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Distributions of failure times associated

with non-homogeneous compound Poisson

damage processes

S. Zacks1

SUNY, Binghamton

Abstract: Failure time distributions are derived for non-homogeneous com-
pound Poisson cumulative damage processes. We focus attention on Weibull
type processes with exponential damage size. The hazard functions are il-
lustrated and their asymptotic behavior investigated. Moment equations and
maximum likelihood estimates are studied for the homogeneous case.

1. Introduction

Bogdanoff and Kozin, in their book (1985) define cumulative damage (CD) as the
“irreversible accumulation of damage throughout life, that ultimately leads to fail-
ure”. Such damage can be manifested by corrosion, cracks, physical wear in bearing,
piston rings, locks, etc. We focus attention on damage processes that occur at ran-
dom times, according to some non-homogeneous Poisson process. The amount of
damage that accumulates follows a specified distribution. Thus, the amount of dam-
age at time t, is a realization of a random process {Y (t), t ≥ 0}, where Y (t) ≥ 0 is
a non-decreasing process with Y (t) → ∞ a.s. as t → ∞.

A system subjected to such a damage process fails at the first instant at which
Y (t) ≥ β, where 0 < β < ∞ is a threshold specific to the system. Thus, the dis-
tribution of the failure times is a stopping time distribution. We present in the
present paper the methodology of deriving these distributions. We are interested
in particular in a family of non-homogeneous Poisson processes having an intensity
function of the Weibull type, namely λ(t) = (λt)ν , 0 < λ, ν < ∞. In Section 2 we
specify compound non-homogeneous Poisson damage processes, and the distribu-
tion of the cumulative damage Y (t), at time t. In Section 3 we derive the density
and the reliability function of failure times driven by such processes. In particular
we focus attention on cumulative Weibull processes with exponentially distributed
damage amount in each occurrence. We investigate and illustrate the behavior of
the distribution of failure times and the hazard function. In Section 4 we develop
estimators of the parameters of the failure distribution in the homogeneous case
(ν = 1).

An extensive list of publications on damage processes is given in Bogdanoff
and Kozin (1985). They provide empirical examples, and mention (p. 28) the non-
homogeneous Poisson process with a Weibull intensity function. The theory for
a discrete Markov chain model, having b states of damage is developed in this
book. A recent paper on the subject is that of W. Kahle and H. Wendt (2000).
They have modeled damage by a marked point process, and focus attention on
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doubly stochastic compound Poisson processes. Their formulation is close to ours,
but they do not provide an explicit formula for the distribution of failure times.
Other related papers are those concerned with shock models, like Esary, Marshall
and Proshan (1973), Feng, Adachi and Kowada (1994), Shaked (1983), Soczyk
(1987).

2. Compound cumulative damage processes

We consider cumulative damage processes (CDP) modeled by non-homogeneous
compound Poisson processes. In this model, the system is subjected to shocks at
random times, 0 < τ1 < τ2 < · · ·, following a non-homogeneous Poisson process,
with an intensity function λ(t) (see Kao, 1997, pp. 56). The amount of damage to
the system at the n-th shock is a random variable Xn, n ≥ 1. We assume that
X0 ≡ 0, X1, X2, . . . are i.i.d., and that the sequence {Xn, n ≥ 1} is independent of
{τn, n ≥ 1}.

Let {N(t), t ≥ 0} be a non-homogeneous Poisson counting process, with N(0) =
0 where

N(t) = max{n : τn ≤ t}. (1)

{N(t), t ≥ 0} is a process of independent increments such that, for any 0 ≤ s < t <
∞,

P{N(t) − N(s) = n} = e−(m(t)−m(s)) (m(t) − m(s))n

n!
, (2)

n = 0, 1, . . ., where m(t) =
∫ t

0

λ(s)ds, 0 ≤ t < ∞. The compound damage process

(CDP) {Y (t), t ≥ 0} is defined as

Y (t) =
N(t)∑
n=0

Xn. (3)

It is a compound non-homogeneous Poisson process. The compound Poisson Process
(CPP) is the special case of a constant intensity function, λ(t) = λ, for all 0 <
t < ∞, 0 < λ < ∞. We restrict attention in the present paper to the family of
compound Weibull processes (CWP), in which λ(t) = λν(λt)ν−1, 0 < t < ∞ for
0 < λ, ν < ∞. Furthermore, we assume that Xn, n ≥ 1, are absolutely continuous
random variables, having a common distribution function, F , and density f .

The cdf of Y (t), at t > 0, has a discontinuity at y = 0, and is absolutely
continuous on 0 < y < ∞. It is given by

D(y; t) =
∞∑

n=0

e−m(t) (m(t))n

n!
F (n)(y). (4)

with D(0; t) = exp(−m(t)), and F (n) is the n-fold convolution of F , i.e.,

F (n)(y) =




F (y), if n = 1∫ y

0

f(x)F (n−1)(y − x)dx, if n ≥ 2. (5)

The defective density of Y (t) on (0,∞) is

d(y; t) =
∞∑

n=1

e−m(t) (m(t))n

n!
f (n)(y). (6)
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where f (n) is the n-fold convolution of the density f . We will use the notation
p(n; µ) and P (n; µ) for the probability function and cdf, respectively, of the Poisson
distribution with mean µ. Accordingly, the density of the CWP, at 0 < y < ∞ and
0 < t < ∞ is

d(y; t, λ, ν) =
∞∑

n=1

p(n; (λt)ν)f (n)(y), (7)

and its cdf is

D(y; t, λ, ν) =
∞∑

n=0

p(n; (λt)ν)F (n)(y). (8)

We consider a special case of these functions, when the amount of damage Xn is
exponentially distributed, with parameter µ, i.e., E{Xn} = 1

µ . In this special case
f (n)(y) = µp(n − 1; µy) and F (n)(y) = 1 − P (n − 1; µy). The results of this paper
can be generalized to damage processes driven by compound renewal processes with
any distribution F .

3. Cumulative damage failure distributions

A cumulative damage failure time is the stopping time

T (β) = inf{t > 0 : Y (t) ≥ β}, (9)

where 0 < β < ∞. Since Y (t) is non-decreasing a.s., we immediately obtain that,
in the continuous case,

P{T (β) > t} = D(β; t), 0 < t < ∞. (10)

This is the reliability (survival) function of the system. Thus, for the CWP, with
general damage distribution,

P{T (β) > t} =
∞∑

n=0

p(n; (λt)ν)F (n)(β). (11)

In the special case of exponential damage distribution,

P{T (β) > t} = 1 −
∞∑

n=1

p(n; (λt)ν)P (n − 1; µβ). (12)

We see in (3.4) that, in the exponential case, the distribution of T (β) depends on
µ and β only through ζ = µβ = β/E{X1}. Accordingly, let R(t; λ, ν, ζ) denote the
reliability function of a system under CWP with exponential damage distribution
(CWP/E).

Theorem 1. Under CWP/E the reliability function is

R(t; λ, ν, ζ) =
∞∑

j=0

p(j; ζ)P (j; (λt)ν ). (13)

Proof. According to (3.4),

R(t; λ, ν, ζ) = 1 −
∞∑

n=1

p(n; (λt)ν)
n−1∑
j=0

p(j; ζ)
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= 1 −
∞∑

j=0

p(j; ζ)
∞∑

n=j+1

p(n; (λt)ν)

= 1 −
∞∑

j=0

p(j; ζ)(1 − P (j; (λt)ν)).

This implies (3.5).

It is obvious from (3.1) that P{T (β) < ∞} = 1 for any 0 < β < ∞. This follows
also from the following theorem.

Theorem 2. Under CWP/E, R(0; λ, ν, ζ) = 1, R(t; λ, ν, ζ) is strictly decreasing in
t, for (λ, ν, ζ) fixed, and lim

t→∞
R(t; λ, ν, ζ) = 0, for any (λ, ν, ζ) in R3+.

Proof. According to (3.5), since lim
t→0

P (j; (λt)ν) = 1 for all j = 0, 1, . . . and any
0 < λ, ν < ∞, the bounded convergence theorem implies that

lim
t→0

R(t; λ, ν, ζ) =
∞∑

j=0

p(j; ζ) lim
t→0

P (j; (λt)ν) = 1.

Furthermore, the Poisson family is an MLR family and P (j; (λt)ν) ↓ t. Hence,
R(t; λ, ν, ζ) ↓ t, i.e., ∂

∂tR(t; λ, ν, ζ) < 0, for any fixed (λ, ν, ζ), 0 < λ, ν, ζ < ∞.
Finally, since lim

t→∞
P (j; (λt)ν) = 0 for any fixed j ≥ 0, 0 < λ, ν < ∞, the dominated

convergence theorem implies that lim
t→∞

R(t; λ, ν, ζ) = 0, for any 0 < λ, ν, ζ < ∞.

Theorem 3. Under CWP/E, the density of T (ζ), 0 < ζ < ∞, is

f(t; λ, ν, ζ) = λν(λt)ν−1
∞∑

j=0

p(j; ζ)p(j; (λt)ν), (14)

and its m-th moment, m ≥ 1, is

E{(T (ζ))m} =
1

λm

∞∑
j=0

p(j; ζ)
Γ(j + 1 + m

ν )
Γ(j + 1)

. (15)

Proof. It is easy to verify that

∂

∂ω
P (j; ω) = −p(j; ω), 0 < ω < ∞.

Moreover,

f(t; λ, ν, ζ) = − ∂

∂t
P{T (β) > t}

= − ∂

∂t

∞∑
j=0

p(j; ζ)P (j; (λt)ν ).

This implies (3.6), since R(t; λ, ν, ζ) is an analytic function of t, or by bounded
convergence. To prove (3.7) we write

E{(T (ζ))m} =
∫ ∞

0

tmf(t; λ, ν, ζ)dt
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= νλν
∞∑

j=0

p(j; ζ)
λνj

j!

∫ ∞

0

tm+ν(j+1)−1e−(λt)ν

dt

=
∞∑

j=0

p(j; ζ)
λν(j+1)

j!

∫ ∞

0

u
m
ν +je−λνudu

=
1

λm

∞∑
j=0

p(j; ζ)
Γ(j + 1 + m

ν )
Γ(j + 1)

.

Corollary. In the homogeneous case (ν = 1) with exponential damage, the expected
value, variance and coefficient of skewness of T (ζ) are, correspondingly,

E{T (β) | λ, ν = 1, ζ} =
1 + ζ

λ
, (16)

V {T (ζ) | λ, ν = 1, ζ} =
1 + 2ζ

λ2
(17)

and

γ1(T (ζ)) =
2(1 + 3ζ)

(1 + 2ζ)3/2
. (18)

Notice also that equation (3.7) shows that moments of T (ζ) of all orders exist,
since moments of all orders of the Poisson distribution exist. In Figure 1 we present
several densities of T (ζ), for λ = 1, ζ = 5 and ν = 1.1, 1, .9. According to eq. (3.6),

lim
t→0

f(t; λ, ν, ζ) =

{∞, if ν < 1
λe−ζ , if ν = 1
0, if ν > 1.

(19)

Indeed, limt→0 p(j; (λt)ν) = I{j = 0}, i.e., 1 if j = 0 and 0 otherwise. Thus,
limt→0

∑∞
j=0p(j; ζ)p(j; (λt)ν ) = p(0; ζ) = e−ζ. The densities f(t; λ, ν, ζ) are uni-

modal whenever ν ≥ 1, and bi-modal when ν < 1. Figure 1 does not show the
behavior of these densities in the interval (0, 1). We see that the density becomes
more symmetric as ζ grows. Indeed, ∂

∂ζ γ1(T (ζ)) = − 6ζ
(1+2ζ)5/2 < 0 for all 0 < ζ < ∞.

From eq. (3.5) we obtain immediately that the reliability function R(t; λ, ν, ζ),
is a strictly increasing function of ζ, for each fixed (t, λ, ν). This result is obvious
from (3.1) if µ = 1. Generally, for fixed t, λ, ν P (j; (λt)ν) is an increasing function
of j. Hence, since the Poisson family {p(·; ζ), 0 < ζ < ∞} is a monotone likelihood
ratio family (MLR), Eζ{P (J ; (λt)ν)} is an increasing function of ζ.

The hazard function under CWP/E damage processes is

h(t; λ, ν, ζ) =
λν(λt)ν−1

∑∞
j=0p(j; ζ)p(j; (λt)ν )∑∞

j=0p(j; ζ)P (j; (λt)ν)
. (20)

We obtain from (3.11) since limt→0 P (j; (λt)ν) = 1 for all j ≥ 0, that,

lim
t→0

h(t; λ, ν, ζ}) =

{∞, if 0 < ν < 1
λe−ζ , if ν = 1
0, if ν > 1.

(21)

In Figure 2 we illustrate the hazard function (3.12) for λ = 1, ζ = 5 and ν =
.53, .55, .57.
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Figure 1: Densities of T (ζ), λ = 1, ζ = 5, ν = 1.1 −−•−−, ν = 1.0 · · ·, ν = 0.9 - - -

Similar types of hazard functions were discussed by Aalen and Gjesing (2003).
We examine now the asymptotic behavior of the hazard function (3.12), as

t → ∞. Make first the transformation u = (λt)ν . In terms of u, the hazard function
is

h∗(u; λ, ν, ζ) = λνu1−1/ν · Eζ{p(J ; u)}
Eζ{P (J ; u)} , (22)

where J ∼ Pois(ζ).

Theorem 4. For a fixed λ, ν, ζ, the asymptotic behavior of the hazard function is

lim
u→∞

h∗(u; λ, ν, ζ) =

{∞, if ν > 1
λ, if ν = 1
0, if ν < 1.

(23)

Proof. Since p(j; u) ≤ P (j; u) for j = 0, 1, . . . and each u, 0 < u < ∞,

lim
u→∞

Eζ{p(J ; u)}
Eζ{P (J ; u)} ≤ 1. (24)

We now prove that

lim
u→∞

Eζ{p(J ; u)}
Eζ{P (J ; u)} = 1. (25)
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Figure 2. Hazard Functions, λ = 1, ζ = 5, ν = .57 −−•−−, ν = .55 · · ·, ν = .53 - - -

First, by dominated convergence, lim
u→∞

Eζ(p(J ; u)} = Eζ{ lim
u→∞

p(J ; u)} = 0. Sim-

ilarly, lim
u→∞

Eζ{P (J ; u)} = 0. By L’Hospital rule,

lim
u→∞

Eζ{p(J ; u)}
Eζ{P (J ; u)} = lim

u→∞

d
duEζ{p(J ; u)}
d

duEζ{P (J ; u)}

= lim
u→∞

Eζ{p(J ; u) − p(J − 1; u)}
Eζ{p(J ; u)}

= 1 − lim
u→∞

∞∑
j=0

p(n + 1; ζ)p(n; u)

∞∑
n=0

p(n; ζ)p(n; u)

.

Furthermore,

∞∑
n=0

p(n + 1; ζ)p(n; u)

∞∑
n=0

p(n; ζ)p(n; u)

= ζ

∞∑
n=0

1
n + 1

p(n; ζ)p(n; u)

∞∑
n=0

p(n; ζ)p(n; u)
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Fix a positive integer K (arbitrary). Then,

R(ζ, u) =

∞∑
n=0

1
n + 1

p(n; ζ)p(n; u)

∞∑
n=0

p(n; ζ)p(n; u)

≤

K∑
n=0

1
n + 1

p(n; ζ)p(n; u) +
1

K + 2

∞∑
n=K+1

p(n; ζ)p(n; u)

K∑
n=0

p(n; ζ)p(n; u) +
∞∑

n=K+1

p(n; ζ)p(n; u)

(26)

Finally, since p(n; u) → 0 as u → ∞ for each n = 0, 1, . . .,

lim
u→∞

K∑
j=0

1
j + 1

p(j; ζ)p(j; u) = lim
u→∞

K∑
j=0

p(j; ζ)p(j; u) = 0.

Thus,

lim
u→∞

R(ζ; u) ≤ 1
K + 2

lim
u→∞

∞∑
j=K+1

p(j; ζ)p(j; u)

∞∑
j=K+1

p(j; ζ)p(j; u)

=
1

K + 2
, for all fixed ζ.

In Figure 3 we illustrate a hazard function for λ = 1, ζ = 5, ν = 0.5.

4. Estimation of parameters

Let T1, T2, . . . , Tn be i.i.d. random failure times following CWP/E. The likelihood
function of the parameters (λ, ν, ζ) is

L(λ, ν, ζ; T1, . . . , Tn) = (λ)nννn

(
n∏

i=1

T ν−1
i

)
·

n∏
i=1

∞∑
j=0

p(j; ζ)p(j; (λTi)ν). (27)

Accordingly, the minimal sufficient statistic is the trivial one (T(1), . . . , T(n)), where
0 < T(1) ≤ T(2) ≤ · · · ≤ T(n).

4.1. Moment equations estimators of λ, ζ in the homogeneous case,
ν = 1.

Let M1 = 1
n

n∑
i=1

Ti and M2 = 1
n

n∑
i=1

T 2
i be the first two sample moments. The moment

equations estimators (MEE) of λ and ζ are obtained by solving the equations,

1 + ζ̂

λ̂
= M1 (28)
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Figure 3. Hazard Function for λ = 1, ν = .5, ζ = 5

and
2 + 4ζ̂ + ζ̂2

λ̂2
= M2. (29)

Or, equivalently,

λ̂ =
1 + ζ̂

M1
, (30)

and ζ̂ is the positive root of the quadratic equation

ζ̂2

(
1 − M2

1

M2

)
− 2ζ̂

(
2M2

1

M2
− 1

)
−

(
2M2

1

M2
− 1

)
= 0. (31)

A real root exists provided M2 < 2M2
1 . Since 2M2

1 − M2
a.s.−→

n→∞
( ζ

λ)2 > 0, an MEE
exists for n sufficiently large. It is given by

ζ̂ =
(2M2

1 − M2)1/2(M1 + (2M2
1 − M2)1/2)

M2 − M2
1

. (32)

Both λ̂ and ζ̂ are strongly consistent estimators of λ and ζ, respectively. The mean
squared errors of these estimators can be approximated by the delta method. We
obtain

MSE{λ̂} =
λ2

n
· 1 + 12ζ + 58ζ2 + 144ζ3 + 192ζ4 + 128ζ5 + 32ζ6

ζ2(1 + 2ζ)4
+O

(
1
n2

)
, (33)

and

MSE{ζ̂} =
1

nζ2
(2(1 + ζ)4 − (1 + ζ)2 − ζ2) + O

(
1
n2

)
. (34)
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In the following table we compare the values of the MSE, as approximated by eq.’s
(4.7) and (4.8), to those obtained by simulations. When ν = 1 the distribution of T
is like that of χ2[2; ζ]/(2λ), where χ2[2; ζ] is a non-central chi-square with 2 degrees
of freedom, and parameter of non-centrality ζ. Thus

T ∼ (N2
1 (

√
ζ, 1) + N2

2 (
√

ζ, 1))/(2λ),

where Ni(
√

ζ, 1) (i = 1, 2) are i.i.d. normal random variables with mean
√

ζ and
variance 1. 10,000 simulation runs yield the following results

Table 1. MSE Values of the MEE By Delta Method and By Simulations

λ ζ n Delta Method Simulation
λ̂ ζ̂ λ̂ ζ̂

1 5 50 0.0568 2.0248 0.0744 2.6286
100 0.0284 1.0124 0.0322 1.1475

2 5 50 0.2272 2.0248 0.3058 2.6746
100 0.1136 1.0124 0.1323 1.1828

We notice that the delta method for samples of size 50 or 100 is not sufficiently
accurate. It yields values which are significantly smaller than those of the simulation.
Also, since the MEE λ̂ and ζ̂ are continuously differentiable functions of the sample
moments M1 and M2, the asymptotic distributions of λ̂ and ζ̂ are normal, with
means λ and ζ and variances given by (4.7) and (4.8).

4.2. Maximum likelihood estimators, ν = 1

The log-likelihood function of (λ, ζ), given T(n) is

l(λ, ζ;T(n)) = n log λ +
n∑

i=1

log Eζ{p(J ; λTi)}, (35)

where J ∼ Pois(ζ). Accordingly, the score functions are

∂

∂λ
l(λ, ζ;T(n)) =

n

λ
−

n∑
i=1

Ti + ζ

n∑
i=1

TiW (λ, ζ, Ti), (36)

and
∂

∂ζ
l(λ, ζ,T(n)) = −n + λ

n∑
i=1

TiW (λ, ζ, Ti), (37)

where

W (λ, ζ, T ) =
Eζ{ 1

1+J p(J ; λT )}
Eζ{p(J ; λT )} . (38)

Let λ̂ and ζ̂ be the maximum likelihood estimators (MLE) of λ and ζ, respec-
tively.

From (4.10) and (4.11) we obtain that, as in (4.4),

λ̂ =
1 + ζ̂

M1
. (39)
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Substituting λ̂ in (4.11) we obtain the function

•
l(ζ) = (1 + ζ)

n∑
i=1

UiW

(
1 + ζ

M1
, ζ, M1Ui

)
− n, (40)

where Ui = Ti/M1. More specifically,

•
l(ζ) = (1 + ζ)

n∑
i=1

Ui

Eζ{ 1
1+J p(J ; (1 + ζ)Ui)}

Eζ{p(J ; (1 + ζ)Ui)}
− n. (41)

Notice that
•
l(0) = 0. The MLE of ζ, ζ̂, is the positive root of

•
l(ζ) ≡ 0. N = 1, 000

simulation runs gave the following estimates of the MSE of λ̂ and ζ̂, when λ = 1,
ζ = 5 and n = 50, namely:

M̂SE(λ̂) = 0.06015 and M̂SE(ζ̂) = 2.13027.

As expected, these estimators of the MSE of λ̂ and ζ̂ are smaller than those of the
MEE estimates, given in Table 1. The asymptotic distribution of the MLE vector
(λ̂, ζ̂) is bivariate normal with mean (λ, ζ) and covariance matrix AV , which is
the inverse of the Fisher information matrix. The asymptotic variance-covariance
matrix of the MLE can be estimated by simulation. N = 10, 000 simulation runs
gave, for the case of λ = 1, ζ = 5 the asymptotic variance-covariance matrix

AV =
1
n

[
2.33917 13.04000
13.04000 83.30706

]
.

Thus, the asymptotic variance of ζ̂ for n = 50 is AV (ζ̂) = 83.30706
50 = 1.66614. We

see that the estimated variance of ζ̂ is, as in the case of the MEE, considerably
larger than its asymptotic variance. The convergence is apparently very slow.
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