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ABSTRACT. This paper establishes, under non-standard conditions, an explicit sto-

chastic approximation of studentized M-estimators 0n, implicitly defined as solutions

to ΣjLi Ψ{Xj>θ) = oi71'1), by a U-statistic Un that is probably concentrated about

Θn in the sense that P[ |0 n - Un\ > (nlogn)"1] = o{n~λf2). The expansion and

concentration hold under weaker smoothness conditions on φ than those assumed by

Lahiri (1994). This approximation is key in rigorously establishing a second order

expansion for the sampling distribution of the studentized estimator. Under stronger

smoothness assumptions on ψΊ a similar expansion relates the bootstrap approxima-

tion to the true distribution of the studentized M-estimator.

1. INTRODUCTION

Let Xι,..., Xn be independent and identically distributed random variables from a

common probability measure P, of which we want to estimate the population parameter

θ = θp implicitly defined as the unique solution of

/ •
= 0, (1.1)

for some measurable function ψ(x,θ). For ease of exposition, we shall restrict our

attention to univariate parameters. Generalization to the multidimensional parameter

case is straightforward, and therefore will not be pursued here.

Denote by P n the empirical probability measure based on the sample Xι,...,Xn

which assigns mass Pn(A) = n " 1 # ( X J G A) to each set A. This paper studies M-

estimators θ that solve the empirical counterpart of (1.1) within o(n~ι), e.g.,

/ •
(1.2)
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There is a considerable amount of literature about M-estimators. Huber (1967)

proved the asymptotic normality of M-estimators under "non standard" conditions

that do not require explicit smoothness assumptions on Ί/J(X, θ). Asymptotic normality

of θ entails that

\θ-θP

sup P
σ(θ)

<x (1.3)

where Φ denotes the standard normal distribution function and σ2(θ) the variance

of θ. When ψ(Xι,θ) is continuously differentiate and its third moment is finite, a

Berry-Esseen type of theorem strengthens (1.3) by bounding the error of the normal

approximation to

\θ-θP

sup
x σ[β)

<x -Φ{x) (1.4)

The bootstrap provides an alternative approximation to the sampling distribution of

θ. Arcones &; Gine (1992) have shown consistency of the bootstrap approximation for

the limiting distribution of the standardized M-estimator under essentially the same

conditions as those needed for proving its asymptotic normality. They rely upon empir-

ical process theory: stochastic equicontinuity of the process yjn J ψ{x, θ) d{Pn — P){x)

and continuous differentiability (in θ) of f ψ(x,θ)dP(x). However, it does not follow

from their work that the bootstrap outperforms the classical normal approximation, as

this requires a careful analysis of the second order properties of the estimator.

Lahiri (1992a) and Hall & Horowitz (1996) investigate the asymptotic refinements

of the bootstrap distribution to the normal approximation of the standardized and

studentized M-estimators, respectively. It is well known that without studentization,

the improved accuracy of the bootstrap distribution to order o(n~ϊ) does not hold true

[see Helmers (1991) and Hall (1995)]. In both cases, they assume that φ(x, θ) has three

continuous derivatives in θ to conduct their proof and use the implicit function theorem

to establish the existence of an Edgeworth expansion for both θ and its bootstrapped

counterpart θ*. Their results are useful to establish the second order correctness of the

bootstrap.

The bootstrap distribution is typically approximated by Monte Carlo simulations.

In large parameter spaces θ this becomes computationally intensive, as large systems

of equations have to be solved. Empirical Edgeworth expansions provide an attractive

alternative to the bootstrap in these instances. But this requires an explicit expression
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for the Edgeworth expansion. Early explicit Edgeworth expansions for normalized M-

estimators were derived by Pfanzagl (1973), under the assumptions that φ(x, θ) is twice

differentiate in θ and P belongs to a somewhat restricted parametric family. For the

special case of Edgeworth expansions of location parameters, we refer to Bickel (1974)

and references therein. The case of general order Edgeworth expansion for normalized

M-estimators of a regression parameter is explored in Lahiri (1992b). The latter paper

is particularly interesting in that the derivation of the expansion relies on assumed

montonicity properties of φ, instead of smoothness assumptions.

Lahiri (1994) rigorously establishes an explicit second order expansion for multivari-

ate M-estimators that holds generally, provided that φ(x,θ) is three times continuously

differentiable in θ. He proceeds by first approximating the M-estimator θn by a U-

statistic Un for which the tail of the distribution of the difference n(θn — Un) is of order

o(n~~1/2). The second order properties for the estimator then follow from an Edgeworth

expansion for U-statistics originated in Gόtze (1987), see also Bickel, Gotze & van Zwet

(1986). Armed with these results, Lahiri concludes that both the bootstrap and the

empirical Edgeworth approximation provide second order corrections to the sampling

distribution of M-estimators. The main contribution of this paper is a relaxation of

the smoothness conditions on ψ required to establish the second order properties of

M-estimators. Essentially, we require two continuous derivatives on φ instead of three.

Our approach refines Lahiri's argument and derives under "non standard" conditions

a different approximating [/-statistic Un to the M-estimator. The technical aspects of

this paper focus on proving rigourously that tails of the distribution of our remainder

is appropriately small, i.e.,

V[n\θn - Un\ > (logn)-1] = oin^2).

Our results rely implicitly on the smoothness of the parent distribution of X which

does not hold for the empirical distribution. Hence our refinements can not be applied

to derive an analogous expansion for the bootstrap estimate. But Lahiri's (1994)

expansion, which requires more smoothness on φ, still holds. The fact that more

smoothness on φ is needed for the bootstrap is not an artifact from our method of

proof since it is known that the naive bootstrap performs worse in certain non-smooth

cases. For example, Arcones (1995) shows a similar phenomenon for U-quantiles. From

this we conclude that the empirical Edgeworth expansion improves upon the normal

approximation more generally than the bootstrap.
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Our paper is organized as follows. Section 2 contains the main assumptions and

derives an approximation of the studentized M-estimator by a U-statistic. Section 3

presents our main results: an Edgeworth expansion for the studentized M-estimator,

an empirical Edgeworth expansion and second order correctness of the bootstrap.

2. PRELIMINARIES.

We begin this section by stating the assumptions used throughout this paper.

(Al) Assume that θp is an interior point of the parameter space θ . Let θ be a

consistent estimator of θp such that

} V (2.1)

(A2) The function ψ(x, θ) is twice differentiate in 0. The partial derivatives are de-

noted by Δfc(z, θ) = dkψ(x, θ)/dθk, k = 1,2. In addition, assume that Δ2(x, 0)

is Holder continuous at 0p, i.e.,

|Δ 2(z,0) - Δ 2 (x,0 P ) | < r{x)\θ - θP\
a, (2.2)

for some a > 0, and function r(x) with

ΊE\r(X)\k < oo, for some k > I/a.

(A3) The expectations JE\Ak(X,θP)\2 are finite, k = 1,2.

(A4) The expectation E^(Xi,0p) 6 < oo, and EΔi(X,0 P ) Φ 0.

(A5) | I E e ' ί V W p ) | < 1 — χ(ί) for all ί, for some positive continuous function χ(t) that

satisfies limj >oo χ(t) > 0.

We briefly comment on the above assumptions.

(1) Assumption Al, while a little more stringent than assuming the consistency of 0

as in Arcones and Gine (1992), Gine (1997), Pollard (1984), and, Van der Vaart

and Wellner (1996), makes our proofs much more transparent. It is also a key

requirement in Lahiri (1994), who establishes (2.1) under suitable smoothness

conditions on ψ, cf. Lahiri (1994, Proposition 2.1, p. 205).

(2) Assumptions A2 and A3 are required for the Edgeworth expansions of the

bootstrap estimator but can otherwise be relaxed (see Theorem 2.2 below) to

requiring slightly more than one derivative oίψ(X, 0), together with an entropy

condition.
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(3) Assumption A4 requires four moments for φ instead of the customary three

moments required for the Edgeworth expansions. The reason is that we need

to control the size of tail probability of Ψ[n-λ Σd=1(Φ(Xi)3 - Έφ3{X)) >

(logn)"1]. Assumption A3 and A4 also imply bounds for the tail probabil-

ity of Ψln^ΣLΛΨiXi^P^ΛXΰθp) - JEφ(X,θP)A(X,θP)) > (logn)"1].

(4) Assumption A5 is a standard condition needed for the Edgeworth expansion of

the U-statistics.

2.1. A Stochastic Approximation for M-estimators. Before stating our results,

we introduce some additional notation. Define

ψ{θ) = J l

φ\θ) = j

= 7(0; P ) = fφ2(χ,
J n

The main difficulty in the following results is to guarantee that the tail probability

of the remainder term in the stochastic expansions is of order o(n~1/2).

Theorem 2.1. Let conditions A1-A4 be satisfied. Then the expansion

• Ψn(θP)ψ"{θP) ψ'n(θP)-φ'{θP) ( 2 3 )

holds true, where the remainder satisfies W {\ξn\ > (nlogn)" 1 } = o(n~*).

Proof. Assume without loss of generality that θp = 0 and remark that by definition,

φ(0) = 0 and φjβ) = o{rCι).

Denote the centered random variables φ'n(θ) — φr(θ) by Dn(θ). Prom Assumption A3,

φφ) = θψ'(0) + l?<p"(0) + ψ [ψ"(θ) - ψ"(0)] , (2.4)

where θ is between 0 and θ. The left hand side of (2.4) equals

= -(ψn - Ψ)Φ) = -(ψn - φ){0) - θDn(o) - θ (Dn(θ) - Dn(o)), (2.5)
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with 0 between 0 and 0. Combining these two expressions yields

where Rn = Rni + Rra + i?n3 + #π4 with

= -ΘDn(0), ^ 4 = - § (Dn(θ) - Dn(0)).

We begin by showing that

I P { | Λ n | > n - 1 1 ^ } = o ( n-i/2 ). (2.6)

First, condition Al implies that

| ^ l o g 2 n | = o ( n _ 1 / 2 ) ( 2 7 )

Second, 1^1 < C\θ\2+a/2 and

IP ( |^| 2 + α > -^—\ < IP ( | ^ | 2 + α > r^-\ = o(n-l) (2.8)
\' nlognj ~ V lognj

entail that IPflfl^l > (nlogn)"1} = o(n~i). Third, we split

π 5 / 1 6

by Al and the fact that Έ\^Dn(0)\2 < oo by A3. Fourth, using a Taylor expansion

and the Lipschitz condition A2, we bound

ϊ(Pn - P)Δ2(-,0)| + |?|2 +*(Pnr + Pr),
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and it follows that

P{\Rnil > (nlogn)-1} (2.9)

+P {|v^r* > \(lognrή + P [pnr + Pr

^ ( P n - P)Δ2( , 0)|2

( -~\

by assumptions Al, A2 and A3.

In view of the preceding calculations, only B^i and R^ need further refinements. For

this purpose, we write
I 2 -i f//n\

where

By virtue of (2.6), it is easy to show that

4

(nlogn)-1} < £ P { | ^ n ( 0 ) | > (βnlogn)"1} + P{β2 > (2nlogn)-1}
2=1

as IP{|i?n| > (2nlogn) 1^2} = o(n */2) by the reasoning above, and since, for 1 < i <

4, P{|i?n^n(0)| > (8nlogn)-1} = o{n~1^). For instance,

(2.10)

+Pj|VnDn(0)|>nϊ*KlP

Here we used the fact that
3/2

|3
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by RosenthaΓs inequality [cf. Ibragimov and Sharakhmetov (1998)] and A3.

Similarly one can show that

with Ψ{\Rn\ > (nlogn)"1} = o(n~3). Hence

θ- ^(o ) v 2[

with IP{|ξn| > (nlogn)"1} = o(n~2) as asserted. D

We may relax assumptions A2 and A3 as we do not need a second partial derivative

of ψ if we require instead some regularity conditions on the first partial derivative.

Define the class

and, for each δ > 0, let Hn(δ) be the ^-entropy with bracketing number of Tn in L2(P)

(cf. Van der Vaart and Wellner 1996, p. 83, for its definition). We replace Assumptions

(A2) and (A3) by

(A25) The function φix.θ) is differentiate in θ with partial derivative A1(x1θ) =

dφ{x,θ)/dθ.

In addition, assume that Hn(δ) < δ~v for some V < 2 and

\A1(x,θ)-A1(x,θP)\<\θ-θP\«r(x)

with E|r(X)|* < oo for p > max(2/{α(2 - V)}, 3).

The function ψ(θ) = JEψ(X,θ) is twice continuously differentiate in θ.

(A3') E |Δi(X,0 P ) | 2 < oo.

Theorem 2.2. Let conditions Al, A4, A2' and A37 be satisfied. Then the expansion

Oniβp) (Λ , Ψn(θP)ψ"(θP) Ψ'n{θP)-ψ'{θP)\ , t ( 2 l 2 )

holds true, where the remainder satisfies P{ | ξ n | > (nlogn)' 1} = o(n~^).
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Proof. Recall that Dn(θ) = ψ'n[θ) - φ\θ). The proof of the theorem is essentially the

same as that of Theorem 2.1, except for the bound of the term

= -θ (Dn(θ) - Dn{0)) -

We have

^ | >logn} + P jsup \^(Pn-P)f\ > (log n)~2j

IE (sup \^(Pn ~ P)f\

by Al. Notice that the class !Fn(x) has envelope Fn = (n 1/2logri)ar(x). The second

term can be handled as follows: Let an < bn mean that there exists a positive constant

c such that an < cbn for all n. Then

p

sup |v^(Pn - P)f\Y + n
)

by Theorem 2.14.5 in Van der Vaart and Wellner (1996, p. 244)

by Theorem 2.14.2 in Van der Vaart and Wellner (1996, p. 240)

j V V ^ )
for p satisfying A2\ Observe that this choice yields

This concludes the proof. •

In applications, the variance of the estimator θ is typically unknown, and thus theo-

rems 2.1 and 2.2 are of theoretical interest only. In practice, one usually considers the
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studentized M-estimator

Tn = yJnΊ^(θ)φ'n(θ) (θ - θp) . (2.13)

Our next theorem develops a stochastic approximation for the studentized M-estimator.

Theorem 2.3. Define the constants

θp), (2.14)

co ψ"{βP)
C l =

Assume that A1-A4 are satisfied. Then

Tn = -y/n<y-i(θP)φn{θp) [1 + clψn(θp) + c2(Ίn(θP) - Ί(ΘP))] + ξn, (2.15)

where ΊP {\ξn\ > ( n ^ l o g n ) " 1 } - o{n-\).

Proof: Without loss of generality, ΘP = 0. Recall the definition Dn(θ) = φ'n(θ) -φ'(θ),

and expand

ψ'nΨ) = V/(O) + ̂ Dn(O) + θ φ"(0) + R,*, (2.16)

with remainder

β.5 = Dn0) - Dn(0) + θ {φ"(θ) - φ"(0))

for some θ between 0 and θ. The same argument used for the remainder Rra in Theorem

2.1 yields Ψ\θ i ? ^ > (nlogn)" 1] = o(n~1/2). Assumption A2 entails us to write

7 n ( 0 ) - 7 ( O ) = 7n(0)-7n(O) + (7n

= 2Θ- Σφ(Xu0)Δ1(Xij 0) + ( 7 n - 7)(0) + Rnβ,
n ii

in which, for some θ between 0 and θ,

= 2Θ •-y/[ψ(Xi,θ)/\(Xi,θ) - φiXi^A^Xuϋ)]. (2.17)
n

Similarly to R^, we also have that F WRnβ > (nlogn)" 1 = o(n~ 1 / 2). Substitu-

tion in (2.17) of the average n""1 Y^=1φ{Xi,0)Aι(Xi,0) by its expected value c0 =

7E,[φ(Xi,ϋ)Δi(Xi,0)] = 7;(0), results in the stochastic approximation

nΦ) ~ 7(0) - 2co0 + ( 7 n - 7)(0) + Rnj. (2.18)
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Using the techniques used for Rn5 together with an application of Chebychev's inequal-

ity and Assumption A4 yields

nlognj

In light of (2.17), (2.18), and the Taylor expansion for x~1/2, it follows that

with ΊPlθRns > (nlogn)" 1] = o(n~^2). Using the above expression together with the

expansion (2.12) derived in Theorem 2.1, leads after algebraic manipulations to

T K φ ^ ft
J-n = y/n- — j = V

in which the remainder satisfies P[i?n9 > (n1/2logn)~1] = o(n~1/2). Setting C\ and c2

as in (2.14) leads to the desired conclusion. D

Remark 2.4. Again, we could weaken the assumptions slightly, and proceed to show

that the remainder is small using the techniques used in Theorem 2.2.

From Expansion (2.15) it is easily verified that the studentized M-estimator Tn can

be decomposed into a stochastic and deterministic part, the random part being a U-

statistic of degree two with zero mean as alluded to in the introduction.

Corollary 2.5. Under the conditions A1-A4, the studentized M-estimator admits the

following decomposition:

Tn = ̂ (nXlγΣK{XuXά) + j^+ξn, (2.20)
^ ' l<i<j<n
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where Ψ {\ξn\ > (y/nlogn)'1} — o(n~ιί2), where the kernel K{x,y) is defined by

( \ sym

=:ψ4 i 2 }(
>/Ί\PP) )

in which h(x,y)syrn = 2~ιh(x,y) + 2~ιh(y,x) is the symmetήzation of the function

h(x,y), and
B = ΈK(XUX1). (2.22)Proof: Set

c.y) =
ίW)

,-, ΘP) ^ ΘP) - Ί{ΘP))] ,

and notice that T&h(Xu Xό) = 0 (i φ j) and Έ,h(X, X) = B. Apply Theorem 2.3 and

expand to get

•c1φn{θp)+o2{Ίn{θP)-Ί{θP))]+ξn,

# ΣΣ

n

2 = 1

where ξ n is given in (2.15). By virtue of Chebychev's inequality and Assumption A4,

one concludes that both

pi
[n

Σ

IP

{h{Xi, Xi)

1

n(n — 1)

from which the conclusion follows.

^—>

1
logn

1

logn

D
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3. MAIN RESULTS

Let Gn(x) — IP(Γn < x) be the distribution function of the studentized statistic Tn.

With B defined in (2.22), let

Έφ(X1,θP) + 6Ί(θP)B
3 • WPF2—• ( }

Denote by Φ and φ the distribution function and density of a standard normal respec-

tively. While \Gn(x) - Φ(x)\ = O(n"i) , Theorem 3.1 below shows that

^ { | } (3.2)

approximates Gn(x) to order 0(71" 2).

Theorem 3.1 (Edgeworth expansion). Under A1-A5

sup
x

Gn(x)-Gn(x) =o(n"5). (3.3)

Proof: Prom Corollary 2.5, the studentized M-estimator can be written as

with

and B = ΊEK(X,X), to which we shall apply the Edgeworth expansion derived in

Bickel, Gotze & van Zwet (1986). Since JEφ(X, ΘP) = 0 and IE^2(X, ΘP) - η{θP) = 0,

it follows that in the notation of Bickel et al. (1986),

g(x) = Έ[K(X,Y)\X = x} = \ψ{x,0p).

Our assumptions A4 and A5 guarantee that the conditions of their Theorem 1.2 are

satisfied, which entails

Gn(x) = Ψ{Tn<x}

< Ψ |v^C/n < x - n~λ2B - ( n l o g 2 n ) ' 1 ^ + IP {\ξn\ >

= Φ(x) - ^ {|(x2 - 1) + B) + o{n-h (3.4)
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where ^3 is given in (3.1) and the remainder ξn is defined in Corollary 2.5. In a similar

fashion, one establishes

Gn{x) > Φ(s) -
y/n I 6

and the result follows. D

In practice B and κ$ appearing in (3.2) are unknown and have to to be estimated

from the data. We estimate them by

n ' ^ - - '

and

where

estimate the constants Co, Ci and C2. The following theorem states that

(3.8)

also approximates Gn(x) to order o(n~*).

Theorem 3.2 (Empirical Edgeworth expansion). Suppose A1-A5 hold. Then we have

with probability one

sup Gn(x)-En(x) =o{rΓΪ). (3.9)

Proof: The theorem rests on showing that both £3 and B converge with probability

one to κ,s and B, respectively. By the mean value theorem, there exists a θ between θ

and θp such that

ΊnΦ) ~ ΊΨP) = Ί'n(θ) (? - θp) + (Ίn(θP) ~ Ί{ΘP)) ^ 0,
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and similarly,

-VVpς-,?) ^ ίφ3(x:θP)dP(x)1 d^Ct, ϊ = l,...,3.
U i=i

Therefore i? -^> Z? and £3 -^> ^3. The conclusion follows. D

Given X l 7 . . . , Xn, let Jf J , . . . , X* be the bootstrap sample drawn with replacement

from Pn. Define P* as the empirical probability measure based on X{,..., JV*, con-

ditionally given the sample Xu... ,Xni and let G*(x) be the bootstrap distribution

function of

(3.10)

The quantities 7* and φ*n are the bootstrap equivalents of ηn and <pn, that is,

and φ*n(θ)

We set out with a bootstrap version of Theorem 2.1. We replace Assumption Al by

its bootstrap counterpart.

(Al*) Let θ* be a consistent estimator of 0, and suppose that

P* [|>/n(0* - ? ) | > log(n)] = o{n~1/2) a.s. (3.11)

Proposition 3.3. Suppose Al* ; A2 - A5 hold true. Then

?φ) (φ*n(θ)

IP* {|ξ*J 1

Proof: The proof is as the one given in full detail of Proposition 2.1. This is possible

because ψ is smooth. •

Theorem 3.4 (Bootstrap). Under conditions Al*, Al - A5 we have with probability

one that

n(ar)-G;(x)| = O(n-i). (3.12)
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Proof: The proof of Theorem 3.4 parallels the one of Theorem 3.1. Express

sym

where B is defined in (3.5), and the kernel

-ψ(x,θ) {l + Ciφfaθ) + c2[ψ2(y,θ) -Ίn{

is an estimate of (2.21). Also, in perfect analogy with the previous result,

ΈTKn{Xl X*2) = 0, TE*(Kn(X*ly X;)\X* = x) =

(3.13)

(3.14)

The only non trivial fact yet to be established is that the distribution function of

ψ*(Xl,θ) is nonlattice. In view of the nonlatticeness of ψ(X,θp), it suffices to show

that for each M > 0 [cf. Helmers (1991)],

sup 0. (3.15)

The latter follows from

sup
2 = 1

o,

the smoothness of -0, the strong consistency of #, and Theorem 2.1 of Feuerberger and

Mureika (1977) stating that

sup
\t\<M

o.

Arguing as in Theorem 3.1 we conclude that

G*n(x) = Φ(x) - ^§

whence sup^ \Gn{x) - G*n{x)\ = o{n~\).

(3.16)

D
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