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Abstract

Stochastic partial differential equations (SPDE) are used for stochastic
modelling , for instance, in the study of neuronal behaviour in neurophysiol-
ogy, in modelling sea surface temparature and sea surface height in physical
oceanography , and in building stochastic models for turbulence. Proba-
bilistic theory underlying the subject of SPDE is discussed in Ito (1984) and
more recently in Kallianpur and Xiong (1995) among others. The study
of statistical inference for the parameters involved in SPDE is more recent.
Asymptotic theory of maximum likelihood estimators for a class of SPDE is
discussed in Huebner, Khasminskii and Rozovskii (1993) and Huebner and
Rozovskii( 1995) following methods in Ibragimov and Khasminskii (1981).
Bayes estimation problems for such a class of SPDE are investigated in
Prakasa Rao (1998, 2000) following the techniques developed in Borwanker
et al.(1971). An analogue of the Bernstein-von Mises theorem for parabolic
stochastic partial differential equations is proved in Prakasa Rao (1998). As
a consequence, the asymptotic properties of the Bayes estimators of the pa-
rameters are investigated using the asymptotic properties of maximum like-
lihood estimators proved in Huebner and Rozovskii (1995). Nonparametric
estimation of a linear multiplier for some classes of SPDE are studied in
Prakasa Rao(2000a,b) by the kernel method of density estimation following
the techniques in Kutoyants(1994).
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1 Introduction

Stochastic partial differential equations(SPDE) are used for stochastic mod-
elling, for instance, in the study of neuronal behviour in neurophysiology,
in modelling sea surface temperature and sea surface height in physical
oceanography and in building stochastic models for the behaviour of tur-
bulence (c¢f. Kallianpur and Xiong (1995)). The probabilistic theory of
SPDE is investigated in Ito (1984), Rozovskii (1990), Kallianpur and Xiong
(1995) and De Prato and Zabczyk (1992) among others. Huebner et al.(1993)
started the investigation of maximum likelihood estimation of parameters for
a class of SPDE and extended their results to parabolic SPDE in Huebner
and Rozovskii (1995) following the approach of Ibragimov and Khadsmin-
skii(1981). Bernstein -von Mises type theorems were developed for such
SPDE in Prakasa Rao (1998,2000) following the techniques in Borwanker et
al.(1971) and Prakasa Rao (1981). Asymptotic properties of the Bayes esti-
mators of parameters for SPDE were discussed in Prakasa Rao (1998,2000).
Statistical inference for diffusion type processes and semimartingales in gen-
eral is studied in Prakasa Rao (1999a,b).

Our aim in this paper is to review some recent work of us on the
Bernstein-von Mises type theorems for parabolic SPDE and to present some
new results on the problem of estimation of a linear multiplier for a class of

SPDE using the methods of nonparametric inference following the approach
of Kutoyants (1994).
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2 Main Results

2.1 Bernstein-von Mises theorem

Let (Q2, F, P) be a probability space and consider a stochastic partial differ-
ential equation (SPDE) of the form

du®(t,z) = A%0(t, x)dt + dW (t,2),0 <t < T,z € G (2.1)

where A% = 0A; + Ay, A; and Ay being partial differential operators, 8 €
© C R and W (t,z) is a cylindrical Brownian motion in Ly(G),G being a
bounded domain in R? with the boundary G as a C*°-manifold of dimension
(d — 1) and locally G is totally on one side of dG. For the definition of
cylindrical Brownian motion, see, Kallianpur and Xiong (1995), p.93.

The order Ord(A) of a partial differential operator A is defined to be the
order of the highest partial derivative in A. Let mg and m; be the orders
of the operators Ag and A, respectively. We assume that the operators Ap

and A; commute, m; is even and

(CO)  my > =(Ord(A%) —d)

NN

in the following discussion.

Suppose the solution u? (¢, ) of (2.1) has to satisfy the boundary condi-

tions

W (0,3) = uo(x) (2.2)

and
DYu’(t,2)loc = 0 (2.3)
for all multiindices 4 such that |v| = m —1 where 2m = max(m;,mg). Here

F;led

Y £ - -
Dlf(=) 83:1“---8@1“

f(=) (2.4)
with |y| =1 + -+ + 74. Suppose that

A@u=— 5 (~=1)D*af? (x)DPu) (2.5)

laf,|8]<m:
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where

0’ (z) € C°(G). (2.6)
Let
a®?(9,z) = Oa?ﬁ(a:) + agﬂ(z). (2.7

Suppose 8y is the true parameter.
We follow the notation introduced in Huebner and Rozovskii (1995).
Assume that the following conditions hold.

(H1) The operators Ay and A, satisfy the condition

/ Ajuvdz = / uA;vdz,u,v € C§°(G),i =0, 1.
G G

(H2) There is a compact neighbourghood © of 6y so that {Ay,0 € ©} isa
family of uniformly strongly elliptic operators of order 2m = max(mj,mp).

For s > 0, denote the closure of C§°(G) in the Sobolev space W*2(G)
by W

The operator A% with boundary conditions defined by (2.3) can be ex-
tended to a closed self-adjoint operator L4 on Lo(G) (Shimakura(1992)). In
view of the condition (H2) , the operator Ly is lower semibounded, that is
there exists a constant k() such that —Lg + k(0)I > 0 and the resolvent
(k(6)I — L4)™ ! is compact. Let Ag = (k(6) — £9)2+n. Let h;(6) be an or-
thonormal system of eigen functions of Ag. We assume that the following

condition holds.

(H3) There exists a complete orthonormal system {h;,i > 1} independent
of 6 such that
Agh; = )\i(e)h,-,e € 0.
The elements of the basis {h;,i > 1} are also eigen functions for the
operator Ly, that is
Loh; = plh;

where
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pl = —XNI"(0) + k(6).

For s > 0, define Hj to be the set of all u € Ly(G) such that

lulls = (2 X5 O)1(ws ) a@f)/* < o0,
J=1

For s < 0, Hj is defined to be the closure of Ly(G) in the norm ||u||,g
given above. Then Hj is a Hilbert space with respect to the inner product
(-)-)s,6 associated with the norm ||.||5,¢ and the functions hfy = A;°(0)hi, i >
1 form an orthonormal basis in Hj. Condition (H2) imples that for every s
,the spaces Hj are equivalent for all §. We identify the spaces Hj (denoted
by H?) and the norms ||.||s ¢ for different 6 € ©.

In addition to the conditions (H1)-(H3), we assume that
(H4)ug € H=* where a > %. Note that ug € Ly(G),
(H5) the operator A; is uniformly strongly elliptic of even order m; and has
the same system of eigen functions {h;,7 > 1} as Ly.

The conditons (H1)-(H5) described above are the same as those in Hueb-
ner and Rozovskii (1995).

Note that ug € H™ . For § € O, define

ub; = (4o, hip™) . (2.8)
Then the random field
o0
WPt z) = ul (t)hy(z) (2.9)
1=1

is the solution of (2.1) subject to the boundary conditions (2.2) and (2.3)

where u!(t) is the unique solution of the stochastic differential equation

dul(t) = pfuf(t)dt + X7 (0)aWi(t),0 <t < T, (2.10)

u(0) = 4. (2.11)

1
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Let 7V be the orthogonal projection operator of H~ onto the subspace
spanned by {h;;*,1 <i < N}. Let

uMl(t,z) = aNul(t,x) (2.12)

where u¢(t) is the solution of (2.10) subject to (2.11). Note that

du™P(t,z) = A%uMO(t, z)dt + dWN (t,2),0<t < T,z €G (213

with
u™0(0,z) = 7NV ug(z) (2.14)
and N
WN(t,z) =Y A\W;(t)hg (). (2.15)
1=1

Here {W;(t),t > 0},i > 1 are independent standard Wiener processes.

Let P)¥ be the probability measure generated by u™? on C([0,T]; RY).
Let h;® denote hz By u? denote u™N-% and u denote u? when 8y is the true
parameter. It is known that, for any 6 € ©, the measures P(,N and Pé’X are

absolutely continuous with respect to each other and

dpy r ©*-63) [ ,
logdP"N(uN) = (60— 6o) /Alu (3))0——2——/”A1UN(3)”ods
%o 0 0
T
—(6 - 60) /Alu ), Agu® (s))ods. (2.16)
0

It is easy check that (cf. Huebner and Rozovskii (1995))

A [(Aru™ (5), dW ™ (5))o
On — 60 = (2.17)
T 14107 () s

where Oy is the maximum likelihood estimator of 0y. Huebner and Ro-

zovskii (1995) studied the asymptotic properties of this estimator under the
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conditions (H1)-(H5). Further more the Fisher information is given by
Iy=E / | A4,uN% (s) | 2ds. (2.18)
0

Note that Iy — oo as N — oo from the Lemma 2.1 of Huebner and
Rozovskii (1995).

Suppose that A is a prior probability measure on (O, B) where B is the
o-algebra of Borel subsets of set © C R. We assume that the true parameter
6o € O° the interior of ©. Further suppose that A has the density A(-)
with respect to the Lebesgue measure and the density A(-) is continuous and
positive in an open neighbourhood of 6, the true parameter.

Let

=10 - 6y) (2.19)
and
p'(rlu™) = Iy *p(y + r Iy ™) (2:20)
where p(0|u”) is the posterior density of 6 given 4. Note that
A (uM)A(6)
pOlu) = —% (2:21)

n.
2

é ﬁ,@ (uN)A(8)dO
(1]

and let p*(7|u”") denote the posterior density of I}Vﬂ(ﬂ —0y). Let

dpPY _12 /dPN
_ On+7Iy fn 599
vn(T) dPg]\of /dpejg (2.22)
_ 9N+TI—1/2 as
dPéN ‘
N
In view of (2.16), it follows that
) T
loguw(r) = — 5713 / 1A (s)[2ds (2.23)
0

since
(A (e),dul (s) = Ag(s)u® (s)ds)o
On = = . (2.24)
g [ A1ul (s)[5ds

oy
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Let o
Cy = / v (T)AOn + I ?)dr, (2.25)

It can be checked that
p*(rluN) = CRlun (r)AOn + TINY). (2.26)

T

Note that (C1) Bn = Iy' [||A1u® (s)||2ds — 1 as. [Pg,) as N — oo.
0

from the Lemma 2.2 of Huebner and Rozovskii (1995). Then the following

relations hold:

() Jim vy(r) = exp(—57) as. [Py,

(ii) for any 0 <y < 1,
1
log (1) < —57%(1 ~ )
for every 7 for sufficiently large N, and

(iii) for every & > 0, there exists 4/ > 0 such that

1

sup wn(r) < exp{~77'I5'}
lr|>61)/?

as N — oo.

Further more (C2) the maximum likelihood estimator 6 is strongly consis-
tent, that is
On — 6o as. [Py,] as N — oo.

from the Lemmas 2.1 and 2.2 in Huebner and Rozovskii (1995). Suppose
that (C3) K(-) is a nonnegative function such that, for some 0 < v < 1,

/ K(T)e_%Tz(l_'Y)d'r < 00.
—00

(C4) For every n > 0 and 6 > 0,

e / K(rI5Y*)A(@y + 7)d7 — 0 a.s [Py,]
|T]>d
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as N — oco.

We now have the following main theorem which is an analogue of the
Bernstein-von Mises theorem (cf.Prakasa Rao (1981, 1984)) for diffusion
processes and diffusion fields. A special case of this result for some classes
of SPDE’s was recently proved in Prakasa Rao (2000).

Theorem 2.1: Suppose the conditions (C3) and (C4) hold in addition to
the conditions (H1)-(HS5) stated earlier where A(-) is a prior density which is

continuous and positive in an open neighbourhood of 6y, the true parameter.
Then

: T * N 1 1z —1s2
Jim [ K@) (rhu )—(%) e 3 ldr = 0as. [Ps]. (2.27)

—00
As a consequence of Theorem 2.1, it is easy to get the following result.

Theorem 2.2: Suppose the conditions (H1)-(H5) hold. In addition suppose
that:

(D1) A(+) is a prior density which is continuous and positive in an open
neighbourhood of 6y, the true parameter; and
o
(D2) [ |68|™A(0)df < oo for some integer m > 0.

—0Q

Then

o0 1
1\2 _12
i m * N b - —37 = . .
1}1_1)1(1’0 / || p* (T|u™) <2W> e 27 |dr =0 a.s. [Pp,) (2.28)
—00

Remarks: It is obvious that the condition (D2) holds for m = 0. Suppose
the condition (D1) holds. Then it follows that

2

o0

: * N 1 172 _1,

lim / lp*(7|u )—(5;) e”2" |dr =0 a.s. [Py,]- (2.29)
—00

N—o00
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This is the analogue of the Bernstein-von Mises theorem in the classical

statistical inference. As a particular case of Theorem 2.2, we obtain that

~

Ego[IN*(Bn — 00)]™ — E[Z)™ as N — o0 (2.30)

where Z is N(0,1).
For proofs of Theorems 2.1 and 2.2, see Prakasa Rao(1998).

3 Bayes Estimation

We define an estimator Oy for 8 to be a Bayes estimator based on the path
N corresponding to the loss function L(6, ) and the prior density A(6) if

it is an estimator which minimizes the function

u

Bu(p) = [ L0.0)p(0lu")db,p € ©

where L(6,¢) is defined on © x ©. Suppose there exist a Bayes estimator
On. Further suppose that the loss function L(6, ) satisfies the following
conditions:
(B1) L(6, ) = L(I6 — o) > 0;
(E2) L(t) is nondecreasing for ¢t > 0;
(E3) there exists nonnegative functions Ry, K(7) and G(7) such that

(a) RNL(715""?) < G(7) for all N > 1;

(b) RNL(TIX,UQ) — K(1) as N — oo uniformly on bounded intervals

of 1;
(c) the function

o0
/ K(t+ m)e_%Tzd'r
—00

achieves its minimum at m = 0, and

(d) G(7) satisfies the conditions similar to (C3) and (C4).
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The following result can be proved by arguments similar to those given
in Borwanker et al. (1971). We omit the proof.

Theorem 3.1: Suppose the conditions (D1)-(D2) of Theorem 2.2 hold in
addition to (H1)-(H5) stated earlier. In addition , suppose that the loss
function L(0, @) satisfies the conditions (E1) - (E3) stated above. Then

IN?*(y — 6x) = 0 as. [Py, as N — 00 (3.1)
and
lim RyBy(On) = lim RyBn(On) (3.2)
N-—oo N—-oo

12 7 ,
= (QL) /K(’T)e—%TZdT.
T —0o0

Huebner and Rozovskii (1995) proved that
Oy — 6y a.s. [Pg,] as N — o0 (3.3)

and

IN?*(6n — 60) 5 N(0,1) as N — oo (3.4)

under the conditions (H1)-(H5). As a consequence of Theorem 3.1, it follows
that
On — 6o a.s [Py,] as N — oo (3.5)

and
1?6y — 60) 5 N(0,1) as N — oo. (3.6)

In other words the Bayes estimator 51\; of the paramaeter 6 in the
parabolic SPDE given by (2.1) is strongly consistent, asymptotically nor-
mal and asymptotically efficient as N — oo under the conditions (H1)-(H5)
of Huebner and Rozovskii (1995) and the conditions stated in Theorem 3.1.

Remarks: A general approach for the study of asymptotic properties
of maximum likelihood estimators and Bayes estimators is by proving the

local asymptotic normality of the loglikelihood ratio process as was done in
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Prakasa Rao (1968), Ibragimov and Khasminskii (1981) in the classical i.i.d.
cases and by Huebner and Rozovskii (1993) for some classes of SPDE. Our
approach for Bayes estimation, via the comparison of the rates of convergence
of the difference between the maximum likelihood estimator and the Bayes

estimator, is a consequence of the the Bernstein - Von Mises type theorem .

We now consider a nonparametric version of the problem discussed earlier
for a class of SPDE.

4 Stochastic PDE with Linear Multiplier

Let (2, F, P) be a probability space and consider the process u.(t,z),0 <
z <1,0 £t <T governed by the stochastic partial differential equation

due(t, z) = (Aue(t, z) + 0(t)uc(t, z))dt + edWo(t, x) (4.1)

where A = %;. Suppose that ¢ — 0 and § € © where O is a class of
real valued functions 6(¢),0 < ¢ < T uniformly bounded , k times continu-
ously differentiable and suppose that the k-th derivative 8%)(.) satisfies the
Lipschitz condition of order a € (0, 1], that is,

0% (2) — 0B (s)| < |t — 8|, B =k + a. (4.2)
Further suppose the initial and the boundary conditions are given by

{ u:(0,2) = f(2), f € L[0,1]

(4.3)
U (t,0) = ue(t,1) =0,0<t<T

and @ is the nuclear covariance operator for the Wiener process Wy(t, )
taking values in L,[0, 1] so that

Wol(t,z) = QV?W(t, z)

and W (¢, z) is a cylindrical Brownian motion on L9[0, 1]. Then, it is known
that (cf. Rozovskii (1990), Kallianpur and Xiong (1995))

Wolt,a) = Y- ¢ e(@)Wilt) as. (44
=1
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where {W;(t),0 < t < T},i > 1 are independent one - dimensional stan-
dard Wiener processes and {e;} is a complete orthonormal system in L;[0,1]
consisting of eigen vectors of @ and {g¢;} eigen values of Q.

We assume that the operator @ is a special covariance operator @ with
ex = sin(kwz),k > 1 and )\, = (nk)?,k > 1. Then {ex} is a complete
orthonormal system with eigen values ¢; = (1 4+ A;) ™%, > 1 for the operator
Qand Q = (I — A)™L. Note that

dWg = QY2dW. (4.5)

We define a solution u,(¢,z) of (4.1) as a formal sum

Ue(t1 -T) = Z Uis(t)ei (.’L‘) (4'6)
1=1

(cf. Rozovskii (1990)). It can be checked that the Fourier coefficient wu;c(t)

satisfies the stochastic differential equation

3

duie(t) = (6(t) — Ai)use (t)dt + A_-l—ldWi(t)’ 0<t<T (4.7)
i
with the initial condition
1
uie(0) = vi, v; = /0 f(@)ei(z)dz. (4.8)

We assume that the initial function f in (4.3) is such that

1
v; =/ f(z)es(@)ds >0, i> 1.
0

Estimation of linear multiplier

We now consider the problem of estimation of the function §(¢),0 <t < T
based on the observation of the Fourier coefficients u;.(t),1 < ¢ < N over
[0, T] or equivalently the projection ugN)(t, z) of the process u.(t, z) onto the
subspace spanned by {ej,...,enx} in Ly[0,1].

We will at first construct an estimator of 6(.) based on the path
{use(t),0 < t < T}. Our technique follows the methods in Kutoyants (1994),

p-155.
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Let us suppose that

sup sup [6(¢)| < L. (4.9)
€0 0<t<T

Consider the differential equation

du;(t)
dt
It is easy to see that

= (6(2) — M))ui(t), ui(0) = v, 0 <t < T (4.10)

u;(t) = viefot(e(s)_’\‘)ds, 0<t<T
and hence

ui(t) > ve Mt 0<t<T (4.11)

where

M; = Lo + A;. (4.12)

iFrom the Lemma 1.13 of Kutoyants (1994), it follows that

€

sup |uic(s) — u;(s)] < eMit sup |Wi(s)| (4.13)
0<s<T Ai +1 0<s<T
almost surely. Let
AW = {w: inf ui(s) > lv-e_IV[it} (4.14)
t 0<s<t Nl =9t

and A; = Ag). Note that Agi) contains the set A; for 0 <t < T.
Define the process {Y;c(t),0 <t < T} by the stochastic differential equa-

tion

__ & -
2+ 1)
tut (OX(AP)duie(8),0 S t < T (4.15)

dY;c(t) 2(t)x(AM)dt

where x(E) denotes the indicator function of a set E. Let ¢. — 0 as
€ — 0 and define
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bictt) = 3+ x(4)6" [ G2l (4.16)

where G(.) is a bounded kernel with finite support , that is , there exists

constants a and b such that

b
/'Gmmu:LGagzomru<ammu>b. (4.17)
a

We suppose that a < 0 and b > 0. Further suppose that the kernel G(.)

satisfies the additional condition

/ Gluywdu=0,j=1,... .k (4.18)

—00

Note that

- T t—s
Bie(t) = A = x(Ai)g! /0 G(52)aYie(s) (4.19)
_ a1 [Tt . e? @)
= x(4)e; / GZ206) — X - gy e (AL s
Aot S (AL (o).

Hence

%)(6(s) — Ai)ds]

R T -
Blb(t) - X = Bix(ae [ 6(*

e
T _ 2
~El(A)o7 | G(%—S-)Z(—E—l) u2(5)x(AP)ds]
A7 T (X(AL)aWi(s))
Note that
(B9 [ 6 ¢€ ) g (AL )W (5))?

£

_£ D\, (s)12
Blo | 6Dl (A9

_ T t—s 62 (3)
< 67 || O gy Bl (AL ds

IN

:

= J12ie (sa'Y)'
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Therefore, for sufficiently small € > 0,

E[ic(t) - 6(t)] = Aigr! — 6(t))ds]

—E[x<A°> 016) - -)1 2
~E(A)0 [ G0 s oA
+0(J1se) (4.20)

since, for 0 <t < T,

t —_
o / a(t=2) (4.21)
for sufficiently small € > 0 by the condltlons imposed on the kernel G.
Therefore, for 0 < t < T, for sufficiently small £ > 0,

BB (1) - 001 < 4{4;" — 6(t))ds)?
T o0 1)2
it [ e — & =2 (s)y (4D
BT [ O gy (A ds])?
+0(JZ,). (4.22)

Applying the Taylor series expansion and properties of the kernel G(.)
and the function 6(.), it is easy to see that the first term is bounded by

C1¢; B{/ G (u)uP|du}? (4.23)

where C) is a constant depending only on the the constants Lo in (2.9) and

the smoothness parameter & of 6(.). Note that

c _ l —M;T
P(47) = P{Olgl<fTuze(t) < guie 1}

0<t<T 2

< PLinf [us(t) — w(®)] <—%v,~e_M"T} (from (4.11))

. 1 _u
< P{ inf [u.(t —ui(t)]+osntlszui(t) < Zu;e”MT}

0<t<T
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1 :
< P{ sup |uie () — ui(t)] > —vie_M'T}
0<t<T 2

2 —4M T()\ + 1)}
8e2T

P( sup |W;(t)| > a) < min(2, —’/ )e 5
0<t<T

from Kutoyants (1994), p.28. The third term is bounded by

< 2exp{—2

since

Ors i e [ 16wy (4.24)

where C5 is an absolute constant. Relations (4.22) -(4.24) show that

B(t) - 001 < Cald?{ [ G |duy?

202e4MT () +1)

+exp{_ or }O(t) — X)?
_,_()\ +12 v % 2MT{/ G(u)|du)?]
+O(J1i5) (4.25)

where C3 is an absolute constant. Hence

B0 (t) = 0(1)]> < Ca[62® + 7% (0(t) — X)* + ks + JE]  (4.26)

where Cjy is a constant depending on the kernel G(.) and the Lipschitz

constant L,

'U?C”‘tMiT()\i +1)

d; = T (4.27)
and
e2MiT

Following computations as given above(cf. Kutoyants (1994), p.157), we

can show that

Efic(t) —0(t))> < Cs[¢? +e~%77(0(t) — \i)? + etk + €207 ki + JZ,.] (4.29)
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where Cj5 is a constant depending on the kernel G(.) and the Lipschitz con-
stant Lg. Choosing ¢, such that

2=l
we obtain that ¢, = 5<'—T2+17 and we have
Elfie()—0(8)]2 < ColeP91 +e~% 7 (9(8)—Ag)2+e kit e B ki + 7%, ] (4.30)
and

A 2 32 | —die™? 2, 4 2
(El0ic(t) — 6(1)])° < Cy[eP+1 4+ 7% “(0(t) — Ni)* + ki + J1c)-  (4.31)
Note that 6;.(t),1 < i < N are independent estimators of 6(t) since
the processes W;,1 < 1 < N are independent Wiener processes. The above

inequalities imply that

A 2 28 | —(inficicn di)e™? . 2
sup E[0;.(t) —0(t)]" < Cgle?+ +e 1<i<N G sup (0(t) — \;)
1<i<N 1<i<N

4 . i 3
+€* sup k; +¢e2+1 sup k;

1<i<N 1<i<N
+ sup J12¢€] (4.32)
1<i<N
Note that
e2(Lo+N?n?)T
sup k; < ————5 = By (say) (4.33)
1<i<N infi<i<n v}
and
2 e 4.34
inf - > 1 £ = . .
(S 2 (v g = v (ea) 39
Therefore

j. 2 28 —yne~2 2,.2\2
sup E[fi(¢t) —0(t)]° < Crle®+ +e (|8(®)| + N<n%)
1<i<N

48
+€45N + e2+1 3N

+ sup J&.] (4.35)
1<i<N

In particular

sup Var(Bie(t)) < Cile™F 4 e ™e(|0()] + N?n2)?
1<i<N

48
+64,3N + e28+1 By

+ sup Jp]. (4.36)
1<i<N
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We assume that the following conditions hold for 1 < i < N. Let 7, =
28
€ 28+1, Suppose that

1 0
(Cl)’)’?Jﬁ-E — -m [ Gz(u)du as € — 0;

Under the above condition , it follows that the estimators 6;.(t),1 <17 <

N are independent estimators of 6(¢) such that

sup |Elfie(t) — O(t)]| < Cye (4.37)
1<i<N
and
~ 4
sup Effic(t) — 0()]2 < Coe Tt (4.38)
1<i<N

where Cg and Cy are constants depending on the kernel G(.), the Lipschitz
constant Lo and N. Note that the estimators 6;.(t),1 < i < N are the best
estimators of 6(t) as far as the rate of mean square error are concerned by
Theorem 4.6 in Kutoyants (1994). We now combine these estimators in an
optimum fashion to get an estimator using all the information available.

It is easy to check that

Yelfie(t) = 0()] = x(Ai)ved:’ T zel(s)x(A(’ )AW;(s) + Joie
(4.39)
= x(Ai)Jric + Jaic (say) (4.40)
Note that E(J3;,) = O(+2J7;.) where
It = 2977 /T GQ(t %) ! E(u;%(s)x(AD))ds (4.41)
0 de A+l

as defined earlier. In addition to (C1), assume that
(Ca)Jaie = 0,(1) as e — 0

for 1 <i<N.
Since P(A;) — 1 as € — 0, it follows by the Central limit theorem for
stochastic integrals (cf. Kutoyants (1994), Prakasa Rao (1999a)) that

YelBic(t) — 6] »° N (O, - / G2 (u)du) (4.42)

)\-}-1
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ase — 0 for 1 <i < N. Define

G (t) = St D) + D20
e SN i+ Dud(r)

(4.43)

Note that the random variable On.(t) is not an estimator of 6(t) as the
functions u;(¢) depend on the function 6(¢). However the random variable
On¢(t) is a linear function of independent random variables ;. (¢),1 < i < N.

(From the earlier calculations , it can be checked that

E(On<(t) - 6(1))* Var(One(t)) + (E(One(t) - 6(¢))?

48 43
< CgeP+1 + Cge 28+1
48
< (Chpe?BHT, (444)

As a consequence, we have the following result.

Theorem 4.1: Under the conditions stated earlier, for 0 < t < T,

(i) One(t) B 0(t) ase — 0;
(ii) E(One(t)) — 0(t) as € — 0;
(iii) lime_o E(One(t) — 0(t))2 — ase — 0;

(iv) limsup, o E(Bn=(t) — 0(t)) %74 < oo,

(v) e384 (Bye () — () 5 N(0,02(t)) as e — 0

where N (0,02(t)) denotes the normal distribution with mean zero and vari-

ance o2 (t)) given by

2 _ 1 * 2
0 = ST T /_ "~ G(wdu. (4.45)

Let

SN 05 (8) (N + 1)E2 (2)

velt) = S (i + 1)ak(t)

(4.46)

where
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e (t) = viedo Bie(9)=2)ds

Note that for any 1 <7 < N,

B[ els)ds — [ 6(s)asf* = B [ @ute) - 6tspasp
< Bt [ (Giels) - 0(5)%as]

= ¢ [ El0ls) - 605))as

4
CgtE—z_E%

IA

and hence )
t.
/ Oic(s)ds — / 8(s)ds B 0ase -0
0 0

for 1 <i < N. This in turn implies that, for 0 < t < T,

e (t) B ui(t) ase - 0

67

(4.47)

(4.48)

(4.49)

for 1 <4 < N. In view of (4.30), it follows that the estimator 6% (t) is a

consistent estimator of 6(t).
Theorem 4.2: Under the conditions stated above, for 0 < t < T,
0. (t) & 0(t) ase — 0.

Note that

N i (t) (O + 1)EL (2)
* _ 1=1 3 _

WO (t) - 00] = =Sy S s ()
1L Ye(Bic (2) — 6(2) (N + 1)a2 (1)
YL + 1) (t) '

Since
(i) 7e(6ic () — 6()) 5 N(0,0%()) as e = 0 for 1 <i< N,

(ii) G (£) D ui(t) ase - 0 for 1 <i < N,

(4.50)
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and since the estimators éie (t),1 <14 < N are independent random variables,
it follows that the estimator 6%, (¢) is asymptotically normal and we have

the following theorem.

Theorem 4.3: Under the conditions stated earlier, for 0 < t < T,

e (O () — () 5 N(0,02%(t)) ase — 0 (4.51)
where
e = e~ (4.52)
and
o2(t) = Zﬁilu?(i)(ki - /_ °:o G(u)du. (4.53)

Remarks 1:If £ = 0 and 8 = 1, that is, the function 6(.) € © where ©
is the class of uniformly bounded functions which are Lipschitzian of order

one, then it follows that

€75 (0. (1) — 0(t)) 5 N(0,02(t)) as € — 0. (4.54)

Remarks 2: It is known that the probability measures generated by stochas-
tic processes satisfying the SPDE given by (4.1) are absolutely continuous
with respect to each other when 6(.) is a constant (cf. Huebner et al.(1993)).
There are classes of SPDE which generate probability measures which are
singular with respect to each other when 6(.) is a constant. One can study
the problem of nonparametric inference for a linear multiplier for such a class
of SPDE by the above methods(cf. Prakasa Rao (2000b)).
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