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Estimating gradient trees
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Abstract: With applications to cluster analysis in mind, we suggest new ap-
proaches to constructing tree diagrams that describe associations among points
in a scatterplot. Our most basic tree diagram results in two data points being
associated with one another if and only if their respective curves of steep-
est ascent up the density or intensity surface lead toward the same mode.
The representation, in the sample space, of the set of steepest ascent curves
corresponding to the data, is called the gradient tree. It has a regular, octopus-
like structure, and is consistently estimated by its analogue computed from a
nonparametric estimator which gives consistent estimation of both the den-
sity surface and its derivatives. We also suggest ‘forests’, in which data are
linked by line segments which represent good approximations to portions of
the population gradient tree. A forest is closely related to a minimum span-
ning tree, or MST, defined as the graph of minimum total length connecting
all sample points. However, forests use a larger bandwidth for constructing the
density-surface estimate than is implicit in the MST, with the result that they
are substantially more orderly and are more readily interpreted. The effective
bandwidth for the MST is so small that even the corresponding density-surface
estimate, let alone its derivatives, is inconsistent. As a result, relationships that
are suggested by the MST can change considerably if relatively small quan-
tities of data are added or removed. Our trees and forests do not suffer from
this problem. They are related to the concept of gradient traces, introduced
by Wegman, Carr and Luo (1993) and Wegman and Carr (1993) for purposes
quite different from our own.

1. Introduction

Gradient trees capture topological features of multivariate probability densities,
such as modes and ridges. In this paper we suggest methods for estimating gradient
trees based on a sample of n observations from the density. Each estimator is in the
form of a tree with n−1 linear links, connecting the observations. The methods will
be evaluated in terms of their accuracy in estimating the population gradient tree,
and their performance for real data sets. We also propose a new technique for de-
scribing, and presenting information about, neighbour relationships for spatial data.

To define a gradient tree, note that the gradient curves of a multivariate den-
sity f are the curves of steepest ascent up the surface S defined by y = f(x). The
representations of gradient curves, in the sample space, will be called density as-
cent lines, or DALs. The tree-like structure that they form is the gradient tree. This
theoretical quantity may be estimated by replacing f by a nonparametric density
estimator, f̂ say, and then following the prescription for computing DALs and the
gradient tree.
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A gradient tree may be viewed as a modification the concept of a ‘gradient trace’,
introduced by Wegman, Carr and Luo (1993) and Wegman and Carr (1993). The
goal of these authors was to use gradient traces to compute ‘k-skeletons’, which
are k-dimensional analogues of the mode and represent nonlinear regression-like
summary statistics. Our purpose is quite different. We view gradient trees as a tool
for cluster analysis, and argue that in this context the concept has advantages over
more familiar methodology such as minimum spanning trees, or MSTs, introduced
by Florek et al. (1951); see also Friedman and Rafsky (1981, 1983).

An MST is the graph of minimum total length connecting all sample points.
It is an estimator of the gradient tree that arises when we take f̂ to be the most
basic of nearest neighbour density estimators, in which the estimate at each point
is inversely proportional to a monotone function of the distance to the closest
sample point. However, this is a poor estimator of the population density, let alone
its gradient, and so it is not surprising that the MST is a poor estimator of the
corresponding population gradient tree. We suggest gradient tree estimators that
are asymptotically consistent for the corresponding population gradient tree, and
which also improve on the MST for small sample sizes.

We also suggest algorithms for drawing ‘forests’, using either the full dataset
or subsets that have been identified by the gradient tree. Like the MST, a forest
provides information about relationships among neighbouring data, but like our
gradient tree it has the advantage that it is based on relatively accurate, and statis-
tically consistent, information about gradients. In contrast with the MST, a forest
is based on directed line segments, with the direction corresponding to movement
up an estimate Ŝ of the surface S. Our approach to constructing a forest allows the
experimenter to choose, when describing relationships between points, how much
emphasis will be given to a relatively conventional Euclidean measure of closeness
of the points, and how much will be given to a measure of closeness related to
movement up Ŝ.

Although we work mainly in the bivariate case, our methods are certainly not
limited to two dimensions. One way of treating high-dimensional data is of course
to form bivariate scatterplots by projection, and apply our methods to the individ-
ual plots. Tools for manipulating two-dimensional projections of three- or higher-
dimensional data include Asimov’s (1985) grand tour, Tierney’s (1990) Lisp-Stat, or
Swayne, Cook and Buja’s (1991) XGobi; see also Cook, Buja, Cabrera and Hurley’s
(1995) grand-tour projection-pursuit.

Moreover, density ascent lines and gradient trees have analogues when the sam-
ple space is of arbitrarily high dimension, rather than simply bivariate. (Analogues
of forests may be constructed too, but the formula for a certain penalty term that is
needed to define a forest is more complex in higher dimensions.) Hence, rather than
compute these quantities for bivariate scatterplots, their multivariate forms (rep-
resented as lines in space, rather than lines in the plane) could be calculated and
then viewed through their bivariate projections, or through rotations of trivariate
projections.

Density-based approaches to assessing relationship have also been considered
by Hartigan (1975), who took clusters to be maximal connected sets (that en-
joyed at least a certain level of likelihood) of points of density exceeding a cer-
tain level. See also the discussion of tree diagrams by Hartigan (1982). Alterna-
tive approaches include methods based on measures of distance that satisfy the
triangle inequality (e.g. Jardine and Sibson, 1971; Hubert, 1974) and techniques
founded on parametric mixtures (e.g. Everitt, 1974; Kuiper and Fisher, 1975).
Wishart (1969) was an early user of near neighbour methods to construct clusters.
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Pruzansky, Tversky and Carroll (1982) compared spatial and tree representations
of data.

2. Gradient trees and ridges

We begin by defining a ‘true’ density ascent line, when the density f of the bi-
variate distribution of a general data point X is assumed known. Then we discuss
computation of this line, and calculation of its sample version.

Let S be the surface defined by the equation y = f(x), and assume that both
the first derivatives of f are continuous everywhere. Suppose too that the set of
positive density is connected, and contains at most a finite number of stationary
points. A density ascent line (DAL) for f , starting at a point x in the plane Π that
denotes the sample space, is defined to be the projection, into Π, of the trajectory
formed by climbing S in the direction of steepest ascent. Henceforth we shall call
the ‘projection’ of a three-dimensional structure into Π, the ‘representation’ of that
structure in Π, and reserve the term ‘projection’ for other purposes.

If the trajectory on S is represented as the locus of points (x(1)(s), x(2)(s), y(s)),
where s ∈ (0, s0) is a convenient parameter such as distance along the trajectory
from one of its ends, then the corresponding DAL will be the curve formed by the
locus of points (x(1)(s), x(2)(s)), for s ∈ (0, s0), in Π. If f1, f2 denote the derivatives
of f in the two coordinate directions then the curve of steepest ascent is in the
direction (f1, f2), and is well defined except at stationary points of the density. The
gradient tree is the collection of closures of DALs.

Next we give more detail about a DAL, and then an explicit method for com-
puting one. Let D(f) = (f2

1 + f2
2 )1/2 denote the length of ∇f = (f1, f2), and put

ωj = fj/D(f) and ω = (ω1, ω2). Then, for x ∈ S, ω(x) is the unit vector in Π repre-
senting the direction of steepest ascent up S, at the point (x, f(x)) ∈ S. The DAL
that passes through x ∈ Π may be thought of as having been obtained, starting
at a point on the line, by stepping along the line in the direction indicated by ω.
Formally, the DAL that passes through x ∈ Π may be represented by the infinitesi-
mal transformation, x �→ x+ω(x) ds, where ds is an element of displacement along
the DAL, denoting the length of one of the aforementioned steps.

This suggests the following algorithm for computation. Given x0 ∈ Π, and a
small positive number δ, consider the sequence of points P ≡ {xj : −∞ < j < ∞}
defined by xj = xj−1 + ω(xj−1) δ and x−j = x1−j + ω(x1−j) δ, for j ≥ 1. Thus, the
DAL that passes through x0 represents the limit, as δ → 0, of the sequence P . The
algorithm is convenient for numerical calculation, provided we stop before reaching
places where D(f) vanishes.

In empirical work, where we compute estimators of DALs, we of course replace
f, f1, f2 in the algorithm by their estimators f̂ , f̂1, f̂2. We used the algorithm de-
scribed above, with a suitably small value of δ, to calculate the empirical DALs
shown in Section 4. Alternatively, one could recognise that DALs are integral lines
of the gradient field of a smooth density function, implying that in principle they
could be computed using an ordinary differential equation solver.

There is no commonly accepted definition of a ridge (or antiridge) of a sur-
face such as S, and in fact four different approaches, framed in terms of indices of
‘ridgeness’, were suggested by Hall, Qian and Titterington (1992). The following
is related to the second definition there, and is chosen partly for ease of compu-
tation in the present context; its representation in Π is easily calculated from the
functional D(f). Moreover, the representation is itself a DAL, and it admits an
elementary (and computable) generalisation to high-dimensional settings.
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Given a point P on S, let Π′ = Π′(P ) denote the plane that contains P and is
parallel to Π, and let C be the curve formed by the intersection of Π′ with S. If the
steepest ascent curve up S, starting from P , is perpendicular to C at P , then we say
that P is a point on a ridge (or an antiridge) of S. The ridge or antiridge itself is a
locus of such points, and is the curve of steepest ascent on S that passes through P .
(Therefore, its representation in Π is a DAL.) The point P is on a ridge, rather
than an antiridge, if the curvature at P of the curve formed by the intersection of S
with a plane perpendicular to Π, and containing P , is negative; and on an antiridge
if the curvature is positive.

A ridge can bifurcate at a point which represents a location on S where three
or more ridges join. The trajectories of steepest ascent that climb up the surface
between two ridges meeting at a bifurcation point B, necessarily join one another
at B. From there they have a common path, along an ascending ridge that leads
away from B; and they continue together until they terminate at a local maximum,
perhaps passing through other bifurcation points on the way.

The representation, in the plane Π, of a ridge and a bifurcation point will be
called a ridge line (RL) and a branchpoint, respectively. The DALs corresponding
to the representations (in Π) of ridges have different paths until they meet their
first branchpoint, after which they are the same until they terminate at a mode. An
RL is essentially what Wegman and Carr (1993) call 1-skeleton, the main difference
being in the definition of a ridge.

Therefore, the DALs that comprise a gradient tree do have a tree-like structure,
in the following way. Individual points in the sample space, representing leaves of
the tree, are at first linked to branchpoints through distinct DAL paths. Beyond
the first branchpoint the consolidated bundle of DAL paths, representing a branch
of the tree, may be joined at subsequent branchpoints by other branches, until they
finally reach a mode.

In theory, more complex structures are also possible, for example when two
branches lead away from a branchpoint and come together again at a mode or at
another branchpoint. However, it is rare in practice for such features to occur in
DALs computed from data via nonparametric density estimators, and so we shall
not consider them further here.

Two points x1, x2 ∈ Π that are linked to the same mode by a DAL, may be
said to lie in the same cluster. Thus, DALs divide the plane into clusters. Ridge
lines divide the sample space in a DEFANGED different manner, in a sense or-
thogonal to the division into clusters. They give neither a subclassification nor
a higher-level classification, but provide information of a different type, as fol-
lows.

If the ridge that produced an RL were almost horizontal, and lay between two
local maxima of S, occurring at points xmax,1 and xmax,2, say, in Π, then the points
along that RL would have no clear allocation to the clusters corresponding to xmax,1

and xmax,2. Therefore, the RL would represent a watershed in the division of the
sample space into clusters. On the other hand, a point that lay on either side of,
and sufficiently close to, the RL would be more definitively allocated to just one of
the clusters represented by xmax,1 and xmax,2.

More generally, we might fairly say that points that lie on one side or other of an
RL are less ambiguously associated with their corresponding mode, at least if they
are sufficiently close to the RL, than are points that lie directly on the RL. Indeed,
if two points x1, x2 ∈ Π lie on opposite sides of, and sufficiently close to, an RL,
then all points x3 that lie between x1 and x3 can be said to be more ambiguously
associated with their corresponding modes than either x1 or x2.
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In addition to their role in defining such a gradation of the sample space, the
fact that RLs of density or intensity estimators represent the ‘backbone’ and ‘ribs’
of the structure of those quantities means that they provide valuable quantitative
information about structure. Indeed, they are sometimes used to approximate the
locations of physical structures associated with scatterplots, for example positions
of the subterranean fault lines that give rise to earthquake epicentres (see Jones
and Stewart, 1997).

Relative to ridge lines, antiridge lines have more connection with clustering in
the usual sense, since they represent boundaries between regions where points are
assigned to different clusters. However, they are typically computed from relatively
little data, and so their locations may not be known as precisely as those of ridge
lines.

Next we describe a method for locating, and computing, an RL, given the den-
sity f . A locus of points on S, all of which have the same height above Π, is called a
level set of S. Its representation in Π is a contour of S. An RL may be reached from
another point in Π by moving around a contour. The orientation of the contour
passing through x is the direction of the unit vector ωperp(x), say, defined as being
orthogonal to ω(x) and determined up to a change of sign. Therefore, the contour
is defined by the infinitesimal transformation x �→ x ± ωperp(x) ds, where ds is an
infinitesimal unit of length around the contour. The point at which this contour
cuts an RL is a local minimum of D(f); a local maximum corresponds to cutting
the representation in Π of an antiridge.

Hence, to find a point x on an RL we move around the contour, computing D(f)
as we go, until we find a local minimum of D(f). Then, moving along the RL is
equivalent to moving up the DAL starting from x, or down the DAL leading to x;
we have already described how this may be done. It is helpful to note that turning
points of D(f) are solutions of the equation

f12

(
f2
1 − f2

2

)
= f1f2 (f11 − f22) ,

where fij(x) = ∂2f(x1, x2)/∂xi ∂xj . Of course, descending the DAL that defines a
ridge is equivalent to traversing the line defined by x �→ x−ω(x) ds, where now ds
is an infinitesimal unit of length along the DAL.

More generally, if the sample space Π is p-dimensional, where p ≥ 2; and if
we define D = (

∑
i f2

i )1/2, where fi equals the derivative of f in the direction
of the ith coordinate direction, for 1 ≤ i ≤ p; then a ridge line or antiridge line
is a locus in Π of turning points of D(f). It may be calculated by generalising
the method suggested above. DEFANGED A practicable, computational algorithm
for an RL may be obtained as before, replacing the infinitesimal ds by a small
positive number δ. The empirical version, in which density f is replaced by the
density estimator f̂ , also follows as before; we used this method to compute the
RLs shown in Section 4. Tests for significance of empirical modes may be based
on work of Silverman (1981), Hartigan and Hartigan (1985), Müller and Sawitzki
(1991) or Cheng and Hall (1999), for example.

3. Forests based on distance and density

While the minimum spanning tree is not consistent for the population gradient
tree, it provides some information about relationships among neighbouring data
values. In this section we suggest a regularisation of the minimum spanning tree
in which links between observations are penalised if they are not sufficiently close
to estimated density ascent lines. It may be applied to a subset Y = {Y1, . . . , YN}
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of the sample X = {X1, . . . , Xn}, for example to those data that are linked to the
same mode in the gradient tree, as well as to the full sample.

Let ‖Yi−Yj‖ denote Euclidean distance in the sample space Π, and let d(Yi, Yj)
be some other measure of distance between Yi and Yj . It is not necessary that
d(·, ·) be a metric; appropriate definitions of d are powers of Euclidean distance in
Π, i.e. d(Yi, Yj) ≡ ‖Yi − Yj‖s, and powers of Euclidean distance on Ŝ, i.e.

d(Yi, Yj) ≡
[
‖Yi − Yj‖2 + {f̂(Yi) − f̂(Yj)}2

]s/2
,

where s > 0. In our numerical work in Section 4 we shall use the first of these
definitions, with s = 2.

Now add a penalty to d(Yi, Yj), proportional to the squared length of the pro-
jection of Yi − Yj orthogonal to ω̂(Yi). (Here, ω̂(x) denotes the empirical form of
ω(x), computed with f̂ replacing f .) Equivalently, the penalty is proportional to
the area of the triangle that has one side equal to the length of the line joining Yi

and Yj , and another equal to the length of the representation in Π of a straight-line
approximation, of the same length as the previous side, to the gradient curve. The
area in question equals half the value of ‖Yi − Yj‖2 − {(Yi − Yj) · ω̂(Yi)}2, if the
vertex of the triangle is at Yi. We apply these penalties in proportion to a tuning
parameter t ≥ 0, obtaining symmetrically and asymmetrically penalised versions,
respectively, of d(Yi, Yj):

D(Yi, Yj) = d(Yi, Yj) + t
[
‖Yi − Yj‖2 − {(Yi − Yj) · ω̂(Yi)}2

]
or (3.1)

D(Yi, Yj) = d(Yi, Yj) + t
[
‖Yi − Yj‖2 − {(Yi − Yj) · ω̂(Yi)}2

]
+ t

[
‖Yi − Yj‖2 − {(Yi − Yj) · ω̂(Yj)}2

]
. (3.2)

Using a large value of t amounts to placing more emphasis on point pairs whose
interconnecting line segment lies close to a gradient curve.

We are now in a position to construct the forest corresponding to the dataset Y
and the penalised distance measure D. Given Yi, we draw a directed line segment
from Yi to Yj if and only if Yj minimises D(Yi, Yj) over all points Yj for which
f̂(Yj) > f̂(Yi). The forest is the set of these directed segments. If Y is a cluster,
and if we adjoin to Y the unique mode associated with that structure, then with
probability 1 there is exactly one point Yi (the mode) in Y for which the directed
line segment does not exist. As we climb higher up the surface the directed line
segments tend to coalesce, producing a tree structure sprouting from the mode
(although it was constructed from the opposite direction).

If we define D(·, ·) as at (3.1) then taking t = 0 produces a forest that is similar
in both definition and appearance to the minimum spanning tree, although based
on directed line segments. Choosing a relatively large value of t imposes greater
penalty for not walking as nearly as possible along the DAL that starts at Yi,
when passing from Yi to Yj . The extent to which line segments cross over in the
forest may be reduced by increasing t, thereby forcing the direction of movement
on Ŝ to give more emphasis to the uphill component of motion. The advantage
of (3.2) over (3.1) is that in the former the tree treats the notions of ‘uphill’ and
‘downhill’ symmetrically, but in practice, forests defined by (3.1) and (3.2) are
virtually identical.

4. Numerical examples

Rees (1993) determined the ‘proper motions’ of 515 stars in the region of the glob-
ular cluster M5. Using the proper motions and radial velocity dispersions he esti-
mated the probability that each star belonged to the cluster. The analysis below is
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Figure 1: Steepest Ascent Trees. Panels (a), (b) and (c) depict DALs for the
smoothed nearest neighbour estimator corresponding to k = 25, 50, 100, respec-
tively.

based on the Herzprung-Russell diagram, a plot of magnitude versus temperature,
for the 463 stars that were determined by Rees to have probability of at least 0.99
of belonging to the cluster.

We employed two different versions of f̂ . Both were nearest neighbour methods,
which we chose for reasons that were both pragmatic (the adaptivity of NN methods
means that they have less tendency than other density estimation techniques to
suffer from spurious islands of mass) and didactic (NN methods are commonly
used in classification problems). The first version of f̂ was a standard k’th nearest
neighbour estimator, with f̂(x) equal to k/(nπr2) where r = r(x) was the smallest
number such that the circle centred on x and with radius r contained just k points.
The second density estimator was a smoothed version of the first, equal to 2k/(nπr2)
where r was the solution of

n∑
i=1

{
1 −

(
‖Xi − x‖

r

)2}+

= k.

See Section 5 for discussion of this technique. Since our graphs remain unchanged
if we multiply f̂ by a constant factor then it is not necessary to normalise, and so
the factor k/nπ may be dropped.

Figure 1 depicts the gradient tree, or collection of DALs, for k = 25, 50, 100. In
constructing figures 1 and 2 we used only the second, smoothed nearest neighbour
estimator f̂ . Note that as k increases the number of empirical modes decreases; the
number is 7, 4, 2 for k = 25, 50, 100 respectively. The gradient trees indicate which
points are most closely associated with the respective modes. The orientations and
spacings of the tentacles of these ‘octopus diagrams’ provide information about the
steepness of f̂ in different places.

Figure 2 shows the RLs for the same values of k. Ridge lines are depicted by
solid lines, and antiridge lines by dashed lines. The main RL, in the lower right of
the figure, is clearly depicted; it is in a sense the backbone of the surface defined by
the density estimator. Other RLs represent relatively minor ‘creases’ in the surface,
and play more the role of ‘ribs’.

The gradient trees provide only minimal information about interpoint relation-
ships. Detail of that type is more readily supplied by forests, depicted in figures 3
and 4 for the two respective density estimators. We used the distance function de-
fined at (3.1), with d(Yi, Yj) = ‖Yi − Yj‖2. The six panels in each figure represent
different pairs of values of the smoothing parameter k = 25, 50, 100 and gradient
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Figure 2: Ridge Projections. Panels (a), (b) and (c) show the ridge lines (solid)
and antiridge lines (dashed) corresponding to the respective DALs in figure 1. To
illustrate relationships to the data, a scatterplot of the data is included in each
panel.

Figure 3: Forests. Forests drawn using the unsmoothed nearest neighbour estimator,
with t = 0 (top row) and t = 10 (bottom row), and k = 25, 50, 100 (columns 1–3).
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Figure 4: Forests. Forests drawn using the smoothed nearest neighbour estimator,
with panels ordered as in figure 3.

weight t = 0, 10. Taking t = 0 produces directed line segments based almost entirely
on distances between points, except that the direction of the segment is always that
of increasing estimated density. The resulting forest is comparable to the minimum
spanning tree, and its links have almost random orientation. On the other hand,
using t = 10 gives heavy weight to segments that lie close to the representation
in Π of the estimated gradient curve, and (for both density estimators) produces a
more orderly presentation of the links.

Overall, the data show strong evidence of a northwest to southeast ridge, and at
least three modes. Smoothing the density estimator produces some regularisation
of forests, but choice of k has much greater effect on our graphs than estimator
type.

In order to further illustrate performance of the gradient tree approach, these
methods, along with two conventional graphical tools (contour plots and perspective
mesh plots), were applied to two simulated data sets. In these examples, which are
discussed below, smoothed nearest neighbour estimators were employed whenever
estimation of the density and its gradients were required.

In the first example, 500 random variates were generated from the bimodal
Normal mixture,

0.7 N

((
0
0

)
,

(
1 0
0 1

) )
+ 0.3 N

((
2
2

)
,

(
0.26 −0.13
−0.13 0.65

) )
. (4.1)

The smoothing parameter was k = 45, and gradient weight was t = 10. The data,
contour plots, and perspective mesh plots based on the density estimator, are shown
in panels (a) and (b) of figure 5, which provide evidence of bimodality. However,
the density ascent lines, ridge lines and forests, depicted in panels (c), (d) and (e)
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Figure 5: Bimodal data example. A scatterplot of 500 random numbers simulated
from model (4.1) is shown in panel (a). Panels (a), (b), (c), (d) and (e) depict
respectively contour plots, a perspective mesh plot, density ascent lines, ridge lines,
and forests based on the smoothed nearest neighbour estimator with k = 45 and
t = 10.

of figure 5, show more clearly than panels (a) and (b) structure of the surface, and
in particular the locations of the two modes and the steepest ascent directions up
the surface.

Each of the graphical methods illustrated in panels (c) and (d) divides the 500
data points into two subgroups, in which each point is connected to the centre
of the subgroup to which it belongs. The directions of the density ascent curves,
and hence information about the way in which the surface increases as one moves
in different directions, are conveyed much better by these two graphics than by
those in panels (a) and (b). Most importantly, panels (c) and (d) allow the reader
to extract point-to-point relationships from the data to a significant extent; such
information cannot be so readily obtained from the contour plot (panel (a)) or the
perspective mesh plot (panel (b)).

The second example is of data simulated from a model, described below, which
has more complex structure than that described at (4.1). Let U, V, W, Z be indepen-
dent random variables, with U and V having the N(0, 0.062) distribution, W being
uniformly distributed on the interval (−1, 1), and Z having density g(z) = 0.2z+0.5
for |z| ≤ 1. Put

X = sgn(W ) (0.6 − Z) I(−1 ≤ Z ≤ 0.6) + U, Y = Z + V, (4.2)

where I(·) denotes the indicator function. The surface defined by the joint density
of (X, Y ) has two ridges, represented by the lines x = ±(0.6− y) for −1 ≤ y ≤ 0.6,
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Figure 6: Ridge data example. A scatterplot of 500 observations simulated from
model (4.2), and the corresponding contour plots, are shown in panel (a). Perspec-
tive mesh plots from different angles, showing the two ridge branches, are given
in panels (b) and (c). Panels (d), (e) and (f) depict respectively density ascent
lines, ridge lines, and forests. Graphics here used the smoothed nearest neighbour
estimator with k = 55 and t = 10.

which merge at (0, 0.6) and then continue together along the line x = 0 until the
point (0, 1) is reached. The height of the surface increases steadily as one travels
along any of these ridges in a direction that has a northbound component.

We generated 500 observations from model at (4.2). The smoothing parameter
was taken to be k = 55, and the gradient weight was t = 10. Panel (a) of figure 6
incorporates a scatterplot of the dataset. The contour plots and perspective mesh
plots, given in panels (a)–(c) of figure 6, provide only a vague impression of the bi-
ridge nature of the data. In contrast, the density ascent lines, ridge and antiridge
lines and forests, shown in panels (d)–(f) of figure 6, provide substantially less
ambiguous information about the ridges and, more generally, about the nature of
the scatterplot.

The tree and forest structures in different datasets, for example those in our
last two examples, are readily compared. In particular the very different characters
of the ‘octopus plots’ (tree structures made up of density ascent lines) in panel (c)
of figure 5, and panel (d) of figure 6, are immediately apparent. The first shows
two approximately symmetric clusters about single centres, with little evidence of
ridges, while the second demonstrates marked asymmetry and ‘ridginess’. Likewise,
the forests in panel (d) of figure 5, and panel (f) of figure 6, show very different
hierarchical structures. The first demonstrates a relatively low level of relationship
among different points in the cluster, with many of the branches of the forest joining



248 M.-Y. Cheng et al.

the cluster relatively close to the respective mode, and so being related to other
branches (and hence other points in the cluster) largely through that mode. On
the other hand, panel (f) of figure 6 shows a strong degree of hierarchy, with each
branch of the forest joining its respective ‘ridge branch’ after travelling only a short
distance, and being linked to other branches though the ridge.

5. Density estimators and theory

The two-dimensional nearest-neighbour density estimators used in Section 4 may
be described as follows. Given a kernel K, put f̂(x) = f̂(x|R) = R/nh2

x where hx

is given by
n∑

i=1

K

(
Xi − x

hx

)
= R.

If K is the uniform kernel, equal to 1/π within a region R and 0 elsewhere, then
this prescription requires hx to be such that R data values are contained within
the region x ⊕ hxR, which of course is the standard near-neighbour construction.
A disadvantage of the uniform kernel, however, is that the resulting estimator is
very rough. The second approach discussed in Section 4 uses a bivariate form of
the Epanechnikov kernel. Alternatively we could use bivariate biweight or triweight
kernels.

We employed the same value of R for all x, so that the bandwidth hx was
relatively small in regions of high data density. Assuming that R = R(n) → ∞
and R/n → 0 as n → ∞ it may be shown that hx ∼ {R/nκ1f(x)}1/2 as n → ∞,
where κj =

∫
K(v)j dv. In particular, the effective bandwidth is of size (R/n)1/2.

Assuming that K is symmetric and f has two bounded derivatives, the bias and
variance of f̂ are of sizes R/n and (n/R3)1/2, respectively. Therefore, optimal mean-
square performance of the estimator f̂ is obtained with R of size n5/7, in which case
mean squared error equals O(n−4/7), just as it would be for a traditional second-
order kernel estimator. Variance is asymptotic to (nf5κ3

1/R3)1/2κ2.
Note particularly that, using bandwidths of these sizes, our gradient estimators

are consistent for the true gradients. That is not true for the implicit gradient
estimators employed in a minimum spanning tree, which are in effect based on a
bandwidth that is of size n−1/2. This means that the error-about-the-mean term in
the estimator of f , let alone for estimators of the derivatives of f , does not converge
to zero, which accounts for the haphazard, complex structure of minimum spanning
tree diagrams.
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