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Abstract

Stochastic partial differential equations (SPDE) are used for stochastic

modelling , for instance, in the study of neuronal behaviour in neurophysiol-

ogy, in modelling sea surface temparature and sea surface height in physical

oceanography , and in building stochastic models for turbulence. Proba-

bilistic theory underlying the subject of SPDE is discussed in Ito (1984) and

more recently in Kallianpur and Xiong (1995) among others. The study

of statistical inference for the parameters involved in SPDE is more recent.

Asymptotic theory of maximum likelihood estimators for a class of SPDE is

discussed in Huebner, Khasminskii and Rozovskii (1993) and Huebner and

Rozovskii( 1995) following methods in Ibragimov and Khasminskii (1981).

Bayes estimation problems for such a class of SPDE are investigated in

Prakasa Rao (1998, 2000) following the techniques developed in Borwanker

et al.(1971). An analogue of the Bernstein-von Mises theorem for parabolic

stochastic partial differential equations is proved in Prakasa Rao (1998). As

a consequence, the asymptotic properties of the Bayes estimators of the pa-

rameters are investigated using the asymptotic properties of maximum like-

lihood estimators proved in Huebner and Rozovskii (1995). Nonparametric

estimation of a linear multiplier for some classes of SPDE are studied in

Prakasa Rao(2000a,b) by the kernel method of density estimation following

the techniques in Kutoyants(1994).
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1 Introduction

Stochastic partial differential equations(SPDE) are used for stochastic mod-

elling, for instance, in the study of neuronal behviour in neurophysiology,

in modelling sea surface temperature and sea surface height in physical

oceanography and in building stochastic models for the behaviour of tur-

bulence (cf. Kallianpur and Xiong (1995)). The probabilistic theory of

SPDE is investigated in Ito (1984), Rozovskii (1990), Kallianpur and Xiong

(1995) and De Prato and Zabczyk (1992) among others. Huebner et al.(1993)

started the investigation of maximum likelihood estimation of parameters for

a class of SPDE and extended their results to parabolic SPDE in Huebner

and Rozovskii (1995) following the approach of Ibragimov and Khadsmin-

skii(1981). Bernstein -von Mises type theorems were developed for such

SPDE in Prakasa Rao (1998,2000) following the techniques in Borwanker et

al.(1971) and Prakasa Rao (1981). Asymptotic properties of the Bayes esti-

mators of parameters for SPDE were discussed in Prakasa Rao (1998,2000).

Statistical inference for diffusion type processes and semimartingales in gen-

eral is studied in Prakasa Rao (1999a,b).

Our aim in this paper is to review some recent work of us on the

Bernstein-von Mises type theorems for parabolic SPDE and to present some

new results on the problem of estimation of a linear multiplier for a class of

SPDE using the methods of nonparametric inference following the approach

of Kutoyants (1994).
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2 Main Results

2.1 Bernstein-von Mises theorem

Let (Ω,^*, P) be a probability space and consider a stochastic partial differ-

ential equation (SPDE) of the form

duΘ(t,x) = Aθuθ(t,x)dt + dW(t,x),0 <t<T,xeG (2.1)

where Aθ — ΘA\ + AQ, A\ and AQ being partial differential operators, θ E

Θ C R and W(t,x) is a cylindrical Brownian motion in L,2(G),G being a

bounded domain in Rd with the boundary dG as a C°°-manifold of dimension

(d — 1) and locally G is totally on one side of dG. For the definition of

cylindrical Brownian motion, see, Kallianpur and Xiong (1995), p.93.

The order Ord(A) of a partial differential operator A is defined to be the

order of the highest partial derivative in A. Let mo and m\ be the orders

of the operators Ao and A\ respectively. We assume that the operators ^o

and A\ commute, m\ is even and

(CO) mi> \{Ord{Aθ)-d)

in the following discussion.

Suppose the solution uθ(t,x) of (2.1) has to satisfy the boundary condi-

tions

uθ(0,x)=uQ(x) (2.2)

and

2 ? M t , z ) | β σ = 0 (2 3 )

for all multiindices 7 such that |—y| = m — 1 where 2m = max(mi,mo). Here

> (2'4)
with |7 | = 71 + + 7d Suppose that

A(x)u = - Σ {-lt\Da{af{x)D^u) (2.5)
\a\,\β\<rm
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where

af{x)eC°°(G). (2.6)

Let

aaβ(θ,x) = θaf(x)+af(x). (2.7)

Suppose ΘQ is the true parameter.

We follow the notation introduced in Huebner and Rozovskii (1995).

Assume that the following conditions hold.

(HI) The operators AQ and A\ satisfy the condition

/ Aiuvdx = / uAivdx,u,v E CZ°(G),i = 0,1.
JG JG

(H2) There is a compact neighbourghood Θ of θo so that {AQ, θ E Θ} is a

family of uniformly strongly elliptic operators of order 2m = mαa;(rai,mo).

For s > 0, denote the closure of C£°(G) in the Sobolev space WS>2{G)

by W0

5'2

The operator Aθ with boundary conditions defined by (2.3) can be ex-

tended to a closed self-adjoint operator C$ on Li2{G) (Shimakura(1992)). In

view of the condition (H2) , the operator CQ is lower semibounded, that is

there exists a constant k(θ) such that —CQ + k(θ)I > 0 and the resolvent

{k(θ)I - Cθ)~ι is compact. Let Λ# = (k(θ)I - Cθ)^. Let hi(θ) be an or-

thonormal system of eigen functions of Λ#. We assume that the following

condition holds.

(H3) There exists a complete orthonormal system {hi, i > 1} independent

of θ such that

The elements of the basis {h{,i > 1} are also eigen functions for the

operator CQ, that is

i = μi hi

where
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For s > 0, define H$ to be the set of all u G L<2{G) such that

CO

Nk* = (Σλf (

For s < 0, Hβ is defined to be the closure of L2(G) in the norm |M|S j0

given above. Then Hρ is a Hubert space with respect to the inner product

(., .)Sj0 associated with the norm \\.\\sβ
 a n d the functions hs

iθ = \~s(θ)hι,i >

1 form an orthonormal basis in HQ. Condition (H2) imples that for every 5

,the spaces H$ are equivalent for all θ. We identify the spaces HQ (denoted

by Hs) and the norms !|.||s,0 for different θ € θ.

In addition to the conditions (H1)-(H3), we assume that

(H4)u0 G H~a where a > \. Note that u0 e L 2(G),

(H5) the operator Ai is uniformly strongly elliptic of even order mi and has

the same system of eigen functions {h^i > 1} as Cg.

The conditons (H1)-(H5) described above are the same as those in Hueb-

ner and Rozovskii (1995).

Note that u0 E H~a. For θ <E Θ, define

uθ

0ι = (uo,h-«)-a. (2.8)

Then the random field

00

θ Σ θ ( x ) (2-9)
1 = 1

is the solution of (2.1) subject to the boundary conditions (2.2) and (2.3)

where u\ (ί) is the unique solution of the stochastic differential equation

du\{i) = μθiUi(t)dt + \-a{θ)dWi{t),0 < t < T, (2.10)

u{f)(0)=uθ

0ι. (2.11)
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Let πN be the orthogonal projection operator of H~a onto the subspace

spanned by {h~θ

a, 1 < i < N}. Let

uN'θ{t,x) = πNuθ(t,x) (2.12)

where uθ

τ(t) is the solution of (2.10) subject to (2.11). Note that

duNfi(t, x) = AeuNfi{t, x)dt + dWN(t, x),0<t<T,xeG (2.13)

with

(2 1 4 )

and

WN(t,x) = ΣKaWi(t)h-θ

a(x). (2.15)

Here {Wi(t),t > 0},2 > 1 are independent standard Wiener processes.

Let Pf be the probability measure generated by uNfi on C([0,T]; RN).

Let h~a denote h~^,uN denote uN>θ° and u denote uθ° when #o is the true

parameter. It is known that, for any θ E Θ, the measures P^ and P^ are

absolutely continuous with respect to each other and

T T

fJpN r (ύ2 _ ύ2\ r
lOgdP*(uN) = (θ-θo)J(AlU

N(s),duN(s))o-[

 2

 0) J \\A,uN{s)\\lds
θo 0 0

T

-(θ - ΘQ) J(AιU

N{s), Aou
N{s))ods. (2.16)

o
It is easy check that (cf. Huebner and Rozovskii (1995))

J(A1u
N(s),dWN(s))0

ΘN-ΘO = ^ (2.17)

f\\AιU"(sψods
0

where ΘN is the maximum likelihood estimator of ΘQ. Huebner and Ro-

zovskii (1995) studied the asymptotic properties of this estimator under the
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conditions (H1)-(H5). Further more the Fisher information is given by

T

IN = Ej\\Aιu
N'θ°(s)\\ld8. (2.18)

o

Note that IN -* oo as N -> oo from the Lemma 2.1 of Huebner and

Rozovskii (1995).

Suppose that Λ is a prior probability measure on (Θ,i?) where B is the

σ-algebra of Borel subsets of set Θ C R. We assume that the true parameter

#o £ Θ°, the interior of Θ. Further suppose that Λ has the density λ( )

with respect to the Lebesgue measure and the density λ( ) is continuous and

positive in an open neighbourhood of θo, the true parameter.

Let

τ = IιJ2(θ-θN) (2.19)

and

p*(τ\uN) = Γ^PΨN + τΓN

ll2\uN) (2.20)

where ^(01^) is the posterior density of θ given uN. Note that

P(θ\uN) = —$ (2.21)
S^(u^)\{θ)dθ

and let p*(τ\uN) denote the posterior density of ij (θ — §w). Let

dP?
θ

In view of (2.16), it follows that

\ogvN{τ) = -\r2l^ I WA^WWlds (2.23)

since

HA1u
N(s),duN(s)-A0(s)uN(s)d8)0

ΘN = 2 . (2.24)

0
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Let
oo

CN = I uN(r)λ(θN + T / - 1 7 V (2-25)
—oo

It can be checked that

p*(τ\uN) = C^uN(r)X(θN + r/- 1 / 2 ) . (2.26)

T
Note that (Cl) βN = I^1 J \\AχuN{s)\\lds -> 1 a.s. [Pθo] as N -> oo.

o
from the Lemma 2.2 of Huebner and Rozovskii (1995). Then the following

relations hold:

(i) i v l i m o ^ ( r ) = e x p ( - i r 2 ) a . s . [ P ( , 0 ] ,

(ii) for any 0 < 7 < 1,
1 o . x

for every r for sufficiently large JV, and

(iii) for every 5 > 0, there exists 7' > 0 such that

sup vN(τ) < exp{j'Iΰ1

as N ->• 00.

Further more (C2) the maximum likelihood estimator (9# is strongly consis-

tent, that is

ΘN -> #o a.s. [P(90] as TV -> 00.

from the Lemmas 2.1 and 2.2 in Huebner and Rozovskii (1995). Suppose

that (C3) K( ) is a nonnegative function such that, for some 0 < 7 < 1,

00

ί < 00.

(C4) For every 77 > 0 and δ > 0,

K(τI-l/2)X(θN + τ)dτ -> 0 a.s
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as N —> oo.

We now have the following main theorem which is an analogue of the

Bernstein-von Mises theorem (cf.Prakasa Rao (1981, 1984)) for diffusion

processes and diffusion fields. A special case of this result for some classes

of SPDE's was recently proved in Prakasa Rao (2000).

Theorem 2.1: Suppose the conditions (C3) and (C4) hold in addition to

the conditions (H1)-(H5) stated earlier where λ( ) is a prior density which is

continuous and positive in an open neighbourhood of #o? the true parameter.

Then

/ i \ 1/2

K(τ)\p*(τ\uN) - ( - ) e-Γ \dτ = 0 a.s. [Pθo]. (2.27)

- o o

As a consequence of Theorem 2.1, it is easy to get the following result.

Theorem 2.2: Suppose the conditions (H1)-(H5) hold. In addition suppose

that:

(Dl) λ( ) is a prior density which is continuous and positive in an open

neighbourhood of θo, the true parameter; and

(D2) / \θ\mλ(θ)dθ < oo for some integer m > 0.

Then

lim / \τ\m\p*(τ\uN) - ( ^ )* e-^\dr = 0 a.s. [Pθo]. (2.28)

OO 1.

m\p*(τ\uN) ( ± λ

Remarks: It is obvious that the condition (D2) holds for m = 0. Suppose

the condition (Dl) holds. Then it follows that

0 0 1/2

lim ί \p*(r\uN) - (±-) e-^ldr - 0 a.s. [P,o]. (2.29)
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This is the analogue of the Bernstein-von Mises theorem in the classical

statistical inference. As a particular case of Theorem 2.2, we obtain that

~ θo)}m -> E[Z)m as N -> oo (2.30)

where Z is JV(O,1).

For proofs of Theorems 2.1 and 2.2, see Prakasa Rao(1998).

3 Bayes Estimation

We define an estimator ΘN for θ to be a Bayes estimator based on the path

uN corresponding to the loss function L(θ,φ) and the prior density λ(0) if

it is an estimator which minimizes the function

BN(φ) = jL(θ,φ)p(θ\uN)dθ,φ(Ξ Θ

where L(θ,φ) is defined on Θ x Θ. Suppose there exist a Bayes estimator

0/v. Further suppose that the loss function L{θ,φ) satisfies the following

conditions:

(El) L(θ,ψ)=L(\θ-φ\)>0;

(E2) L(t) is nondecreasing for t > 0;

(E3) there exists nonnegative functions RN,K(T) and G(τ) such that

(a) RNL{τI~1/2) < G{r) for all N>1;

I / O

(b) RNL(TIN ' ) -> K(τ) as TV -> oo uniformly on bounded intervals

of τ;

(c) the function
oo

/

_ ! 2
K(r + ra)e~2r dr

—oo

achieves its minimum at m — 0, and

(d) G(τ) satisfies the conditions similar to (C3) and (C4).
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The following result can be proved by arguments similar to those given

in Borwanker et al. (1971). We omit the proof.

Theorem 3.1: Suppose the conditions (D1)-(D2) of Theorem 2.2 hold in

addition to (H1)-(H5) stated earlier. In addition , suppose that the loss

function L{θ,φ) satisfies the conditions (El) - (E3) stated above. Then

Oa.s. [Pθo] asJV->oo (3.1)

and

lim RNBN(ΘN) = lim RNBN(ΘN) (3.2)
N-+00 N—ΪOO

1/2

Huebner and Rozovskii (1995) proved that

ΘN -> 0O a.s. [Pθo] as N -> oo (3.3)

and

I]!2ΦN - θ0) 4 iV(0,1) as N -> oo (3.4)

under the conditions (H1)-(H5). As a consequence of Theorem 3.1, it follows

that

07V -> 0o a.s [Pθo] as TV -> oo (3.5)

and

l]ί2φN - 0O) 4 7V(0,1) as N -> oo. (3.6)

In other words the Bayes estimator ΘM of the paramaeter 0 in the

parabolic SPDE given by (2.1) is strongly consistent, asymptotically nor-

mal and asymptotically efficient as N —> oo under the conditions (H1)-(H5)

of Huebner and Rozovskii (1995) and the conditions stated in Theorem 3.1.

Remarks: A general approach for the study of asymptotic properties

of maximum likelihood estimators and Bayes estimators is by proving the

local asymptotic normality of the loglikelihood ratio process as was done in
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Prakasa Rao (1968), Ibragimov and Khasminskii (1981) in the classical i.i.d.

cases and by Huebner and Rozovskii (1993) for some classes of SPDE. Our

approach for Bayes estimation, via the comparison of the rates of convergence

of the difference between the maximum likelihood estimator and the Bayes

estimator, is a consequence of the the Bernstein - Von Mises type theorem .

We now consider a nonparametric version of the problem discussed earlier

for a class of SPDE.

4 Stochastic PDE with Linear Multiplier

Let (Ω,^1*, P) be a probability space and consider the process ue(£,x),0 <

x < 1,0 < t <T governed by the stochastic partial differential equation

due{t,x) = (Δue{t,x)+θ{t)ue{tJx))dt + εdWQ(t,x) (4.1)

where Δ = J ^ . Suppose that ε —> 0 and θ £ Θ where Θ is a class of

real valued functions 0(i),O < t < T uniformly bounded , k times continu-

ously differentiate and suppose that the λ -th derivative θ^k\.) satisfies the

Lipschitz condition of order α G (0,1], that is,

|0(*)(t) _ 0(*)(5)| < \t - s\a,β = k + a. (4.2)

Further suppose the initial and the boundary conditions are given by

ue(O,a0 = /(α0,/€L2[O,l] ( 4 3 )

ue(ί,0) = u e ( t , l ) = 0 , 0 < ί < T

and Q is the nuclear covariance operator for the Wiener process WQ(<, X)

taking values in L2[0,1] so that

WQ{t,x)=Qι/2W(t,x)

and W(t, x) is a cylindrical Brownian motion on ί-2[0,1] Then, it is known

that (cf. Rozovskii (1990), Kallianpur and Xiong (1995))

OO

) = Σql/2ei(x)Wi(t) a.s. (4.4)
i=\
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where {Wi(t),0 < t < T},z > 1 are independent one - dimensional stan-

dard Wiener processes and {ê } is a complete orthonormal system in Z^IP, 1]

consisting of eigen vectors of Q and {^} eigen values of Q.

We assume that the operator Q is a special covariance operator Q with

βfc = sin(kπx),k > 1 and λ̂  = (πk)2,k > 1. Then {e^} is a complete

orthonormal system with eigen values qι = (1 + AJ"1^' > 1 for the operator

Q and Q = (/ - Δ)""1. Note that

dWQ = Qιl2dW. (4.5)

We define a solution u£(t,x) of (4.1) as a formal sum

oo

Uε{t,x) =

(cf. Rozovskii (1990)). It can be checked that the Fourier coefficient Uiε(t)

satisfies the stochastic differential equation

d u i ε { t ) = ( 0 ( t ) - \ τ ) u ι ε { t ) d t + ,S dWj{t): 0 < t < T (4.7)
V Λi + 1

with the initial condition

uιε(0) = vu vi= ί f(x)eι(x)dx. (4.8)
Jo

We assume that the initial function / in (4.3) is such that

Vi = / f{x)et(x)dx>0, i > 1.
Jo

Estimation of linear multiplier

We now consider the problem of estimation of the function θ(t), 0 < t < T

based on the observation of the Fourier coefficients Uiε(t), 1 < i < N over

[0, T] or equivalently the projection uε ' (ί, x) of the process uε(t, x) onto the

subspace spanned by {ei,..., ejy} in L2[0,1].

We will at first construct an estimator of #(.) based on the path

{ixie(t), 0 < t < T}. Our technique follows the methods in Kutoyants (1994),

p.155.
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Let us suppose that

sup sup |0(t)| < L 0 . (4.9)
θeθθ<t<τ

Consider the differential equation

J i l l ! = (θ(t) - \i))ui(t),Ui{0) =Vi,0<t<T. (4.10)
dt

It is easy to see that

and hence

Ui(t) >vle~m

1Q<t<T (4.11)

where

Mz = L0 + λi. (4.12)

^From the Lemma 1.13 of Kutoyants (1994), it follows that

sup \uie(s)-Ui(s)\< , / eM* sup \Wi(s)\ (4.13)
o<s<τ yλi +1 o<5<τ

almost surely. Let

« = {ω : Qmf ul£{s) > \vie-
M^} (4.14)

and Ai = A^. Note that A[I) contains the set A{ for 0 < t < T.

Define the process {Y;ε(£),0 < t < T} by the stochastic differential equa-

tion

+u-1(t)χ(A?)duiε(t),0 <t<T (4.15)

where χ(E) denotes the indicator function of a set E. Let φε —> 0 as

ε -> 0 and define
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Γ
JO

ΓG()dYiε(s) (4.16)
O Φε

where G(.) is a bounded kernel with finite support , that is , there exists

constants a and b such that

G(u)du — 1, G{u) = 0 for u < a and u > b. (4.17)

We suppose that a < 0 and b > 0. Further suppose that the kernel G(.)

satisfies the additional condition

Note that

Hence

roo
/ G{u)uJdu = 0,j = l,...,

J—oo

ΓG{t—^)dYiε{s)
O Φε

(4.18)

(4.19)

-u-ε

2{s))χ{Aψ)ds

0 Φε
T

-E[x(Aτ)φJι ΓG(t

JO

+E\χ{Ai)φ7ι Γ G(t

Jo
Note that

1 f
Jθ

- λi)ds]
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Therefore, for sufficiently small ε > 0,

E[θiε(t)-Θ(t)} = E\χ(Ai)φJι fo G{t-^-){θ{s)-θ{t))ds\

-E[x(A<)(θ(t) - Xi)

i)φ? ίT'G(t-
JQQ φε

+O(JUε) (4.20)

since, for 0 < t < T,

ΦΊl iTG{~)ds = l (4.21)
JO Φε

for sufficiently small ε > 0 by the conditions imposed on the kernel G.

Therefore, for 0 < t < T, for sufficiently small ε > 0,

\E[θιε(t) - θ(t)}\2 < 4{φJι ίT G ( ^ ) ( 0 ( s ) - θ(t))ds}2

JO Φε

(4.22)

Applying the Taylor series expansion and properties of the kernel G(.)

and the function #(.), it is easy to see that the first term is bounded by

roo

{ \G{u)uP\duγ (4.23)
J -oo

where C\ is a constant depending only on the the constants Lo in (2.9) and

the smoothness parameter k of θ(.). Note that

P(Aξ) = P

- P

< P{inΐ[uιε(t) - ut(t)} < -\Vie-MiT} (from (4.11))
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< P{ sup \uiε{t) - Ui(t)\ > \vie-Mi

0<t<T *

since

P( sup \Wi(t)\ > α) < min(2, ~\lγ)

from Kutoyants (1994), p.28. The third term is bounded by

where C2 is an absolute constant. Relations (4.22) -(4.24) show that

\E[θiε(t)-θ(t)}\2 < Cz[φf{Γ \G{u)uβ\du}2

J -ΌO

+O(J2

iε) (4.25)

where C3 is an absolute constant. Hence

\E[θιε(t) - θ(t)}\2 < C,[φ2/ + e-^ε~\θ(t) - \τ)
2 + ε% + Jl%ε] (4.26)

where C4 is a constant depending on the kernel G(.) and the Lipschitz

constant Lo,

di = '^e 4M'^Xi + 1 } (4.27)

and

Following computations as given above(cf. Kutoyants (1994), p. 157), we

can show that

E[θiε(t)-Θ(t)}2 < Cb[φ2

ε

β + e-d^2{θ{t)-\i)
2 + ε%+ε2φ-ιki + J2

iε] (4.29)
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where C5 is a constant depending on the kernel G(.) and the Lipschitz con-

stant LQ. Choosing φε such that

(4.30)

2

we obtain that φε = ε(2/3+1) and we have

E[θiε(t)-Θ(t)}2 <Cs[ε^+e-d*ε-\θ(t)-λι)
2+ε4kι+

and

(E[θiε(t) - θ(t)})2 < CA[e*tfc + e-*ε~\θ(t) - Xτ)
2 + ε% + J2

Uε}. (4.31)

Note that 0;ε(£),l < i < N are independent estimators of θ(t) since

the processes W^ 1 < i < AT are independent Wiener processes. The above

inequalities imply that

sup % ( ί ) - 9 ( t ) ] 2 < C 6 [ ε ^ + e - ( i n f l ^ " ^ ε ~ 2 sup {θ(t) - Xtf
<i<N

+ε sup fci

\<ι<N

+ sup J2

iε]

sup

Note that

and

Therefore

sup

e2{L0+N2π2)T

sup fei < — τ - /3N (say)
l Ώ Ϊ V

inf di > ( inf v2)
Ki<N ~ KKτ<N l J \T

= -yN (say).

(4.32)

(4.33)

(4.34)

+ sup
Ki<N

(4.35)

In particular

sup Var(θιε{t)) <

sup
Ki<N

(4.36)
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We assume that the following conditions hold for 1 < i < N. Let ηε —

. Suppose that

Under the above condition , it follows that the estimators θiε(t), 1 < i <

N are independent estimators of θ(t) such that

2/3

sup lEtfieit) - θ(t)]\ < Csεw+i (4.37)
l<i<jV

and

sup E[θie(t) - θ(t)]2 < C9ε^ (4.38)

where C% and Cg are constants depending on the kernel G(.), the Lipschitz

constant Lo and N. Note that the estimators 0χε(ί), 1 < i < N are the best

estimators of θ(t) as far as the rate of mean square error are concerned by

Theorem 4.6 in Kutoyants (1994). We now combine these estimators in an

optimum fashion to get an estimator using all the information available.

It is easy to check that

Γ
JO

(4.39)

= χ(Ai)Jιiε + J2iε (say) (4.40)

Note that E{Jfiε) = 0(7f J uJ where

^ ψ (4.41)
JO Φε λi -t L

as defined earlier. In addition to (CΊ), assume that

for 1 < i < N.

Since P(Ai) —> 1 as ε ->• 0, it follows by the Central limit theorem for

stochastic integrals (cf. Kutoyants (1994), Prakasa Rao (1999a)) that

1 f°°
^ W(0, ^ ^ ^ / θ\u)Λu) (4.42,
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as ε -> 0 for 1 < i < N. Define

&Ne{t) — — l = l N*6 " 2—" ' (4.43)

Note t h a t the r a n d o m variable ί?Λ/ε(ί) is not an est imator of θ(t) as the

functions Ui(t) depend on the function θ(t). However the r a n d o m variable

θχε(t) is a linear function of independent r a n d o m variables θiε(t), 1 < i < N.

^From t h e earlier calculations , it can be checked t h a t

E(θNε(t)-θ(t)f = Var(θNε(t)) + (E(θNε(t)-θ(t))2

43

4/3

ϊ (4.44)

As a consequence, we have the following result.

Theorem 4.1: Under the conditions stated earlier, for 0 < t < T,

(i)

(ii) E(θNε(t))

(iii) limε^o E(θNε{t) - θ(t))2 -+ as ε -+ 0;

(iv) limsup ε^0E(θ^ ε(t) — θ(t))2ε20+1 < oo.

(v) ε^h{θNε{t) - θ{t)) 4 ΛΓ(0,σ2(ί)) as ε -)• 0

where N(0, σ2(t)) denotes the normal distribution with mean zero and vari-

ance σ2(ί)) given by

1 roo

= G2(u)du. (4.45)

Let

where
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ύiε(t) = υ , e / o ( ^ ω - λ ^ . (4.47)

Note that for any 1 < i < N,

E[ f θiε{s)ds - f θ(s)ds}2 = E[ f\θiε(s) - θ(s))ds}2

Jo Jo Jo

< E[t ί\θiε(s)-θ(s))2ds]
Jo

= tf E[φiε{s)-Θ{s))2)ds
Jo

<

and hence
ft Λ ft

/ θiε(s)ds- θ{s)ds 4 0 as ε -> 0 (4.48)
Jo Jo

for 1 < i < N. This in turn implies that, for 0 < t < T,

uιε{t) 4 u z ( t ) a s ε - > 0 (4.49)

for 1 < i < N. In view of (4.30), it follows that the estimator θ*Nε(t) is a

consistent estimator of θ{t).

Theorem 4.2: Under the conditions stated above, for 0 < t < T,

fl vεW "^ θ(t) as ε -^ 0. (4.50)

Note that

ΣϊLi

Since

(i) 7ε(4(ί) - θ(t)) 4 ΛΓ(0,σ2(ί)) as ε -> 0 for 1 < i < iV,

(ii) ύiε(t) 4 Ui(ί) as ε ~> 0 for 1 < i < N,
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and since the estimators θiε(t),l < i < N are independent random variables,

it follows that the estimator θ*Nε(t) is asymptotically normal and we have

the following theorem.

Theorem 4.3: Under the conditions stated earlier, for 0 < t < T,

Ίε{θ*Nε{t) - θ(t)) 4 iV(0, σ2{t)) as ε -> 0 (4.51)

where

Ίζ = ε-2lτϊ (4.52)

and

Remarks l:If k = 0 and /? = 1, that is, the function θ(.) G Θ where Θ

is the class of uniformly bounded functions which are Lipschitzian of order

one, then it follows that

ε'Hθ*Nε{t) - θ(t)) 4 N(0,σ2{t)) as ε -> 0. (4.54)

Remarks 2: It is known that the probability measures generated by stochas-

tic processes satisfying the SPDE given by (4.1) are absolutely continuous

with respect to each other when θ(.) is a constant (cf. Huebner et al.(1993)).

There are classes of SPDE which generate probability measures which are

singular with respect to each other when θ(.) is a constant. One can study

the problem of nonparametric inference for a linear multiplier for such a class

of SPDE by the above methods(cf. Prakasa Rao (2000b)).
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