht = yt-Yt-ι{X'β + ZΊ) and u = 7,

where X = (x i , . . . ,x n ) and Z = (z\,... ,z n ) .

Consider the estimating space £0 = {ff : ff = Σ)^=i At-ιht + i?u}. Now
we let
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and

where π(η) is the prior distribution of 7. Then A^_x and B* are computed
as

( ) YM)-' d B* ί "£*« \ Γ"1
A*_i = χ

t-Ma)-' and B* = Γ"1.

Thus, the optimal estimating function for (7, β) in the space Co is given
by g* =

-ιVn{a)-1 (yt - Yt-ι(X'β + Z'Ί)) - T~ι

Ί, (4.3)g\ =
T

and

= ΣXYt-iVn{aΓι (yt - Yt-ι(X'β + Z'Ί)).
ti

(4.4)
t=i

Prom (4.3) and (4.4), the optimal estimates {y*,β*) of (η,β) are given by

7* = ί-itί.ία)-1^* _ γt_lX'β*) I

and

β* =
t=l t-1

- 1

ί - l t - l

where Δ = Z (ΣΪ=I Yt-iVnicή^Yt-i) Z' + Γ"1.
Prom (2.4), the information function corresponding to the optimal esti-

mating function g* is obtained as

ί ZHnZ' + Γ"1 ZHnX' \
\ XHnZ' XHnX' J '

where Hn = ΣΪ=i ^ - i F ^ α ) - 1 ^ - ! ] .
As a special case, if the subjects are uncorrelated, i.e. Vn(a) = diag(aj,j =

1,..., n), then the optimal estimating equations from (4.3) and (4.4) turn
out to be

n T

j=l t = l
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and
n T

V^V^ -1 / \
/ ' Δ^ί 3 y ι L V J ' J

3=1 t=l

= °
Thus the optimal estimates (TJ*,/3J ) of (7,/?) are obtained as

n T

Ίi* = Δ
j=l t=l

and

n T n T

3=1 t=l

' n T

3=1 t=l

n Γ

LJ=I t=i

1 (Σ Σ
j=i t=i

where Δ = Σ?=i Σ£=i ̂ fvliU)^ + Γ"1.
We extend the method of obtaining optimal estimating functions to the

pth order autoregressive processes. Suppose that yt{j),t — 1,2, . . . , Γ , j =
1,2, . . . , n , are observed at time t on the j < / ι subject from the pth order
autoregressive process(AR(p) process),

and

Vtϋ) = ^2Φk(J)yt-k(J)+εt(j),
k=l

(4.5)

ΦU) = foiίi), • 1 ^0 ')) = -Xj/Ϊ + ZjΊi (4-6)

where 7 ~ Nq ίo, Γj and εt = (εt(l),..., ε*(n))', t = 1,..., T, are ΐid random
vectors with E[εt] = 0 and Vαr[εt] = Vn(a). Assume that 7 and £* are
independent for any t. Here β is a (m x 1) vector of fixed parameters, 7 is a
(q x 1) vector of random parameters, and Xj and Zj are matrices of known
covariates.

Let

άι) ° ••• ° ^
0 ypt(2) . . . 0

γtp=

V 0 0 ••• ypt(n), )

and ^ ( j ) = {yt-ι{j),yt-2U)i - ">yt-p{j))'- Elementary estimating func-
tions ht and u for 7 and /? are chosen to be
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and

where X = (X(l),... ,X(n)) and Z = (Z(l),... ,Z(n)). These elemen-
tary estimating functions satisfy the required condition of unbiasedness, i.e,
ElhtlF^^β] = 0 and #M/?] = 0.

In the estimating space Co — {g : g = Σ*Li M-\ht + Bu}, the optimal
estimating function for (7, β) is given by g** = (ffί*,^*) where

T

Σ
t=ι

gl* = £ ZY;tVn(a)-1 (yt - Ypt(X'β + Z'Ί)) - Γ ' S ,

and

gl* = ΣXY'vtVn{ά)-1 fa - Ypt(X'β + Z;7))

From gl* and 32*5 the optimal estimates of 7 and /? are found as

Y* = A~ιZ {γ;tVn(a)-ι(yt - YptX'β**)}

and

Γ

n+Vn(θl)'~lYnt \ X —ZA~~l.
t=l K t=l
T ( T

t=i { t=i J

where Δ = Z(ΣLI YptV'1 (a)Ypt)Z' + Γ " 1 .

4.2 Generalized Linear Mixed Models for Markov Processes

Suppose that {yt(j),t = 0,1,. . . , Γ, j = 1,2,..., n} is a markov process with
a transition density

f(Vt(j)\Vt-ιU)>Φ(J)) = c exp{φ{j)mt{yt{j),yt-i{j)) ~ qt(yt-i{J)>ΦU))}
(4.7)

and
xjβ + z'jΎ, (4.8)

where 7 ~ JV(O,Γ) and c is a function of yt{j) and yt-ι(j). Here /3 is a
(mxl) vector of fixed parameters, 7 is a (r x 1) vector of random parameters,
and Xj and Zj are known vectors of covariates. It is assumed for simplicity
that conditional on 7, the processes {yt{j)} are independent for different
j = 1,2,...,n.
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Let X = (xι,x2,...,xn) and Z = (zχ,Z2,. • • ,zn). Then (4.8) can be
written as

/ φ{\) \

Φ =
φ(2)

= X β + Zj.

We consider joint optimal estimation for (7, β), assuming that Γ is known.
We choose elementary estimating functions ht and u for 7 and β such that

= rπt — qt and u = 7, where
Let

\

mt(yt(2),yί_1(2))

™>t(yt(n),yt-i(n))

and qt =

\

/

Let
Consider the estimating space £o = {9 '• 9 = Σt=i -A-tht + Bu}.

A; = ~E[φ,§f

Then we have

and

r-1,

where ςft = diag {-Q^^qt{yt-ι(j),Φ{j))J = 1,... ,n j . Thus, in the space
£o the joint optimal estimating function for (7,/?) is given by g* = (^,^2)5
where

n T

= ΣΣzjzj{mt(ytU),yt-i(j))-qt(j))-r-1Ί, (4.9)

and
n T

(4.10)

The optimal estimates (7*,/?*) for (7,/3) can be obtained by solving the
equation g* = 0 for 7 and /? simultaneously.
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Prom (2.4), the information function corresponding to the optimal esti-
mating function 3* is obtained as

/ ZHnZ' + Γ-1 ZHnX' \

\ XHnZ XHnX I

Where Hn = ΣΪ=ι E[qt]
We now illustrate the model by two examples.

Example 1. Consider an AR(1) process with normal errors, i.e.

yt(j) = Φ(j)yt-Λj) + εt(j) (4.11)

and

φ[j) = χ.β + z'jΊ, (4.12)

where εt(j) ~ indep iVίO,σ|J and 7 ~ iVίO,Γj. The conditional density is

given by

-ιϋ)iΦ(j)) =ceχp\- ^2(yt{j)-Φ{j)yt-Aj)) >, (4.13)

where c = -Ί=^=—.

Since (4.13) can be written as

f(ytϋ)\yt-i(j),Φϋ))=c*

we have

mt{ytϋ),yt-ι{j)) =

and

This gives μ t(j) = σ^y^ifiφij) and Viϋ) = σ^y^ij). Hence the opti-

mal estimating function for (7,/?) is given by g* = (31,32)? where

n T

and

n T

9*2 =
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The optimal estimates of 7 and β are obtained by solving the equations
gt = 0 and g\ = 0 which yields the same estimates as ήfj and β\ in section
4.1.
Example 2. Let {yt{j)},t = 0,1,2,..., be a Markov chain, for each j =
1,2,..., n, defined on the binary state space {0,1}.

Denote

πtj = P(yt(j) = l |yt-i(j)), θtj = logit{πtj) = log ί γ ^ j — ) •

We then have

expjθtj}
exp{θtj}'

Consider the model

θtj=βo + Φjyt-ι(j), (4.14)

where φj = x'jβ + zfl- Conditionally on 7, the Markov chains {yt{j)}>J =

1,..., n, are assumed to be independent. Suppose 7 ~ Λf if), ΓJ. Conditional

on 7, the transition densities are given by

p(vtU)\Vt-i(j),Ί) = 7 r j J u ) ( l - ^ ) ( 1 - y t u ) )

= exp{θtjyt(j) - logfl + ea?p{β

= exp{βoyt(j) + Φjyt-i(j)yt{j)

- log(l + exp{β0 + Φjyt

The optimal estimating functions for (7,^,/?o) then reduce to

n Γ

n Γ

and

The third estimating function g% here corresponds to the common intercept
βo in the model for θtj
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5 Marginal Quasi-likelihood Estimation

Let fit(y{t - l),β) = E\yt\yt-ι, • • ,yi,β], and Vt{y(t - l),β) =
Var[yt\yt-ι,...,yi,β]. The optimal estimating equation for β is

τ /

Σ 0jH(v(t-l),β)\ Vt-\y(t-l),β)(yt--μt(y(t-l),β))=O. (5.1)

Let β denote a solution of (5.1).

Define μt{y(t - l),j,β) = E[yt\yt-u • ,2/i,7,/?L and

t_i,...,yi17,i9]. For fixed /3, let

denote an elementary estimating function for 7.
Suppose 7 has a prior density π(7|α) with mean 0 and variance Γ. Con-

sider the estimating equation

T

Σ
t=i

r- X 7 = 0. (5.2)

For fixed j9, (5.2) is an optimal estimating equation when only the random

parameter 7 is present in the model. We now substitute the marginal quasi-

likelihood estimate β in (5.2), when β is unknown. Denote the resulting

estimate of 7(obtained from (5.2) after replacing β by β) by 7. The estimates

β and 7 will be referred to as the marginal quasi-likelihood estimates(MQL).

Note, however, that for fixed /3, (5.2) is the same as the estimating equation

(1.14) for 7 corresponding to the joint optimal estimation of β and 7. It must

be noted that (5.1) and (5.2) are not jointly optimal; on the other hand, (5.1)

is optimal for β with respect to the marginal density of y = (y*,..., y\) and

(5.2) is optimal for 7(when β is known) with respect to the joint density of

y and 7.

Application to Autoregressive Processes : Suppose that yt{j), t = 1,2,..., T,

j = 1,2,..., n are observed at time t on the jth subject from the first order

autoregressive process(AR(l) process):

yt(j) = Φ(J)yt-i(j)+εt(j), (5.3)

and
= Xjβ + Zjj, (5.4)

where 7 ~ 7VρΓθ,r) and ε t = (εt( l ) , . . . ,εt{n))\t = 1,2,...,T, are iϊd

random vectors with E[εΐ\ = 0 and Vαr[εt] = Vn(a). Assume that 7 and εt
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are independent for any t. Here β is a (m x 1) vector of fixed parameters, 7
is a (q x 1) vector of random parameters, and Xj and Zj are vectors of known
covariates.

Let

Vt= ( y t ( l ) , - - - , » * ( " ) ) 1

and ϊt_i = diag(yt-ι(j),j = 1,... ,n), i.e., lt_i is a diagonal matrix with
O'? j )

t Λ diagonal element yt-i(j), j = 1,. . ,n.
We consider optimal estimation for ̂ 9, treating 7 as a nuisance parameter

when a is known. We assume that ε* has a normal distribution for our
illustration. Now

and

Vt(y(t - 1),/?) = Ή.xZVαφlift-i,. . .,yi]ZYt-i

where X = (zi, . . . , xn) and Z = (zi,..., zn).
To find the conditional expectation and variance, we derive the pos-

terior density π(7|j/ί_i,... ,yi) of φ, conditional on the past observations

oc p ( y t i ,

r—\

(yr - Yr-^X'β + Z'Ί)) I exp j-Ifr'r-S

- i (7 - ΔΓΛ^-ij'Δt-iίT - Δt-_\A-i)

t-1

r=l

ΣUXYr-lVn{<x)-Xyr - Σy'rVn{<*)-lYr-lX'β
r=l r=l

where
ί-1

iKίa)- 1^!^ + Γ"1

r=l
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and
ί-1

r=l

We then have βt(y(t — ί),β) and Vt(y(t — l),β) given by

μt(y(t - 1),/3) = Yt-i{X'β + Z ' A ^ - i } ,

and
- 1),/?) = Yt^ Vn(a).

Thus the optimal estimating equation for β is given as (5.1) and the optimal
estimating function is computed as

<Γ =
t-\

where

A* —
Λt-ι —

ί-1

Σ
r=l

and

BUi = Yt-iZ'A^ZYt-! + Vn(a).

Hence, from the above equation, the optimal estimate of β is found as

Γ T

β =

τ -.-1

Σ Λ* Ft*-1 A*
,t=ι J

U=i r = l

From (2.4), the information function corresponding to the optimal estimating
function g* is obtained as

t=l

Suppose that, for fixed /?, we wish to estimate 7. We choose an elemen-
tary estimating function ht for 7 as
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Then the optimal estimating equation for 7 is given as (5.2) :

Σ(rt_iZ')Vn(α)-1 (yt - Yt-i(X'β + Z'Ί)) - T~ι

Ί = 0.
t=l

Thus the above equation yields an estimate 7* of 7 when β is known.

- 1

T =
.t=i

•Σ

The estimate 7* is optimal for 7 when β is known. When β is unknown, we
replace it by β in 7* to obtain 7.

6 Concluding Remarks

In this paper, we have derived optimal estimating equations for estimating
fixed and random parameters in mixed effects models with dependent ob-
servations. Among the issues that are not addressed in this paper are : (ϊ)
asymptotic distribution theory, (ii) estimation of variance components, and
(in) computational aspects. We hope to return to these topics in future
work. Here, we content ourselves by offering the following remarks on these
important issues.
(i) Asymptotic Distribution Theory

The consistency and asymptotic normality of the marginal quasi-likelihood
estimate β in Section 5 can be established, under regularity conditions, from
the general theory discussed by Heyde(1997). Appropriate extensions to de-
velop asymptotic distribution theory for the joint estimation of β and 7 are
needed. Moreover, work on asymptotic efficiency of the estimates will be
useful.
(ii) Estimation of Variance Components

Assuming 7 ~ ΛΓ(0, Γ), one can estimate Γ from the marginal quasi-
likelihood in Section 5. An extension of the REML approach discussed by
Breslow and Clayton(1993) can be used in practice.
(in) Computational Aspects

Extensions of Fisher scoring method discussed by Breslow and Clay-
ton(1993) need to be developed. For most of the examples in our paper,
however, we have obtained explicit solutions of the estimating equations.

Consistent parameter estimates of the information matrices can easily
be obtained and hence the estimates of the standard errors of the estimates
can be computed, in principle.
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