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Abstract

The distribution of the maximum of a shot-noise process based on
amplitudes which are heavy tailed and follow a chain-dependent struc-
ture is analysed. Asymptotic results are obtained. The process is seen
to have a strong local dependence and it's extremal index is computed.
A simulation study shows the finite sample size performance of an
asymptotic approximation to the distribution of the maximum.

1 Introduction

In the paper we are concerned with the asymptotic behavior of the extreme
values for a class of shot noise processes. Shot noise processes provide a wide
class of stochastic models that are particularly well suited to modeling time
series with sudden jumps. Such processes have been applied to modeling
river flow data where a rise in the riverflow level could, for example, be
attributed to rainfall, Lawrance and Kottegoda (1977) and Weiss (1973).
Moreover, rainfall data, itself, has been modeled via shot noise processes,
Waymire and Gupta (1981). The basic model under study here takes the
form

Y τ k ) , t>0

where {A^} is a sequence of random amplitudes, {r^} forms a point process
of event times and h is the impulse response function, typically, taken to
be nonincreasing with support in [0,oo). In the current investigation, we
take the {A }̂ to be a stochastic process of heavy-tailed random variables.
In applications the sequence of shocks or amplitudes exhibits dependence.
It may be that large shocks tend to occur in succession followed by periods
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of mild or small shocks. To model this dependence, we assume that {Ak}
form a sequence of chain dependent variables. A chain dependent process
operates in the following way. The observed process {A^} is linked with
a secondary Markov chain {ξk} Conditional on the values of {£*;}, the
Afc's are independent with the distribution of A^ depending on the value of
ξk-ι Chain dependent processes form a useful class of stochastic models
which, for example, have been applied with success in modeling extremes of
precipitation data, Guttorp (1995) p. 74. Theorectical work on extremes for
chain dependent models has been done in Resnick and Neuts (1970), Denzel
and O'Brien (1975) and more recently in McCormick and Seymour (2001).

In section 2 we present an extreme value analysis of the shot noise model.
Extremes for shot noise processes have been considered by several authors
under various assumptions. However, all previous work have taken the {Ajς}
sequence to be iid. On the other hand, in practice, the data often appear to
contradict such an assumption. When the {A^} are constant and the {r^}
form a homogeneous Poisson process, i.e. in the case of a filtered Poisson
process, Hsing and Teugels (1989) have obtained results on the limiting dis-
tribution of the maximum. Doney and O'Brien (1991) provide an extension
to the results of Hsing and Teugels (1989) while working under the assump-
tion of constant amplitude. The case of light-tailed amplitudes, viz. Gamma
or Weibull distribution, was considered in Homble and McCormick (1995)
and the heavy-tailed amplitude case, e.g. Pareto distribution, was developed
in McCormick (1997).

The process under consideration has a strong local dependence quantified
by a value referred to as its extremal index. The method developed in
Chernick et al. (1991) for calculating extremal index is conveniently applied
here and represents an essential step in obtaining the asymptotics for the
maxima. In section 3 the results of a simulation study are shown.

2 Asymptotics

Let {ξn} be a stationary finite state space Markov chain with probability

transition matrix P — {pij), 1 < i,j < r. Further, let {TΓJ,1 < j < r}

denote the stationary probability measure for the chain. Next, we define a

chain-dependent sequence associated with the Markov chain {ξn} as follows.

Let iί^(x), 1 < i < r be distribution functions and let {An} be such that

P{An <x,ξn= j\Ak,ξk,k<n-l} = P{An <x,ξn = j\ξn-ι}

and

P{An <x,ξn = j\ξn-i = i] = PijHi(x).

Let {τn,n > 0} be a renewal process with a fixed renewal at TQ = 0. We
assume that the sequence {τn} is independent of the sequence {Aniξn} and
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define a shot noise process X by

X(t)= Σ Akh{t-τk), i > 0 (2.1)
0<τk<t

where h is the impluse response function for which we assume its support to
be a compact subset of [0, oo).

To define the stationary process associated with X, we first introduce
the stationary renewal process {δj,j G Z} where we label the points so that

-oo < < ί_i < <S0 < 0 < <$i < • < oo,

that is, SQ is the last nonpositive point. Further, let the interpoint distance
d.f. for {rn} be F(x) = P{τn - τn_i < x}. We assume F(0+) = 0 and
μ = Jo°° χdF(x) < oo. Then, take {δj} such that

(i) δj - δj-uj φ 1 i.i.d. with δj - δj-ι - FJ Φ 1

and

(ii) δu - ί 0 ~ G(x) = - Γ ( l - F(t))dt
μ Jo

(2.2)

and
1 ί°°

(iii) P{δ0 >x,δι>y} = - (1 - F{t))dt.
μ Jx+y

With the choices made in (2.2), setting NS(A) = Σj€δj{A) where ex(A) =
/^(α;), x G M, A C K, we have for any fe > 1 and sets A\,..., Ak in B(R)
that

*)), ί 6 R (2.3)

Now define

Σ ί>0. (2.4)

Note by letting jVί = Σ j l - o o ^ Λ " ) ' a P°^nt P Γ 0 C e s s with points (δj.Aj) G
β = R x [0, oo), j E Z, we have the representation

Y(t)= f gt(s,x)dM (2.5)
JE

with gt(s,x) = x/i(t — 5).
For t G K and doubly infinite sequences 5 = (... ,d_i,io?ii? •) with

—00 < ... < J_i < Jo < 0 < δι < ... < 00, define an integer mt by

mt = max{i : δi+t < 0}.
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Let δ' be the doubly infinite sequence defined by

Then stationarity of the point process Ns( ) = X^^(-) is equivalent to

δ' = δ for any t G R
Under the assumption that {δn} is independent of the sequence {An, ξn},

it is easily checked that for the doubly infinite sequences A = ( , A-\, A$, A\,
and A' = ( , A'.^Ό, Ar

l7 •) with A[ = Ai+mt, we have

A = Af.

Hence, letting M! = ^ ^ . ^ ê / ^/.), we have M = M1 so that

Y(h) - ί gtl(8,χ)dM
JE

= ί gtl{s,x)dM'
JE

The same argument shows

(Y(t1),...,Y(tk))±(Y(tι-t),...,Y(tk-t))

which establishes stationarity of (Y(t),t E R). Let us further observe that
the marginal distribution for X(t) is such that

since we assumed that cl{x : h(x) φ 0} C [0, oo).
In the following we make the assumptions that

(i) support (h) = cl{x : h(x) φ 0} C [0,1]

(ii) h is strictly decreasing

(iii) 0 < Λ(l) < Λ(0) = 1. (2.7)

Furthermore, we assume that the d.f.'s Hi, 1 < i < r, are such that

Hi{x)=H{x/κi), l < i < r , (2.8)
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where S(x) = x~aL(x) for some slowly varying function L and a a positive
constant.

Our first lemma establishes the tail behavior of the stationary distribu-
tion for the shot noise process defined in (2.1). To that end define a variable

Y = jΓίAjh(σj) (2.9)
.7 = 1

where {Aj,ξj} is a chain-dependent process independent of {σj}. Assume
that the d.f.'s Hi associated with the chain dependent process satisfies (2.8)
and that {σj} forms a delayed renewal process.

Lemma 2.1 Let Y be given as in (2.9). Then

P{Y > x} ~ cx~aL(x) as x -> oo

where c = (Σ)i=i ^f71"*)^ Σ^Li ha(σj). In the special case that σ̂  = Jj,
j > 1, i.e. σi ~ G and σ̂  — σ^-i ~ F, j > 2 in (2.2),

r
/I

C =

Proof: Consider for 0 < s\ < ... < sn < 1

x|σ^ = SJ, j = 1,..., n,
n

Let κ(ί) = Ki and let {Xj} be iid with d.f. H and be independent of

{ξj}. Then

P{Y > x\σj = Sj, 1<J< n,
J=I

where Px denotes taking probability w.r.t. {-Xj} only. Since

n

<ξ3-ύHsj)Xj > x} ~ ^ ^ ( ξ j - O Λ 0 ^ ) ^ ) as x -> ex,
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we have

n

P{Y > x\σj — Sj, 1 < j < n,σn+χ > 1} ~ EN^κa(ξj-ι)ha(sj)H(x) as x —> oo.

(2.10)

Finally, it follows from (2.10) as in McCormick (1997) that

oo

r oo

~ " " ) asx^oo. (2.11)
1 j=l

In the stationary point process case, i.e. σ\ ~ G, we have

j j j (2.12)

Thus the lemma holds from (2.11) and (2.12). D

Consider the stationary sequence

-τj), k = 0 ,1 , . . . (2.13)

where we define TJ with j < 0 such that {—r_j,j = 1,2,...} is an indepen-
dent copy of {τj,j = 1,2,...}. By Lemma 2.1

P{W0 >x)~ cx~aL{x) as x -> oo (2.14)

where c = (^^ «f π2) ΣZ=ι J<ί h{s)Fn*{ds) with F n * denoting the n-th fold

convolution of F. As a first step in determining the asymptotic distribu-

tion for the maximum of the shot noise process, we obtain the asymptotic

distribution for the maxima of the Wk To that end define intermediary

sequences

k

WJP= J2 AjhiTk-Tj), k = 0 , 1 , . . . (2.15)
j—k-m

We will establish that the sequences {W™,k > 0}, m — 1,2,3,..., sat-
isfy mixing conditions D(un) and D^m+ι\un) for a suitable sequence un.
By Corollary 1.3 in Chernick et al (1991), this implies that the sequence
{W™, k > 0} has an extremal index θm for each m.

We recall the definition of D(un) and D^k\un). For a stationary sequence
^} and sequence of constants {un}, set for 1 < I < n — 1

αn ? / = snp\P{Wj < un,j e AuB}-P{Wj < un,j e A}P{Wj < un,j E
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where the supremum is taken over all A, B such that

i c { l , . . . , f c } and B C {k + /,. . . ,n} for some k with 1 < k < n — I.

The condition D(un) is said to hold for the stationary sequence {Wk} if for
some sequence ln = o(n), anjn -> 0 as n -> oo. If D(un) holds for {VFfc}, we
say that condition Dk(un) holds provided there exist sequences of integers
{sn} and {/n} with sn -> oo, snαn ?/n -* 0, snln/n -^ 0 and

lim nP{Wχ > un >
7l-»OO

i=2

where rn = [n/sn] and \/i signifies the maximum as the index varies over i
to j .

For the sequence {un} consider for any β > 0, un = un(/?) satisfying for
all n sufficiently large

un = i T - ( l - ^ ) (2.16)
n

where we take H^~{x) — inf{y : iϊ(y) > x} and ϋ" is as given in (2.8). Note
regular variation of 1 - H(x) implies n(l — H(un)) -> β as n —)• oo.

First, we note from Denzel and O'Brien (1975) that the chain-dependent
process {An} is strong mixing, and since the m-tuples (h(τk—Tfc_m),..., hfa —
Tfc_i)), k = 0 , 1 , . . . are m-dependent, we see that {W™,k > 0} is strong-
mixing. Thus condition D(un) holds.

Next, we consider D^m^(un). Observe

m-i-l rn

>un>\ιwr, v wr
i-2 2=771+2

<n
2=771+2

Now observe that for i > m + 2

un, W™ > un\ξk, k<ι]

j-i)Xjh{Ti-Tj) > un}

i

j=l-m j=i-m

where Pτ,x denotes taking the probability with respect to the r and X

sequences only. Thus if K* — Vi=i «i?

771 + 1

> un,Wt

m > un} < P2
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Hence, D^m+ι\un) holds. We next turn our attention to computation of the
extremal index for the Wk.

Lemma 2.2. Let the Wk, k > 0, be as defined in (2.13). Then {Wk} has
an extremal index θ given by

Proof. We begin by computing the extremal index for {W™}. Since con-
ditions D(un) and D^m+ι\un) hold for {W™}, we have by Corollary 1.3 in
Chernick et al. (1991) that the extremal index for the {W™} exists and is
given by # m where

m+l

θm = lim P{ V W™ < un\W^ > un}.
n-+oo v

i=2

Now observe that
m+l

nP{W? >un>\/ W™}

m+l

= nEP{W^ >un > \J W™\τk,ξk, k<m + l}
i=2

1 m+l i

= ΠEPX{ ^ «(ίj-l)Λ(n -Tj)Xj >Un > \J ( Σ Kiξj-lM^-Tj).
j=l-m ϊ~2 j=i-m

Following the development in Chernick et al (1991), it is checked that as
n -» oc,

1 m+l i

nEPχ{ y ^ κ>{ζj-ι)h{τ~i — τj)Xj > ̂ n ̂  \f ( / ^ κ(ζj-i)h(ri ~ Tj)
j=l-m i=2 j=i-m

1 j+m

j=l-m i=2

1 j+rn

β Σ E{ha\rx-τ3)-\l Λ ° ( T i - T ^ I + ^ & -I)
j=l-m i—2

1 r

β Σ Elha^-^)-ha(τ2-r3))(Σ<^
j=l-m 1

r

fn). (2.17
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Now by Lemma 2.1 and (2.16)

m «i

~κ?πi)(l +EJ2 / ha(s)Fn*(ds)).
l=-\ 72=1

Thus we obtain
_1-Eh«(τm+1)

Finally, one argues as in McCormick (1997) that {Wk} has extremal index
θ given by

oo

θ= Km θm = {l + EYha{τn))-1 (2.19)
1

completing the proof.

The following result is immediate from Lemma 2.2.

Theorem 2.3. Let {W^} be the stationary sequence defined in (2.13). Then
with un given in (2.16),

lim P{ max Wk < un} — exp{—
n—>oo \<k<n

Following Hsing and Teugels (1989) we obtain the limit result for maxima

of the shot noise process.

Corollary 2.4. Let {X{t)} be the shot noise process defined in (2.1). Then

r

X(t) < uT) = exp{-(β/μ) ̂  nfm}

where μ — Eτ\.

Remark. We have that

-V[l-iίz(^)]πz->^5]<π,- as T-̂  oo.
μ ι=l μ t=l

Thus, we obtain the following asymptotic approximation

T r

P{ max X(t) <x}π exp{ιo<t<τ ~ A4
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3 Simulation Study

The performance of the approximation given in the Remark above is now

investigated via simulation. The steps needed to carry out this simulation

are specified as follows.

First, the distribution of the maximum of T observations of a shot noise

process {X{t)} (2.1) must be simulated. This simulation will compare

T = 20 and T = 100.

Generate an r-state Markov chain {ξn} of length L with transition matrix

P and stationary distribution π. The value of L depends stochastically on

T, as indicated in the generation of the shot noise process below. Take

r = 3, and let the probability transition matrix

P =
0.15 0.80 0.05
0.15 0.70 0.15
0.01 0.89 0.10

drive the Markov chain {ξn} The stationary distribution is then given by

π = (0.1318 0.7379 0.1303).

Then, generate the chain-dependent process {An} of length L, with
chain-state distributions defined via 1 — Hi(x) = KiX~a, i = 1,2,3. Take
K{ = ΐ, and let a take the values 2.5 and 1.5 in order to compare the perfor-
mance of the approximation under finite- and infinite-variance conditions,
respectively.

Next, generate a renewal process {τn} of length L, with mean μ. Take
a simple Poisson process with mean μ — 1. Use {An} and {τn} to generate
the shot noise process {X(t)} of length T, where T < 7χ. Three impulse
response functions h( ) are compared: h(x) = 1 for 0 < x < 1 and 0
otherwise; h(x) = 1 - x for 0 < x < 1 and 0 otherwise; and finally, h(x) =
exp(—x) where x > 0, just to test the assumptions made on h( ) .

Finally, find the maximum of the shot noise process.

This procedure is followed 500 times in order to approximate the true un-
derlying distribution. To complete the simulation study, the approximation
is computed and then compared to the empirical cumulative distribution
function (CDF) of the simulated process.

The results of this exercise are shown in Figure 1 (for a = 2.5, or finite
variance) and Figure 2 (for a — 1.5, or infinite variance). Each figure is a
table of graphs, with the cases indicated by the value of T across the top,
and by the impulse response function h(x) down the left-hand side. Each
individual graph shows the approximation of the distribution of max X(t)

0<t<T
for that particular case (the solid line), along with 10 different realizations
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of the empirical CDF (the dotted lines) computed from simulations of the
true under lying distribution of max X(t) outlined above.

° o<t<τ v y

In both of Figure 1 and Figure 2, the approximation is doing well, and
clearly better for T = 100 than for T = 20 (which is to be expected). In
Figure 1, where the distributions Hi(x), 1 < i < 3, have finite variance,
the approximation seems to do better when the impulse response function
decreases rapidly. However, in Figure 2, where the distributions H{(x),
1 < i < 3, have infinite variance, the approximation appears to do best
when the impulse response function is constant. These are points worthy
of further investigation in future research.

References

Chernick, M. R., Hsing, T. and McCormick, W. P. (1991). Calculating the
extremal index for a class of stationary sequences. Adv. Appl. Prob. 25,
835-850.

Denzel, G. E. and O'Brien, G. L. (1975). Limit theorems for extreme values
of chain-dependent processes. Ann. Probab. 3, 773-779.

Doney, R. A. and O'Brien, G. L. (1991). Loud shot noises. Ann. Appl.
Prob. 1, 88-103.

Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman and
Hall, London.

Homble, P. and McCormick, W. P. (1995). Weak limit results for the ex-
tremes of a class of shot noise processes. J. Appl. Prob, 32, 707-726.

Hsing, T. L. and Tengels, J. L. (1989). Extremal properties of shot noise
processes, Adv. Appl. Prob. 21, 513-525.

Lawrance, A. J. and Kottegoda, H. T. (1977). Stochastic modeling of river-
flow time series. J. R. Statistic. Soc A 140, 1-14.

McCormick, W. P. (1997). Extremes for shot noise processes with heavy
tailed amplitudes. J. Appl. Prob. 34, 643-656.

McCormick, W. P. and Seymour, L. (2001). Rates of convergence and ap-
proximations to the distribution of the maximum of chain-dependent
sequences. Extremes, 4, 23-52.

Resnick, S. I. and Neuts, M. F. (1970). Limit laws for maxima of a sequence
of random variables defined on a Markov Chain. Adv. Appl. Prob. 2,
323-343.

Waymire, E. and Gupta, V. K. (1981). The mathematical structure of rain-
fall representations 3. Some applications of the point process theory to
rainfall processes. Water Resources Res. 17, 1287-1294.

Weiss, G. (1973). Filtered Poisson processes as models for daily streamflow
data. PhD thesis. Imperial College, London.



44 MCCORMICK AND SEYMOUR

Figure 1: Approximation Compared to 10 Simulated Distributions, α = 2.5
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Figure 2: Approximation Compared to 10 Simulated Distributions, α = 1.5
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